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Abstract

The task of assigning labels to pixels is central to computer vision. In automatic segmenta-
tion an algorithm assigns a label to each pixel where labels connote a shared property across
pixels €.g color, bounding contour, texture). Recent approaches to image segmentation have
formulated this labeling task as partitioning a graph derived from the image. We use spec-
tral segmentation to denote the family of algorithms that seek a partitioning by processing the
eigenstructure associated with image graphs.

In this thesis we analyze current spectral segmentation algorithms and explain their perfor-
mance, both practically and theoretically, on the Normalized Cuts (NCut) criterion. Further,
we introduce a novel family of spectral graph partitioning methods, spectral rounding, and ap-
ply them to image segmentation tasks. Edge separators of a graph are produced by iteratively
reweighting the edges until the graph disconnects into the prescribed number of components.
At each iteration a small number of eigenvectors with small eigenvalue are computed and used
to determine the reweighting. In this way spectral rounding directly produces discrete solu-
tions where as current spectral algorithms must map the continuous eigenvectors to discrete
solutions by employing a heuristic geometric separagog (k-means).

We show that spectral rounding compares favorably to current spectral approximations on
the NCut criterion in natural image segmentation. Quantitative evaluations are performed on
multiple image databases including the Berkeley Segmentation Database. These experiments
demonstrate that segmentations with improved NCut value (obtained using the SR-Algorithm)
are more highly correlated with human hand-segmentations.
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Chapter 1

Introduction

The task of assigning labels to pixels is central to computer vision. Image segmentation re-
quires that the algorithm assign a label to each pixel in the image. This broad definition in-
cludes operations such as stereo depth assignment, object recognition, and image segmentation.
At the low-level, shared segment labels connote a shared statistical quantity between pixels in
the image. At higher levels segmentation problems undertake the task of assigning labels with
semantic value. For example labeling the image pixels as members of either of the abstract

classedigure or ground or supplying concrete labels suchfase andcar.

In recent years segmentation has become a central component in mid and high level vision
algorithms. The image parsing system of] ] used segmentation to validate detection
events in the image. In their work on geometric pop-udp [105 and contextual classification
[ ] initial segmentations play a pivotal role in limiting the support of classification events
(both high level, mid-level t.e. surface orientation). Object detection systems, a recent staple
of the vision community, are being augmented to include segmentation specific support for

feature detection events.



2 CHAPTER 1. INTRODUCTION

1.1 Problems and Solutions

In this work segmentation is formulated as partitioning an graph defined over the pixels. In
the simplest instance a weighted graph- (V, £, w) is built from the image in the following
fashion. The vertex set of the graph is taken to be the pixels of the image. The edgésset

a fixed for the image and connects neighboring pixels (on a mesh-like lattice). The weights
of these edges are determined as a function of the pixel similaritg.g. intensity or color
correlation. Finding a good segmentation of the image can now be thought of as finding an

inexpensive cut (or cut-set) (A.

In partitioning a graph we must specify a measure of cut cost or quality. Most measures of
partition quality yield NP-hard optimization problems. This raises two important questions.
First, does a particular optimization problem capture good patrtitions for the image segmenta-
tion domain, especially in light of the optimization being NP-hard and thus we may never know
the true optimum anyway. Second, given that the optimal value is a good characterization are

approximations quickly constructible and do they return good partitions?

One popular formulation, used in image processing and clustering, is the normalized cut
(NCut) of a graph introduced by Shi and Malik[{10(]. The ideas contained therein were
further explored by Nget al. [ ] and Yu and Shi | ] both of whom motivated
multi-way partitioning algorithms. In part, our method was motivated by observations made
in [ ) ]. Now, how does the NCut optimization problem fare against our two

guestions?

It is not difficult to construct image examples for which common image percept does not
correspond to the optimal NCut of the imaged. see Shentatt al’s example § ]
and see Figuré.6 for an analogous case in natural images). This is unsurprising, and an
acknowledged attribute of all objective measures of cluster or partition quality (see Kleinberg

[ ] and Meila [ ] for treatment of this issue). But, for many images, as we shall show,
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there are segmentations with a smaller normalized cut value than in those generated by earlier
methods that are at the same time more pleasing. For example, one of the main empirical
advantages of spectral rounding technique seems to be that it is less likely to split the image
in homogeneous regions, see Figr& while returning smaller NCut values. Thus good
image segmentations are generated as graph partitions without reformulating the underlying
combinatorial problem.

The two common paradigms for approximating such objective functions are 1) linear or
semidefinite programming 288, ! ]. and 2) spectral methods[iu97 ]. In
this paper we introduce a spectral technique that empirically improves upon existing spectral
algorithms for quotient cuts. Earlier spectral methods consisted of a two stage algorithm. In
the first stage a small collection of, s&yeigenvectors with small eigenvalues are computed.
While in the second stage these vectors are used to map the graph verticB$ il a
geometric separator is then applied} 1794.

In chapter 3 we introduc8pectral Roundingas an alternative to rounding with geometric
separator. Spectral rounding iteratively reweights the graph in such a fashion that it eventually
disconnects. At each iteration we will use the eigenvalues and eigenvectors of the reweighted
graph to determine new edge weights. At first hand this may seem very inefficient, since
the most expensive step in the two stage method is the eigenvector calculation. By using the
eigenvector from the prior step as a starting point, for finding the new eigenvector, simple

powering methods seem to work in only a small number of steps.

1.2 Related Work

In this section we briefly touch on related and prior work in areas of image segmentation. We
make the distinction between low and high level formulations of the segmentation problem.

Additionally, we briefly touch on the distinguishing differences between modern approaches,
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focusing on what types of constraints are easily encoded in a particular method, and the com-

putational overhead of the various techniques.

1.2.1 Low-Level Segmentation

The low-level segmentation problem has been posed as a feature space clustering problem

[ ], a statistical estimation problemx[/102], a diffusion process4 ], a level set opti-
mization [ ], a graph partitionV ) ], and as inference on probabilistic graphical
models of the image generation process-p4 > ]. Most modern segmentation

systems employ a mode-seeking statistical estimation approach suchrasaheshift or a

probabilistic technique derived from a graphical model of the image data.

Before continuing on it is worth commenting on why one would choose to use a spectral
segmentation method such &s\{00, ) ]. In particular, what desirable features
do spectral relaxations possess as approximations for image segmentation applications. Given
that the pixels are connected in spatially localized patterns, a spectral method will generate
image segments that are connected in the image plane (as well at the graph). This property
of the segments is not guaranteed by segmentations algorithms Gsig, [ ' )

! ]. Spectral methods provide a means of bounding several combinatorial (discrete)
functions of cut quality (known collectively as quotient cuts). Such cut functions are covered
in chapter 2 and form the basis of assessment for segmentation quality in graph partitioning
formulations.

We use the term low-level segmentation to denote the collection of segmentation techniques
that are free of semantic information. These methods seek to partition the image into contigu-
ous regions that share a level of coherence. This coherence can be as simple as color similarity,
texture similarity, or boundary smoothness. The majority of such approaches are motivated

by the work of the Gestalt psychologists on the heuristics that guide visual binding. This pro-
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cess in biological systems is analogous to image segmentation in computer vision systems —

features are grouped together to form coherent regions in the visual field.

Clustering Approaches

We group clustering anthean-shiftalgorithms | ] into statistical approaches for image
segmentation. Thé—means algorithmbis95 seeksk points in feature space that explain

the data as the means of disjoint populations. These points are then used to label pixels in the
image domain by their mean in feature space. Mean-shiftalgorithm is a mode seeking
algorithm. For a given distribution in feature space, the maxima of a density (under a kernel
image) are located through repeated restarting and hill climbing. These modes are then used
to assign labels to pixels in the image domain. In terms of our requirements, both of these
methods share a major short-coming: as the feature spaces may not preserve the geometry of

the image plane, there is no constraint enforcing contiguous segments in image plane.

Contours and Level-Sets

Contour based approaches seek a closed curve in the image plane that satisfies assumptions
about the local differential structure. These methods typically seek to maximize the coverage
of detected edge pixels, while satisfying smoothness constraints on the contousnakee
contour approach for low level segmentation was proposed by Kass and Witkim\img 7].
This family of approaches optimizes over a parametric curve with penalty terms on smoothness.
Unlike graph theoretic approaches to low level segmentation, active contours typically require
initialization. In most cases placing a contour interior to the object of interest is sufficient. In
many applications these models are inappropriate because the smoothness terms may dominate
image structure.

Level set optimization can be applied to solve Mumford-Shah functioB&is P2 and con-

tour parameters. The solutions to Mumford-Shah optimization, a set of piece-wise linear func-
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tionals covering the image, results in an image segmentation. Alternately, the variational level-
set optimization framework can also be applied directly to contour estimation, to extend con-
tour estimation to an edgeless casé/P1] or to combine region and edge informatiénjoq.

There are two major drawbacks to these approaches. The first is nature of the objective func-
tions. In general the error surface contains many local maxima, and in the case of Mumford-
Shah functional optimization is computationally expensive. Typically contour based methods
suffer from a trade off between the smoothness of the contour and the stability of the solution.
If the penalty term on the smoothness is too low the contour explains a great deal incorrectly
detected edges. If the penalty term is too high, the result is a rigid, overly simple, estimate of

the target segmentation.

Probabilistic Approaches

The probabilistic family of approaches to low-level segmentation originate from the semi-
nal work of Geman and Gemans{>84. These methods determine low-level pixel label
configurations that are probable under a Markov Random Field (MRF) suctP{tsaf)
[Les Pi(x)]s(x))P(S), wherei(x) is the image observation at the pixgls(z) is the seg-
ment label assigned to, and S is the configuration of pixel labels. There are two major
components worth discussing in the MRF model. First the independence assumption that
P(I]S) = [,es P(i(z)]s(x)), which asserts that the observations are conditionally indepen-
dent given the labels. Second, the priofS) = >_ . s> enw P(s(2), s(v)), called the in-
teraction field, biases configurations®toward consistent labels on adjacent pixels under the
neighborhoodsV (). Priors of the form above can be thought of as graphs with topologies
defined by label interactions.

For two class segmentation problems, with an exponential family pair-wise prior, the max-
imum likelihood configuration ofS can be computed in polynomial time as a reduction to

max-flow [ ]. There are a few technical conditions that must be met by the ptiéh
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related to graph topology and the penalty functionThe class of priors was broadened to
include convex functions by Ishikawa irs[103.

For k—class segmentations, where- 2, probable configurations of the MRF can be found
by multi-commodity flow optimizations. This observation inspired the segmentation algorithm

of Veksler [ ], using the multi-commodity flow algorithm proposed by Boyketval.

in [ ]. The class of admissible reductions to multi-flow optimizations where further
charted by Kolmogrov and Zabih iixl204]. More complex models beyond the scope of a flow
reduction were proposed by Bt al. in | ]. Optimization of label configurations for

these models employ a data-driven Markov Chain Monte Carlo to find a local maxima.

Graph Partitioning

The model essential to the MRF formulation§in.2.1can be thought of a graph whose topol-
ogy is defined by the neighborhood functiok§z). By dropping the probabilistic interpreta-
tion and thinking only about optimizing a function of the label collisions, this problem can be
thought of as a graph partition. These objective functions include the normalized\¢Ot],

the p—way max flow approaches:| ], as well as a host of other cut functions and opti-

mization techniques. These approaches are addressed in greater detail in chapter 3.

1.2.2 Mid-Level Segmentation

We use mid-level segmentation to denote the set of image segmentation problems that include
some top-level input, but no object information. Examples include the figure-ground method
proposed by Yu in{S07], and the spatially coherent clustering method developed by Zabih in
[ 1.

In the work of Yu [ ] a small set of pixels are constrained to the same class. This

effectively contracts the graph on the labeled vertices. This approach was applied to figure-
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ground segmentation by constraining the border pixels to a single class. The mid-level input
information is taken to be the set of pixel equivalence constraints.

In[ ] an iterative scheme is proposed in which a small set of parameters are estimated
for each segment as the flow optimization is performed. These parameters are then used to
re-weight the graph during the optimization. The result is a segmentation routine that is robust
to unstructured noisge.g. salt-and-pepperh the image plane. Here the mid-level input is the

model class used in parameter estimation.

High-level Segmentation

The missing ingredient in most image segmentation approaches is the Gestaltistmolgedf
consistency Rightly, this heuristic suggests that the constituent regions of a known object
should be grouped in the visual field. Notable exceptions include the covering work of Boren-
stein and UllmanU0Z2], and that of Yu and Shi{ ].

The method proposed by Borensteir [0Z] requires a large collection of patches taken from
the parts of the target class. This loose collection of patches, coupled with overlap compatibility
scores, is used to cover the pixels of interest in the image. Thus a segmentation is derived as
the union of on-object pixels from the covering patch collection. The optimization procedure
described inff ] contains no guarantees regarding the quality or uniqueness of the solution.
As the template based approach requires hand segmentation for the class patches, the method
carries a heavy burden in hand labeling as well. This method has an implicit representation of
shape in the patch compatibility functions supplied by the exemplars.

The method proposed in/031 attempts to segment out detected objects in the scene
by combining a graph on pixel similarities with scores for object feature configurations. The
configuration of object features are weighted if they are probable under the training set. These
object features are then linked to low-level pixel interactions through edge weights. However,

the method does not have an explicit representation for the global shape of the object.
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Perhaps the easiest to tailor to high-level shape information are the contour based meth-
ods. Active contours for tracking and segmentation use a distribution over contour parameters
estimated from a training corpus to constrain the set of likely shapes. These models, while
powerful, often return overly smooth results in the image. Additionally, a similarity transform
is generally factored out of the shape statistics. By optimizing over the shape and a similarity
transform, many local maxima exist. In earlier work\jC05] we combined simple statistical

contour models with graph partitioning method to obtain shape guided image segmentations.

1.3 Contributions

The primary contribution of this document is introduced in Chapter Spectral Rounding
However, in getting to this point a number of useful results were obtained that extend beyond

the scope of a particular algorithm.

1. A novel rounding algorithm that projects the eigenvectors of a graph Laplacian onto the

feasible set of partition matrices (Chapter 4).

2. An analysis of the “spectral segmentation” problem, including a graph augmentation
scheme that ameliorates some of the short-comings of spectral methods when coupled

with planar local neighborhood graphs (Chapter 3).

3. Data and analysis suggesting that it is not spectral segmentation (properties simply of
the eigenvectors and eigenvalues), but rather the combinatorial objective fuNction
malized Cut which should be optimized when segmenting images (Chapter 5). This
is shown, both in the prior over cuts induced by t€ut (figure 2.3) and the positive
correlation between improved perceptual relevance and |di@art cost. The former

property refutes the “balance bias” that is often ascribed the normalized cut function and
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demonstrates its a property of the spectral relaxation. The latter is validated with medical

images and human segmentation of natural imagery.

4. The Cheeger inequality, relating the sparsest cut of a graph to the eigenvalues of the
normalized Laplacian, is adapted to the normalized 2-cut. This bound is then generalized

to the k-way normalized cut and an algorithm is furnished to achieve it (Chapter 2).

1.4 A Roadmap

The document is loosely organized in the following manner. Chapter 2 collects the mathemati-
cal preliminaries required for the analysis of spectral graph algorithms and the derivation of the
spectral rounding algorithm. Chapter 3 provides a detailed analysis of the relationship between
the underlying graph topologies used in spectral image segmentation and the eigenvectors of
the graph. An algorithm is introduced to called “expansion augmentation” that improves spec-
tral segmentation with computational overhead. Chapter 4 introduces the spectral rounding
algorithm which efficiently improves spectral segmentation. Chapter 5 presents results on ran-
dom geometric graphs, natural images, medical images and the Berkeley Hand Segmentation
Database.

Chapter 2 is meant primarily as a reference for use by the reader when faced with an unfamil-
iar concept. The chapter contains a collection of useful definitions and notational conventions
§2.1. The spectrum of the graph Laplacian is address&d.in In §2.2.1the differentials of
the eigenvalues and eigenvectors of these matrices is covered, with a basic proof existence for
the generalized eigenvalues of a matrix pencil. These tools are needed later in the study of the
spectral rounding algorithm. I§2.3the Cheeger inequality is proved for the Normalized 2-cut
of the graph. This fundamental inequality bounds the cost of the normalized cut by the second

smallest eigenvalue of the normalized Laplacian. The chapter ends with the statement of a
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recent generalization of Fiedler’s theorem relating the topology of the graph and the structure
of the Laplacian eigenvectors.

Chapter 3 discusses spectral image segmentation in detail. The standard spectral partitioning
algorithm is introduced i§3.1. The interaction between mesh-like (spatially localized) graphs
and the standard spectral algorithm is covereg3r2. A simple method for improving the
performance of standard spectral algorithms is prop§3eti2 This method adorns the mesh-
like graph with a small set of random edges (weighted by data in the underlying mesh). This
augmented graph is less likely to produce plane waves as its topological structure is no longer
reducible to that of a string (or mattress of springs).

Chapter 4 introduces th8pectral Rounding algorithm (in§4.1). In§4.1.1 a collection
of reweighting schemes are proposed. These schemes are applied iteratively to reweight the
graph until is eventually disconnects into a prescribed number of piecégl.anthe notion
of a fractional average is introduced and connected to both the reweightings that decrease a
target Rayleigh quotient and the eigenvalues of the normalize Laplacigd.3rconvergence
is proved for three reweighting schemes. 4.1 a heuristic for selecting eigenvectors and
choosingk (the number of partitions) based on the derivatives of the eigenvalues are put for-
ward.

Chapter 5 provides results and analysis of the spectral rounding algorithm on random ge-
ometric graphs, natural images and medical images. The analysis includes the expected im-
provement in normalized cut cost between the standard spectral algorithm and the cuts pro-
duced by spectral rounding. The partitions generated by the two methods are compared using
an information theoretic metric that reports the number of bits required to encode the residual
entropy of the two partitions once their mutual information is removed. Finally, image seg-
mentations are validated by human labels when the information is available. This analysis is
done on a simple medical image processing task and the Berkeley segmentation database. The

results provide evidence that the combinatorial (graph theoretic) interpretation of NCuts should
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be preferred to the strictly spectral explanation of NCuts.

Chapter 6 addresses promising directions for future work. The three main issues surround
improved theoretical results for spectral or semi-spectral partitioning methods, the efficient
integration of high-level information into the segmentation task and the computational cost of
the initial eigencomputation. Preliminary approaches are put forth.

The remainder of this chapter sketches out problem definitions and concerns prior work in
the area of segmentation — with special emphasis on graph theoretic approaches in general and
spectral methods in particular. The putative contributions of the thesis can be found at the end

of this chapter.



Chapter 2

Linear Algebra of Graphs

The connection between graphs and matrices provides powerful tools for tackling both graph
theoretic and linear algebra problems. In this chapter we provide a collection of useful results
on the relationship between Laplacians and their underlying graphs. The chapter begins with
the introduction of notation and definitions needed in the remainder of the document. The

combinatorial Laplacian is then introduced, followed by two major theorems - the Cheeger

inequality which bounds the Normalized Csgeg theoremn?) and the Nodal Domain theorem

of Fiedler Gee theorers).

Both major theorems in this chapter have implications for spectral image segmentation and
clustering. In the first we furnish an approximation algorithm for the NCut using the eigen-
structure of the normalized Laplacian. The proof is an adaptation of the bound on the “sparsest

cut” to the normalized 2-way cut. The bound is then generalized to the k-way normalized cut.

The second generalizes Fiedler's famous theorem relating structure in the eigenvectors to
the adjacency pattern of the graph. This in turn bounds the number of connected components

eigenvectors can partition the graph into by tisgiectral index

13
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2.1 Notation and Definitions

We denote a grapty = (V, E,w) with vertex set//, edge set” and an edge weighting.
By convention|V| = nand|E| = mandw : E — [0,1]. The graphG is assumed to be

undirected graph without multiple edges or self-loops.

Definition 1. Theweighted adjacencymatrix of G = (V, E, w), A(G) or simply 4, is defined
as

— e (f(7) e E
A g) =4 @i = W)€ 2.1.1)
0 otherwise

n

Definition 2. Theweighted degreeof vertexi is d; = vol(v;) = > _;_, w;;. We assume that no
vertex has zero degree. The weighted degree matiix éf(G) or simply D is defined as

d; ifi=j
D(i,j) = ) 2.1.2
(i) { 0 otherwise ( )

Definition 3. Thevolume of a vertex set”’ | V' C V(G), denotedvol (V'), is computed as

vol(V Z Z Z d;,

eV’ (i,j)€E(G eV’

whered; is the weighted degree of the vert&xvertex inV’.

Definition 4. Thecut associated with a vertex sé&t, i.e. those edges connectifg to the
remainder of the vertice® \ 1/, denotedyV"’ is defined as

V' = Z aij.
weV’ veV\V'(i,j)eE
Definition 5. Thenormalized Laplacian of a graphG = (V, E, w) denotedZ, is defined as
L = D2LD7YV? = DV*(D — A)D7Y? = [ — D"Y/2AD~'/2 and is co-spectral with
minimax points of the generalized Rayleigh quotiﬁ%.

Definition 6. Thenormalized cut of a graphG = (V, E, w) is defined as
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whereV; N V; =g andV (G) = UL, Vi

Definition 7. Theconductanceof a graphG = (V, E, w) is defined as

o 6(VLVAYY)
P(G) = min ol (V)

wherevol (V') < 1vol(G).

Definition 8. Thegeneralized Laplacianof a weighted graplt = (V, E, w) denotedL(G)
or simplyL is defined ad. = D — A.

Thegeneralized Laplacianwill be referred to as the Laplacian of the graph from this point
forward. We state following useful identity, given a map. V' — R the symmetric quadratic
form on L yields :

f'Lf = f'Df—frAf
= Z ay(ff + f7) — ai; (2fif;)

(ij)eE(G)

= > alfi— )’

(ij)eE(G)
and, notably, can be used to compdit&”’, V' \ V') on discrete valuation§.

Definition 9. The matrixrank(A/) is equal to the dimension of the column-spacé/ffand
theco — rank (M) is equal to the dimension of the nullspace\éf

We make a simple observation about these generalized Rayleigh quotients:

Lemma 1. Given a weighted symmetric gragh = (V, E, w) then the normalized Rayleigh
guotient can be written as

ffLf - Z(i,j)eE,i<j(fi - fj)Qwij

= 2.1.3
FTDF = Ssemes (2 + Py (21:3)

wheref; = f(v;)

Proof. The factthef”Lf = 3", jcp.ic; (fi— f) 2wy andfTDf =37 o o ((f)2+(f1)?)wy

are obtained by standard calculations. O
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[ Definition | Equation] A—map[  f-map] |
L=D—-A Lf =ADf . | ]
[ ]

L =D 2LD 12 Lg=\g |l g=D"2f | ]
[ ]

T=D"'A Tf=n~f y=1-2A [JS89
[ ]

[ ]

A= D712AD71/? Ag =g y=1=-X|g=D"f ] ]
[ ]

Lf =nAf n= 37 T ]

ATY2DATY2q = oq 0:77—1—1:}\%; q=AY%f

Table 2.1: A table of linearly equivalent eigenspaces and associated eigenvalue transforma-
tions. WhereA is taken to be the weighted adjacenéy,the weighted degree @F. Each
generalized Rayleigh quotient is followed by its symmeterized form, and linear map from the
eigenspace of, D.

The main importance of Lemniais that for each valuatioi and each edge;; we get the

fraction % These fractions will figure prominently in Chapter 4 on spectral rounding.
% J

2.2 Spectrum of a graph

The eigenvalues of the matrix-pendilG), D(G) and matrixC(G) provide a great deal of in-
formation about the grapfi. Consider a positively weighted undirected gré@pk- (V, E, w),
the resulting matrices(G) and£(G) are symmetric. If we further assume that the graph has no
self-loops then. and £ are symmetric positive semi-definite (SPSD) matrices. Recall that the
spectrum of a SPSD matri)/ is the complete set of eigenvalugs= A\, (M) < ... < A\, (M)
and that all the eigenvalues are real. The indiex\;()) is thespectral indexof A;.

The co — rank of L (see def. 9) is the number of connected components contained in
the graphGG under the weightingv. Givenk connected components (& there must exisk
orthogonal vectors such thdf f; = 0 for i # j and ffLf; = 0. As k exclusive subsets

V' exist that share no edges therorthogonal vectors exist such tha{v) = {0,1} given
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that fTLf = Z(U cB(G) w”(f f;)? = 0. Itis worth noting that the vectors are trivially
D—orthogonal /' D f; = 0, and are also the minima of the Rayleigh quotient defined on matrix
pencil L, D. This minimum value holds fo£ as well, consult Tabl€.1 for the relationship

between the eigenstructure of matrix percilD and £

The eigenvalue\,(L) is useful in bounding the “isoperimetric number” of a graph. While
the eigenvalue, (L) bounds the “conductance” and “normalized 2-cut” of the graph§3e3.
The bound on conductance was first shown using the second largest eigenvalue of the transition
matrix, T = D~'A, by [JS89 (see Table2.1 for the relationship betweeh and £), and is
connected to mixing times of random walks @n For an incomplete grapk,(£) < 1, and
the maximum value oh,,(£) = 2. The eigenvalue condition\,(£) = 2, indicates thatz is
2 colorable (e. bipartite). A detailed treatment of the relationship between the spectruin of

and the properties ai may be found( ].

A Simple Example: the path graphPs

LetP; = (V, E,w) denote a path graph on three vertices connected along a straight line, thus
V| = 3, |E| = 2, and weighted byv (unit below). Recall the Laplacian associated with this

graph is constructed from two matrices, the weighted adjacency maand weighted degree

010 1 00
A=11 01|, D=]0 2 0| = Diag(Aly). (2.2.1)
010 0 01
Thus
1 -1 0 dy  —wio 0
L=1 -1 2 -1 |=|-wn d —wy |=D-A4A (2.2.2)

0 -1 1 0 —we ds
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The Laplacian amounts to a vectorization of the quadratic @mj)eE w;i(fi— f;)? on vertex

valuationsf : V' — R, . For L as above

fILf = fildify —wiafo) + fo(—wiafy + dafa — wasfs) + fa(—wasfo + dsfs)
= wia(ff — fifa) + fo(—wiafr + (wio + wa) fo — was f3) + was(f§ — fofs)
= wi(ff = fifo) +wia(f5 = fifo) +was(f3 — fafs) +was(f5 — fofs)
= wi(ff = 2fifa+ f3) +was(f5 = 2fafs + f3)
= wia(f1 — f2)* + was(fo — fs)?
= > wylfi—f) (2.2.3)
(i.j)ekE
In getting from line 1 to line 2 the degrees are expanded odt aswis, dy = wiy + w3, and
ds = wsy3. The terms are reorganized yielding the final form2r2(3. For our path graph the

expression simplifies to' Lf = (f; — f2)> + (fo — f3)*

2.2.1 The Differentials of Laplacian Eigenstructures

The simple eigenvalues and eigenvectors of a matrix (or matrix pencil) are smooth functions of
the matrix entries. Their differentiability follows from examining the characteristic polynomial
det C' — \B of the matrix pencilC, B. As the eigenvalues are the roots of a polynomial they
vary smoothly with its coefficients, in this case the entries of the matticaad B. Locally

these roots are implicit functions of the coefficients, and therefore proving the existence of
their differentials hinges on satisfying the requirements of the implicit function theorem. We
quickly cover some results in this area for the matrix pehciD, a more detailed treatment of

matrix differential calculus may be found ihgx97, ].

We begin with the explicit formulae for the differentials of the implicit functiorid.) and
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f(L), obtained by differentiatind.f = A\D f as follows:

(dL)f+L(d f) = (dNDf +AdD)f + AD(d f). (2.2.4)

Solving for(d A), at(\, fo), in (2.2.4 we obtain:

(fo Dofo)dh = fo (L—AD)(d f) — fo ((d L) = A(d D)) fo (2.2.5)

(dX) = fI(dL~(dD))fo (2.2.6)

pre-multiplying @.2.4 by fI grouping and canceling terms we arrive at2(§. The key
observations are that we may normaljzeas f D fo = 1 and that(d f)* (L — X\I)fo = 0 as
fo € Ker(L—\I) asL is symmetric. The explicit formula fak! f) follows from manipulation

of (2.2.9).

(Lo — ADo)d f = ((d \) Do+ Xo(d D) —d L) f, (2.2.7)

(df) = (Lo—ADo)'((d N\) Do+ No(d D) —d L) fy (2.2.8)

where M denotes the Penrose-Moore pseudo-inversel olNote, for large sparse systems it
is far more efficient to solve fofd f) with an approximate linear solver than to compute the

dense matriX Ly — Ao Dy)".

The second order differentialg® \) and (d*> f) are quickly determined by applying the
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linear operatorl to (2.2.4). Again we begin with the eigenvalue.

2(dL) + L(d*f) = (d*N)Df + AD(d*f) + 2(d\)(dD) f 4 (d\)(dD)(df) (2.2.9)
d*N = fT(2(dL) — (d\)(dD))(df) — 2(d\)(dD)(df) (2.2.10)

= f1(2(dL) = (dN)(dD))(L = AD)'((dA)D + A(dD) — (dL)) — 2(dA)(dD)) f

Note that the above shows that the second derivative can be written so as to be independent of

the differential(df).

Existence of the Differentials

We prove that\(L, D) and f (L, D) satisfy the implicit function theorem and are thereby dif-
ferentiable functions of the matrix pendil D. In the following section\ is assumed simple,
andD is assumed full rank. We will show that the derivative of a joint function over the gener-
alized eigenvalues and eigenvalues is defined around the original eiggnpagirand that the

derivative is zero at this point.

Theorem 1. The implicit functions\(L, D) and f(L, D), satisfyingL(t) f(t) = AD(t) f(¢),

are smooth in a local ball\V centered at fy, \o) | Lo.fo = Mo Do fo-

Proof. To prove the existence of the differentials XfL, D) and f(L, D) we define a joint
function and analyze its properties. For the generalized eigenproblem we form the fufRction

aboutfy, \g as

A )
F(fosAo; L) = L[ BT D (2.2.11)
b foDfo—1

and note that the eigenpafy, \; is a zero of 7. To validateF, and thereby satisfy the
IFT, we must insure that the smooth open b¥l{fy, \o) exists. The first requirement that

F(fo, No; L) = 0follows from the definition; that a functiof = F exists, and tha® (fo, \o; L) =
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0 is all that remains. We start by constructing the Jacobia@.@f{]) is:

g4 04 12
3 o L—AD DV2f
Tp = — (2.2.12)
ob b .
A D1/2
of oX / 0

as \ is simple, the Jacobian]z, is invertible and thus the functiod = J:'F exists and
satisfies the requirements of tHeT. To show this, we observe thd- is a bordered matrix
and its determinant can be writtendés J» = — fI D'/?(L — XoD)’ D'/2fy, whereB* denotes

the transpose afofactor matrix of B. Recall that for a non-singular matri, B~! = ——=B".
Asthe(L—AD) has co-rank 1, the cofactor matrix consists of scaled versions of its nullspace
space. Thereforéet J- > 0 andg exists. This followg D'/2 )T f > 0, for a positive diagonal
operatorD, and asf is in the nullspace of. — AD). Given that the conditions of tHET are

met byG. The simple generalized eigenvali@l, D) is a differentiable function of the entries

of L and D, which themselves are linear function of the graph weighting Il

Entry-wise representation of A and f

In this section the contribution of each edge to the total derivation of the eigenvaleis
examined. In chapter 4, Spectral Rounding and Fractional Averages, we will return to this for-
mulation in our discussion of the weight updates that optimize eigenvalues. While not covered

here, the edge-contribution for entries(aff) can be deduced in an analogous fashion.

The standard differential ) is easily expressed as a sum of terms over the edges of the

1See Magnus and Neudeckei [ 99] for details on the determinants of bordered matrices.
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graphdG. In the case of an undirected graph we rewdite as

fT(dL—-X\dD)f

d\ D] (2.2.13)
= Y d\y (2.2.14)
(ij)EE
We obtain the contribution at each edgg;; by breaking apartd.2.13.
dx = Y 2fifi =AY diff (2.2.15)
(ij)eE kev
= > 2 fifi > difi = N> dif? (2.2.16)
(i)eE keV keV
= D (= [ =AY afi+ 1) (2.2.17)
ijeE (ij)eE

wherel; = (d L);; is theij" entry in the Laplacian, and, = (dD).. Recall that without
parameterization ofr the edge derivative is;; = 1. The individual contribution can now be

isolated as

d )\ij = a;j ((fl - fj)2 - )\(fz + fj)z) (2218)

= (i— )P =M+ f3)? (2.2.19)

or, alternately, in terms of the underlying edge weights fiGm= (V, E, w) the contribution
simplifies to

d g =2fif; — NS (2.2.20)
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Wﬁ
Feos®

Figure 2.1: An illustration of the threshold cut algorithm studied2m3. The graph on the
right is embedded on the real line according a vegtorV — R. Each threshold is tested,
the red starting from the bottom up and the blue from the top down, until the best threshold is
found. The edge cut, illustrated with a red dashed line, is then returned separating the graph.

2.3 The Cheeger Inequality for the Normalized Cut

The normalize cut of a graph is a NP-hard combinatorial objective function over partitions of
a graph. Ostensibly it seeks an equitable compromise between the cost the partitioning and
the variation in volume of the individual partitions. This objective function can be written as a

guadratically constrained quadratic program (QCQRY (DO, ].

Normalize Cut QCQP

The definition of the normalized cut (see definitiGhcan be vectorized as an optimization

over the feasible sét satisfying the constraints below:

1 & BYLB
B k< B'DB
st. : B'"DB=1I,

vol (V)

(2.3.1)
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The two common paradigms for approximating such objective functions are 1) linear or semidef-
inite programming [ ' ! ]. and 2) spectral methods | ! ) )

]. Most spectral methods consist of a two stage algorithm. In the first stage a small
collection of, sayk, eigenvectors with small eigenvalues are computed. While in the second
stage these vectors are used to map the graph verticéRlirsiod a geometric separator is then
applied | ]

This section provides an approximation bound on the Normalized Cut using the eigenvalues
of the normalized Laplacian. The algorithm is a simplified version of the standard algorithm
used by { ! ) ]. First a detailed proof of the bound on a normali2eetcut is
given, followed by a simple sketch of the extensior teway normalized cuts. The later being
a k—fold application of the argument below.

We now provide an adaptation of Stephen Guattery and Gary Miller’s unpublished note on
the “best cut from a vector” using the the eigenvectors of the generalized graph Laplacian.
The proof is adapted to theormalized Laplacian and the associated bound to one on the
normalized 2-cutof the graph (rather than the “sparsest cut”). Some of the text in is included
“as is” from their original note.

The algorithm employed in obtaining the bound uses a vegtaalled a valuation, which
is a map fromx : V' — R. The vertices are then embedded on the line accordirgaiod a
threshold is selected such that the cut cost is minimized (see Eigl)réSuch a cut is referred
to as athreshold cut of the graph’z givenx.

Theorem 2. Let G be a connected graph with positive edge weights eertices with gener-

alized LaplacianZ and weighted degree matriX. For any vectorx such thatx” D1 = 0, let
nc* be the smallest normalized 2-cut over all threshold cuts based dimen

. < /2 x! Lx
nc )
- xT' Dx

Proof. Assume w.l.0.g. that the vertices of the graph are numbered such that the enkies of
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occur in non-increasing order: for< j, z; > z;. Let P be the generalized sum Laplacian,

defined as? = D + A.

We start with two facts about quadratic terms of generalized Laplacians and sum Laplacians.

In the expressions below, letbe any real vector. First, the following fact is well known:

z' Lz = Z wij (2 — 2;)? (2.3.2)
(i,9)€E(G)
Second,
c(2'Lz) (2"Pz) = c| >, wyla—2) wyj (21 + 25)°
(i.)€E(G) (1,7)eB(G)

= ol X vEla-a) ) | X (sl
(i,9)€EE(G) (i.))EE(G)
2

Z wij |27 — 2] (2.3.3)

(1.)eE(G)

Vv
o

wherec = m, and the third line follows from the Cauchy-Schwarz inequality.

It is useful to give a high-level outline of the proof here before proceeding: we have just
shown that the produdix” Lx) (x” Px) provides a connection betweeat Lx (which is the
weighted sum of squares of differences across edges) and a weighted sum of differences of
the squares of the values at the ends of edges. The second sum telescopes, and can be neatly
divided up in terms of subintervals of the the interval froo ;. This will allow us to break
an edge up into a number of pieces corresponding to the number of thresholds (and hence cuts)
that it crosses. We will rewrite the last sum in§.3 as a weighted sum of cut quotients to
prove the theorem. First an issue must be addressed. Any edge that crosses zero is a potential
problem for the application of telescoping. To resolve this we break the contribution of an edge

into (positive) contributions over subintervals. For an e¢igg) crossing the zero point, the
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sum of the contributions could be bigger than the differemge|z; — 27%|. This could violate
the inequalities used to show the upper bound. Therefore it is useful to make two changes: we
shift the values ok so thatz; = 0 whereT is the index intol” such thaty"_, d; closest to
%vol(G); and we modifyG by breaking any edge that crosses the zero point into two parts,
one part fromz; to a vertex with value zero, and one part from the zero vertex te@ach of
these parts is assigned weight. The next section shows that these changes don't affect the
preceding upper bound much.

Let G’ be the graph modified as specified in the previous paragi@phas Laplaciar'.
Let z be any nonzero vector such that> z; for all i < j andzy = 0. Then with respect to
equation 2.3.9, z' L'z andz” Lz differ only in the terms for edges that go from some vertex

i < T to some vertey > T'. Note that for each such edge we have

(Zi — Zj)2 = Zz'2 + ZJ2 — 222'2]' > Ziz + Z]2 = (Zz — 0)2 + (0 — Zj>2,

where the inequality holds becausgand z; have opposite signs by our restriction on the
ordering ofz (the edge weight has been factored out of each expression). As the total degree

of G’ is greater tha/, 2" D'z > 2" Dz, and thus we have

z' 'z 7z’ Lz

2.34
zI'D'z — zT' Dz ( )
for any such vector.
Now consider the shifted version af Lety = x + a1 wherea = —z7. We have the
following:
y'Ly (x+al)'L(x+al) xTLx xTLx

= = <
yI'Dy (x+al)TD(x+al) xTDx+2ax"D1+a2> d; x'Dx’

where the second equality follows from the restrictidnD1 = 0 from the theorem statement,
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and from the fact that is the (simple) zero eigenvalue for any (generalized) Laplacian. Since
y meets the restrictions on in the preceding paragraph, we can combine this result with
inequality @.3.9 to get

T
T o/ x' Lx
L'y < .
Y EY = TDx

yI'Dy. (2.3.5)

We can perform a similar analysis féY, the sum Laplacian af’:

y' Py yPy y'(2D-Ly y' 2Dy _, (2.3.6)
thus

yI ' Py <2y"D'y. (2.3.7)

The first inequality follows from the fact thdt’ is positive semidefinite, and that is not
a multiple of the “all ones” vector, the only zero eigenvalue/6f Combining inequali-

ties 2.3.3, (2.3.9, and €.3.9, we get

xT' Lx
xT Dx

2
2 (y'Dy) >"Py) LY = D wiy v -yl

(1.)eE(G")

Since only nonnegative values are involved, we can take the square root of the terms above.
Further, since no edges cross the zero point, we can rewrite the summation to eliminate the

absolute value signs. This gives the following:

xT'[x

2XTDX - (y"D'y) > Z wi(yi —v7)  + Z wii (Y5 — 7).
(1,7) € E(G") (i,7) € E(G")
i<j<T T<i<j

(2.3.8)

The rest of the proof essentially follows Mohai¢hs9; for the application of the telescop-
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ing to work properly we must split the sum and procesaward from the endpoints. In this
fashion the last term of a sumis- = 0, and thus only the degree terms appear in the sum.
We'll actually only show the proof for the positive part of the vector, as the argument for the

negative half is symmetric.

We need some notation before we can finish the proof. Note thgt'shmay not be distinct.
Assume that there afedistinct values in the subvector consisting of entgigghroughy,,, and
denote themag > t, > ... > t,_1 > t;, = 0. LetoV; be the total weight of the edgék, /)
in G’ such thaty, > t; andy, < t;; thatis,dV; is the weight of the edges crossing the cut at

threshold;. LetV; = {j € V(G') | y; > t;} (for simplicity of notation below, let;, = 0).

Consider the following calculation:

Z wij (y2 - y?) 1 S 2 2
: > §Vi (82 —12,)) (2.3.9)
D! - yI'D B
Gpep@ay Y 7Y y Uy 3

The first step in deriving equatio2.3.9 is the application of telescoping: Let = ¢, and
yj = tm. Theny? —y? = YN (#2 — t2,,). This sum is regrouped with respect to the

differencest? — ¢7, ; each such difference is weighted by a factor equal to the weight of the

edges crossing that threshold.

Recall the definition of the normalized 2-cut, andrlet be the normalized cut that separates
V; from the rest of the graph, and let* be the minimum normalized cut produced by the

vectory. The cost of a threshold cut can thus be stated as follows:

1 oV, oV,

ne; =g (vol(Vi) * UOl(Vi)) .

(2.3.10)

Note that, by the construction ¢ andy, the values for theic;'s andnc* are unchanged if

the definitions are applied G andx.
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Consider the following calculation:

S Vi (8 —2) + N 1 Z 200l(ViJool(Ve) o o v N
= nc; = i Y T Di<r
y' D'y y' D'y “ vol (Vi) +wol(V) % 7y Dy
B kz: 2110[ (V;) vol(V;) (17 —t7,,) n N
N " wol(V;) + wol (V;) y'D'y y'D'y
. —Z 2v0l(V;) i vol(Vi) (87 — t7,,) . N
" vol(V;) + vol (V) y' D'y y' D'y
t"n
= Z ne; Pr(ne;y)
i=1
tTn
> nc*z Pr(nc;;y). (2.3.11)

We useN to denote the portion of the sum constituted by the negative hajf. oAs the
manipulations are symmetric the notation is simplified to reduce clutter. In the first line the
normalized cutnc; is substituted for the cuiV; by multiplying through by a complicated
instance ofl. The telescoping sum reappearsyas ;' vol(V;) (t2 — 2,,) = Y1~ y2d; and

vol(V;) (8212 1)

thus the ratloT—Dy sums tol over the entire vectoy. To preserve the inequality

Z > 1 must hold, we see this obtains @%—— > 1. This is accomplished by working

from the positive and negative extreme valuations @nd then toward the origin. Thus the
smaller shore of the cut is always represented’bgnd the larger a%;. Finally, by applying

(2.3.8 we obtain the bound. [

Corollary 1. The tightest bound on the normalized-eutG) of a connected graph, givei,
comes frony | Ly = Ay Dy, whereA; =0 < Ay < ... < \,. Thus

ne(G) < /2.
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Quiality of the Spectral Bound

Spectral methods are so named because the second smallest eiganwdltiee normalized
Laplacian bounds the best cut obtained from a continuous vector. As shown above, the associ-
ated eigenvectors provide a means of obtaining a discrete solution that satisfies the eigenvalue
bound. The upper bound ob(G) is loose in general, as demonstrated by the pathological

graphs constructed by Guattery and Miller ial\[|9¢]. While, guaranteed)(—=) cut bounds

5

n

were exhibited for planar graphs ia T94.

Equation2.3.1has been studied in the context of image segmentation in the vision commu-
nity [ ) ] and clustering in the learning communityi.J ) ]. In all cases a
standard spectral algorithm is used. The meth&ds([0, ) ] differ primarily in
how the eigenvectors are used to find a feasible solution satisfying the constraints in Equation

23.1

2.3.1 Generalizing the Cheeger bound for.c;,

The proof of Theoren2 can be extended to the case df-away normalized cut of the graph.

Here we sketch out a high level summary of our strategy. The proof hinges bapplications

of the Cheeger inequality to a series of sub-set restricted valuations of graph. The substitution
of a simple edge sum for 2—cut (see equatio.3.11) will be replaced with a busier term
encapsulating thé—way cut prior. Much like Theorerti the tightest bound will correspond

to using theD—orthogonal vectors with smallest Rayleigh quotier#, first k£ generalized
eigenvectors of., D. The requirement that — 1 vectors be used, rather than- 1 successive
threshold cuts of Fiedler vector, is necessary to insure that both a sufficient number of threshold
exist and that balancing conditions are met.

Theorem 3. Let G be a connected graph with positive edge weights:arertices with gen-
eralized LaplacianL. Given a set of: vectorsX = {x;, ... ,x;} such thatx! Dx; = 0 the



2.3. THE CHEEGER INEQUALITY FOR THE NORMALIZED CUT 31

smallest normalizeé—cutnc; over successive threshold cutskatisfies

Proof Sketch Apply the argument in the proof of the Cheeger constatitnes. The critical

difference is that volume term, substituted into the calculatibB.{1) must be modified to
< . kl_[;?:l#i vol(V;)

the general form, for thé” partition T L b, vel(V, ool (V)

peaks a% terms rather than the peak?tshown in figure2.3. The full set of eigenvectors, up

vol(V;). This term has multiple

to \, must be used to insure thaka-way cut is made, required by theoréin

2.3.2 Relating Isoperimetric Number and Normalized 2-Cut

In this section we relate the grapbnductanceand thenormalized 2-cutof a graph. Below,
vol, is used to denote the sum of weighted edges associated with a set.

We begin by illustrating how thec(G) and®(G) can be made to diverge in a graph depen-
dent fashion. Is the partitioning induced fG) optimal fornc(G)? Obviously, the answer
is no. A graph in which the.c(G) partitioning differs from theb(G) partitioning is show in
Figure2.2

Lemma 2. The normalized 2-cut is bound by the conductance of the graph

ne(G) < &(G).

Proof. For a graphG = (V, £/, w) define the functiom\ (U) = %(VU\)U) on the subsets df.

Let V; be the subset such th&{G) = A(V1), andV, = V' \ V4. That®(G) is an upper bound
onnc,, is entailed by the following observatial(V;) > A(V3) asvol(V,) > vol(Vy). This
yields the following bound

(G) =

(A + A1) = = (A(VD) + A(VR)) > nco (2.3.12)

N | —

1
2
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g*(V1)

nc*(V1)

Figure 2.2: In the above graph:(G) = 1(2 + &) and®(G) = . The green vertices above

constitute theuc,,:(V1) while the blue vertices constituti{ G) (V). The normalized cut value
associated Witk (G) is ncey < ne(®(G)) = 3(2+-) and they—valued(G) < q(ncepn) =
Thus the two smaller partitions have no overlap and the conjecture is untrue.

2
=

as the optimag-partition V7, V5 provides an upper bound on the NCut valu&-of O

Theorem 4. There exists & | % < ¢ < 1 such thatic,,: = ¢ - ®(G).

Proof. Part 1,c < 1, follows from lemma2. Part 2,5 < c, associate withb(G) the optimal
partition of vertices into two sets; and V5. Given such a partition we assume thatis the
smaller without loss of generality. Define a subsetgfthe interiorVz, as the set of vertices
that do not share an edge with. By looking at definition7 we see that edges may be added
arbitrarily to V7 without effecting the valu@(G), nor the optimal value, while loweringc,,;.

In limit this provides a lower bound onc,,, as%cp(G). This bound holds, as the a cheaper
cut than;®(G) would imply that there exists &' such thatA(V}) < A(V4), which would
contradict the assertion th&{((G) is optimal.

Corollary 2. The best normalized cut value derived from a vegt@ssociated with\s, nc*,
is bound by the second smallest eigenvalyef the normalized laplacian as

1
5/\2 S TLC*<G) S 2)\2

Proof. By applying lemma2 we havenc* < &*, we then apply Cheeger inequality o
to obtain®* < /2)\,, thusnc* < &* < /2)\,. The lower bound is entailed as half the
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the PRIORS for vector threshold cuts
0.01 T T T T

data1
0.009 - : : data2 T

® NCut
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Figure 2.3: A comparison of priors, the blue contour indicates the prior over cuts induced by
the normalized cut and the red that induced by the conductance.
lower bound on§>\2 < ®*. We tighten it to% by applying Ky Fan’s dominance theorem over

contiguous eigenspaces. m

Comparing the Conductance and Normalized Cut

The distribution over cuts induced by a vertex valuation (veggoldr ncy(G;y) is given in
(2.3.19), this differs from the distribution oves giveny which is Pr(¢; y) = “2#2>. The
derivation of these two distributions suggests a natural randomized algorithm for achieving the
Cheeger bound (in expectation). The choice of a cut function acts like a prior over volume
terms on the distribution of feasible cutsyn A comparative plot of the two volume priors is
shown in figure2.3.

For each of these cut functions we assign a probability that eacheedg€(G) is in the

cut. Lete € E(G) and letT'(e) denote the set of indices for the threshold values that the edge

e spans iny. Thus the probability that an edge is in the “conductance cut” is computed as:

A
Ple€dVig,y) = Y Vol(Vi) Tz]; (2.3.13)
keT(e) Y y
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in the normalized cut as:

1 2v0l(Vi)vol (Vi) Ay,

- ) 2.3.14
: Z vol(Vy) 4+ vol(Vy) y' Dy ( )

P(e € V;nc,y) = Z

keT (e

2.4 A Generalization of Fiedler's Theorem

The following lemma is attributed to both Colin de Vexdk and van der Holst. The following
bounds the number afigned connected componentsiduced in a graph by eigenvectors of
the Adjacency matrix. Here the same general lemma is provided for the generalized graph

LaplacianL(G).

Lemma 3. Let G = (V, E) be a connected graph, andan eigenvalue of.(G) with mul-
tiplicity s such that there are eigenvalues smaller thah. Letx be an eigenvector in the
eigenspace\, and leta, b, and ¢ denote the number of connected components spanned by
suppy(x), supp_(x), andsupp(x) respectively.

Then:

1.¢c<s

2. L has at least: + b eigenvalues\' |\* < \.

.a+b<r+c

4. if x has minimal support, of all vectors in the span of theigenspace them+b < r+1.

See Lowsz’s notes for an Algebraic Graph Theory course offered at the University of Wash-

ington in the Spring of 2005 for a proof.



Chapter 3

Spectral Segmentation

Now we turn our attention to “spectral segmentation”, also dubbed somewhat incorrectly as
NCutsin the vision community. We use spectral segmentation to denote the family of algo-
rithms that seek a segmentation of the image by processing the eigenstructure associated with
the image graph. These graphs are generally mesh-like in topology, as the pixel labels are
expected to be spatially coherent.

The image segmentation problem, and more generally clustering, can be formulated as a set
of m measurementgw;; } onn observables defining an undirected grapk= (V, E, w) where
|V| = nand|E| = m. In this chapter we show that the spatially localized graph structure
used in image processing applications is reflected in the graph’s eigenvalues and eigenvectors.
All positive weightings of the graph topology share common properties in their eigenspaces.
This is in part a consequence of theor8nmwhich characterizes the numbsgn connected
componentsan eigenvector of a generalized Laplacian may induce in the graphj )

] - i.e. over all positive weightings of/ (G).

Given an image, we defineimage sites, again these could be picture elements, or features

associated with pixels, feature detection sites, or simply data-points in some space that we wish

to cluster. Given such a collection there &nme— 1)n /2 possible symmetric pairwise compar-

35
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= o
W% fi

Figure 3.1: Compute a set of generalized eigenvectors of the Laplacian of the(grapte

row entries of these vectors are used to provide a coordinate for each vertex in the graph. The
vertex-points are then projected onto the unit sphere. These coordinates are partitioned, on the
sphere, using—means or random hyperplanes (through the center of the sphere)

isons. For large vertex sets, such as those found in image segmentation; aJh./2 pairwise
comparisons can not be represented in memory. The particular restricted set of comparisons
we choose to make will determine both the cost structure of our combinatorial cut problem
and may bias our relaxation toward particular cuts. In the following sections we will exam-

ine examples how these decisions affect both the optimal cut, with respect to measurement

confidence, and the output of standard spectral algorithms.

3.1 Spectral Partitioning

Before beginning it is worth recalling the standard spectral algorithm (analogous to that used in
[ ! ) ) ]). As arule a small set of, say eigenvectors of the Laplacian
(normalized or otherwise) with small eigenvalue provide an embedding of the graph vertices
in R, These points are then projected onto the unit sphere and clustered using a geometric
heuristic such as—means or random hyperplanes. An illustration of the process can be found

in figure3.1. A MATLAB-script description of the algorithm follows.
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Algorithm §3.1Given a weighted grapty = (V, E, w), construct the matriced, D, L and
return the partition indicator matrix”.

1. [G,A] = eigs (D~Y2LD™Y2 k)
2. F = D7V2GALY?

3. Veoords = F./sqrt((F?)1;)1]

4. P = round (V.ooras, k)

While this basic method lies at the heart of most spectral segmentation and clustering al-
gorithms there are a number of variations on the theme. Should one use the eigenvalues or
not? Some authors motivate the use of isevector | ], recall that1” L1 = 0, while
most do not { ! ] ]. The routineround can be any number of geometric
clustering tools -e.g k-means , alignment | ], or random hyperplanes. The number
of partitions generated by each algorithm is generally determined by the engineer. However,
there is a great deal of literature on methods to automatically estimate this parameter (and oth-
ers) [ | , ]. Including multi-scale methods which provide a collection
segmentations for each data-seg(| ). In chapter 4 we suggest a method for selecting
eigenvectors and the number of clusters based on the differential structure of the eigenvalues of
the normalized Laplacian (s€e4.3. Notes on technical results on the behavioAtforithm

3.1may be found ir2.3.

3.2 Spectral Segmentation of Images

The segmentation problem differs from traditional clustering in that the set of comparisons
between points (pixels, feature sites, etc) is fixed beforehand. In clustering, comparisons are
made in spatial neighborhoods of a metric feature spaee determined by the data. Inimage
processing the graph structure is meant to enforce local label consistency in the image plane.

We will call this fixed set of edges, or comparisons, the topology of the graph.
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Figure 3.2: Left: the outer product graph, = G ® H, of the graphg7 and H. Right: the

first two harmonic eigenfunctions éf(A/), D(M ). Note, that each function is either a copy of

an eigenfunction ofs or H, (red and blue indicate positive and negative values respectively).
Thus the graphs used in image segmentation have mesh-like topology. That is, pixels are

wired to neighboring pixels in a regular fashion (although perhaps with a random sparsity pat-

tern). This highly localized topology can be contracted onto the mesh defined on a smaller num-

ber of vertices without loss of generality. Accordingly, we analyze the properties of weighted

4-connected meshes. Such mesh-like topologies affect both the optimal pointcohthéa-

torial problem“normalized cut”, and theelaxed instancef partitioning with eigenvectors.

3.2.1 The Mesh

Imagine an image of size20 x 400 pixels (roughly & : 16 ratio). As is standard practice,
we’ll wire up pixels to their neighbors in4é—connected lattice — called the mesh. How are the
low-frequency eigenspaces of the mesh affected by its topology? If we construct a mesh with
this aspect ratio what cut properties can we expect?

Before answering these questions we quickly introdyregoh automorphismsandgraph
outer products (covered in detail in( ]). These tools allow us to analyze the eigenstruc-
ture of the mesh in terms of path grapRs. For simplicity we will concern ourselves with
the eigenstructure of the combinatorial Laplacians D — A, rather than that of the normal-
ized Laplacian. This choice lessons the complexity of the relationships between outer product

graphs and their eigenstructure. The results are essentially the same for the normalized case,
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i.e. solutionstoL f = ADf rather thanLz = ox.

Definition 10. For graph G = (V, E)) an automorphism is a permutation of the vertices

7 : V — V such that if the edgéu, v) € E(G) then(n(u), n(v)) € E(G,).

The rectangular mesh has tvaoitomorphisms, as it is symmetric about its horizontal and
vertical axes. The square mesh has two additional automorphism, as the graph may be reflected

across the diagonals without altering graph connectivity.

Definition 11. Theouter product of two graphs = (V,,, E,) andF = (V;, Ef), H = G®F,
defines a grapt{ whereH = (V,,, E;,). The vertex set}, = V(G) ® V(F) and edge set is

taken to be the union of all edges at vertexdmnd F' under the outer produdt (G) @ V (F).

Analogous to the operation suggested by figguz our mesh may be constructed by taking
the graph outer product of two path grafghis= Payg ® Pigo- AS the mesh maybe constructed
in this fashion we might expect that it shares many properties®gthandP .

The graphH, H = G ® F, inherits two main properties fro¥ and F'. First the Lapla-
cian eigenvalues off consistent of, exactly, all unique pairwise combinations of the in-
dividual Laplacian eigenvalues @ and F' [ ]. Further, the eigenvectors associated
with these values inherit a great deal of structure as well. For example, the second small-
est eigenvalue of the mesiv,,,, = P, ® P, is determined by the longer path graph
Ao (M) = min(A2(P,), Aa(Pyr)). Assuming that' > n, this will be Ay (P,,). The eigenvector
associated with this value consistsro€opies of the eigenvectgi such thatlL(P,.)f = Ao f.
The eigenvector associated with(M) consists ofn’ copies ofg such thatL(P,)g = Aag.
These two eigenfunctions are depicted in figdr2

The eigenfunctions oiM,,,, are constrained by the automorphisms of béth and P,,.
In our case, the automorphisms are reflections across the centers of the two underlying path
graphs. Note that applying such a permutation twice returns the vertices to their original or-

dering {.e. a double reflection). In ] the authors prove that the eigenvector of such a

L
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graph will be either symmetric or skew symmetric relative to every automorphism of the graph.
Given an automorphism every eigenvectof | Lf = \f behaves ag; = f,, or f; = —fx..
For example, figure3.2 the left valuation is same-signed over an “up-down” reflection and
flips sign over a “left-right” reflection. Each of the eigenvectors of the mesh will possess this
property.

Now that we known how the eigenstructure of the mesh is constrained by its underlying
generating paths, we can ask how this set of comparisons affects spectral algorithms. From
this point forward we’ll return to normalized Laplacians and state approximate bounds on the

behavior of the cut.

The Mesh: its Generalized Laplacian Eigenvalues and the Normalized Cut

The properties of the rectangular mesf,,,,, both in terms of eigenvalues and cuts can be
expressed in terms of the aspect ratipwheren’ > n. Given an unweighted mesh it is clear
that the conductance of the gra@iiM) = m In the following section we will analyze
the cut® and eigenvalues associated with theunder a simple re-weighting of the edges.

Let M,,,,» denote the mesh defined A8,,,, = P, ® P,. For simplicity assume that > n
and that bothn andn’ are even. LetM,,,,(«) denote the weighted mesh, where the center

row consists of’ edges taking the weighiv | 0 < o < 1}, and all other edges are unit. The

conductance oM,/ («) is given by

Pt = o (o ) G20

Therefore the conductandeandnc, are determined by testing the inequatity< .

Recall the Cheeger bound on the conductance of the gréph given a threshold cut of the

graph induced by a vecter : V(G) — R, , see Chapter 2 theorein The Cheeger inequality
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can be reversed to bound the Rayleigh quotient associated with a cut as

%‘P(G; y)? < ;;ZL)};, < 20(Gy) (3.2.2)
for any vectory such thaty”’ D1 = 0. For the mesh, we wish to examine the relationship
between the two eigenfunctiorf$L.f = Ao D f andg | Lg = A3Dg (as pictured in figur&.2).
As eigenfunctions of the matrix pendil D both f andg satisfy the conditions og in (3.2.29.
In the case of the unit weighted rectangular mesh, we can compute the ®&luigsd(G; f)
and®(G; g) directly and use them to bound the eigenvalieand ;. By the definitions off

andg, given above, we arrive at :

1 n 2 n

] < XN(L(G) < 2 3.2.3

2 (%UOZ(G)) < X(L(G) < %UOZ(G) ( )

1 an’ 2 an'

1 < \(L(G < 9 3.24

> (o) <9160 < 2 o9
wherevol(G) = G rar=D -

The normalized cut and conductance switch to the longer horizontal cut exactlyondden
a < ;. To determine the behavior of the standard spectral algorithms we must examine the
bounds om\, and ;. By inspection the lower bounds and upper boundspand )3 intersect
at ;. This verifies that the combinatorial solution exchanges toctheut whena < .
The lower bound o\, and the upper bound oxy intersect atm. This is the lowest
possiblen—value at which the vectorsandg exchange position in the spectral index/ofD.
Therefore the solution returned by the spectral algorithm may requirextk vol(}jm/)n, in
order to match the combinatorial optimal cut. This is because it uses the “wrong” eigenvector
to partition G as f only spans cuts that are orthogonal to the optimal cut. In practice, we

observe that the spectral solution exchanges m@g—i whered = (%)2

The lag between the spectral solution and the combinatorial solution has significant prac-
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tical implications. First, we saw that the standard spectral algorithm may lag behind the true
combinatorial optimum by a significant amount. For example, in the mesh,o(«), the
combinatorial solution switches from short to long axis whea % where as the spectral so-
lution switches only whea < 1—16 In image processing applications this can be thought of as

a statement on how sharp the image derived edge weights must be to get the spectral algorithm
to match the NCuts criterion. This problem is illustrated by a seemingly trivial segmentation
problem in figure3.5. In the next section, we propose a method that mitigates the errors in-
troduced through this topological bias in spectral segmentation. Further complications arise as
mesh-like topologies produce sinusoidal functions in the eigenvector over regions of smooth
texture in the image plane. This follows from our observations on how the eigenvectors of the
graph are constrained by it’s topology. Thus a constant region of the image will produce a unit
weighted subgraph in the mesh — which tends toward a plane wave in the eigenvector (when

viewed as an image).

3.2.2 Expansion Augmentation

Expansion augmentation attacks the topological eigen-gap problem directly by constructing
sparse graph topologies with larger edge expansion. Intuitively, expanders are graphs that do
not possess small cut-sets. Concretely, will we call a graph an expandécifis sufficiently
large. An example of such a graph, and the partitioning it induces is shown in Hguras
the topology contains no sensible spatial cuts a priori, the image derived data (in the form of
edge weights) dominates the structure of the eigenvectors.

Recall that for a connected graph the generalized eigenvalue&Ht D(G) are bounded
andordereda8 = \; < A2 < ... <\, <2. LetGry = (V, Epmq,w) andGr = (V, E7, 1,,,)
denote the weighted mesh and the unweighted augmentation graph respectively. In terms of

our previous observations, as(G7) approaches the maximal possible valoé )\, < 1 the

!Recall that the sum of the eigenvalues is equal to the trace of the matrix. For the normalized Laplacian,
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Figure 3.3: The original mesh is augmented with approximate 80 edges reducing the eigen-
gap*"ﬁA;QAZ by over 99%. The expansion augmentation edges are shown above in red, while the
initial mesh edges are shown in blue. The final number of edges in the augmented graph is
only about 5% more than in the mesh. The plot (right) shows the concentration in the first 9
(non-zero) eigenvalues as edges are added.

eigen-gap\, — A, on the graph tend to its minimuio if G+ is allowed to be the complete
graph K,,). This differs from mesh-reducible graphs which possess cheap spectrab ca [
and large eigen-gaps. In order to generate perceptually relevant segmentations large eigen-gaps
in spectrum of the unweighted mesh must be overwhelmed by the image induced weighting
Unfortunately, this is often too much to ask.

In practice the condition that,(G7) ~ 1 is impractical in a sparse graph. Alternately, we
may fix a normalized eigen-gap thresh&% < 6. To obtain topologies that satisfy this

criteria we apply the expansion augmentation algorithm:

Expansion Augmentation Iteration Given a graphG = (V, F') augment the edge set 6f

until (220 < g,

While (2222 > 9, do

and associated co-spectral matrices, this value i8 direct consequence of the definition 6f= D~/2(D —
A)D~/? = I, — D=Y2AD~'/2, thus tracéL) = tracg1,,) = n. It follows that no graph om vertices has a
A2 > - by observing tha}~"" | X; = n and); = 0. Further ifG is not completd > X,.
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Figure 3.4: In clockwise order: the initial weighted mesh over the image pixels. An example
of random edge augmentation. Such edges are added at until the target eigenvalue bound
% < 6\ < X\(G7) is obtained. The edge weight is computed via a “source-sink” cut between
the incident vertices (in dashed-blue) and normalized by a volume term. In contrast to the
inaccurate weighting obtained intervening contour cue, as the random edges may be long range.

1. Compute the partial eigenstructufé&’ = GA,, and setr’ = D~/2G.
2. Choose a random subsgt_ V(G).

3. SetE(G) = E(G)Uargmaz : ||F(u) — F(v)]|2
(u,v)€S

end

We are guaranteed that(£) increases monotonically under this iteration by Rayleigh’s
monotonicity principle Bol0Z]. In the limit, asG+ tends towardk,, we must achieve our
threshold,(%) < 0, as the eigenvalues concentrate with each iteration. This follows
by observing that the lower bound on the (non-zero) eigenvalu@) increases and that the
sum of the eigenvalues is fixed. An example of the affect expansion augmentation procedure

has on the mesRy, ® P, eigenvalues is shown in figufe3.
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Weighting the Expansion Edges

There are several possible ways to weight the new expansion edges. To maintain useful spatial
structure in the cut we must derive the edge weights by processing the weights in the underlying
mesh. The weighting procedure for the expansion edges breaks down into two steps. First a
minimum weight path oid- is found for each edge; € E(G 7). The path costis computed on

a reflected set of edge weight$;, = 1 — w;;, so that cheap paths correspond to heavy weight
paths inGG. The average of this path @& with weightingw is then used to weight the expansion
edge. If the path cost(i, j; w') > 6, then a flow computation from: i — ¢ : j is computed

in G. The thresholdj,, amounts to finding at least one lightweight edgecoin p(i, j, w’). We

adopt this procedure for two reasons, the first is motivated by the approximation factor given
in [ ] and the second is due to the inaccurate weights obtained by intervening contour

computations on long range edges (see figude

Expansion Augmentation: Two Interpretations

There are two straightforward interpretations of expansion augmentation. The first is that we
are constructing an initial topology, defined over the image pixels, that has little preference
over partitions of the pixel®(g.compare the eigenvector and value in figarg. This follows

from the near multiplicity in the low frequency eigenvaluesfof A, ... ... At fork << n
exhibited by augmented graphs. Thus the set of cuts spanned by the low frequency eigenspace
is large relative that of the mesh.

The second is that we are computing a path embedding of the exp@adato our image
graphG. In this sense each expansion edge can be imagined as a query on the graph and its
eigenvectors. As noted bys[VI98, ] spectral algorithms confuse long paths with small
cuts in the graph. Thus each expansion edge probes this very ambiguity. If a small cut exists

between the two vertices of the edge, the weight will be small. If instead no cheap cut exists,
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the weight will be large and the long pathdheliminated.

The expansion augmentation in effect is a lazy version of the near optimal expander em-
bedding algorithm ofi{ ]. In their work [ ] iteratively construct an expander fGr
with weights proportional the flow between the the site§ v;. They obtain an approximation
factor ofO(log* n) for the “sparsest-cut” and the conductardeef the graph (which is worse
than the best known a?(v/Tog n) [ ] but better than the spectral bound). As shown in
chapter 2 the conductand@eand the normalized cut are closely related quantities and so strong

approximations fo are likely to translate to the same for the normalized cut.

Computational Issues

The expander remedy faces several computational hurdles before becoming practical. The
first is that the edge embedding may still involve a large number of Max-Flow computations.
As there is regular geometric structure on the underling pixel graph efficient reuse of these
computations is possibl&[0q. In our current experiments the augmentation weighting adds,
worst case, a computational cost@f|V|*> - |E|) — using a preflow-push algorithm. In the
worst case, this is prohibitively expensive for standard image sizes. The second has to do with
the sparse matrix representation(of, as an expander it may have large fill, and is not well-
ordered under the above sampling procedure (see P73 for details on sparse matrix fill).

This implies that matrix operations will be slow and memory use high. Improved orderings can
be sought foilG+ by looking at the vector associated with(G ) prior to weighting. Further,

given that most images fall into a small number of known sizes (or can be corrected to), it
is feasible to pre-compute a small set of augmented gréghg with optimized fill orders

to improve compute times. Then given an input image, select the appropriate expander from
the set and perform the weight optimization. In the next section we hint at a complementary

approach to addressing the topological bias problem.
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3.2.3 Local vs. Global Geometry

The failure of the standard spectral algorithm hinges on the use of the eigenvector rows as
global coordinates for the vertices. This follows from the insight that the eigenvectors effect
the slowest possible oscillation on the graph. Expansion augmentation mitigates the affect of
this decision, but does not “solve” the problem. Thus Algorit§8ril acts as if the eigenspace
provides an embedding of the graph on a manifold. We know that such metricizations of the
graph involve using all the eigenvectors of the Laplacian simultaneously (see Euclidean Com-
mute Times in { ]) or solving semi-definite programs with triangle inequality constraints
(e.0. [ , ). Unfortunately both of these optimizations are prohibitively expen-
sive for large graphs. As shown |5 the partition boundaries tend to occur on vertices with
near zero value in the eigenspace (gray is zero). This yields cuts in the smooth sign functions
demonstrating that the global coordinate interpretation of the eigenvectors is dangerous (in
general).

If instead we treat the the vertex coordinates as elements of local charts on some unknown
embedding of the graph, defined by the topology at each vertex, their utility is apparent. Intu-
itively we see that slow oscillations result in locally smooth charts, while coherent edge drops
result in locally structured charts, and that smooth oscillations around the origin are no differ-
ent than those at the extreme values. In the next chapter we develop the Spectral Rounding

algorithm as a means of using the eigenvectors in such a fashion.
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l - .

/\3~5O><105 A~ 6.0 x 1075 As & 7.0 x 1075

A2 = .00661 A3 ~ .00662 ~ .00664 A5 ~ .00665

Exp. Vector Exp. Vector Mesh Vector Mesh Vector

M(G)~05x 1074 A(G) m 1.0 x 1074 Ay(M) ~ 1.1 x 107% Ag(M) ~ 4.0 x 107°

Input Feature Image Expansion Cut Mesh Cut

ne(G) = 0.00005  nc(G) = 0.00125

Figure 3.5: The first row contains the first four harmonic eigenvectors of the unweighted mesh
220 by 400. The second row contains the first four harmonic eigenvectors of the unweighted
expansion augmented mesh. The normalized eigenﬁg}‘aﬁ,, for the mesh topology i3.667
and0.006 for the expansion augmented mesh topology. Approximately 200 edges were added
to E(G) to obtain this ratioi(e. |E,| < \/|E]). The third row contains the second (used

in partitioning) and third eigenvectors of the augmented mesh and mesh after edge weighting
with image data. The forth row contains the input data and obtained cuts. The normalized
cut values,nc(G), are reported for the original image weighted mesh. The expansion aug-
mented graph generates a superior cut on the underlying mesh. The intervening contour cue
was used to weight the edge based on the data in the Feature Image using the authors’ pa-
rameters $ V00, YS034. The weighted normalized eigen-gap ratios 225 (mesh) and).13
(expansion augmented mesh).



Chapter 4

Spectral Rounding & Fractional Averages

The family of procedures, we tergpectral rounding algorithms obtain discrete solutions to
the graph partitioning problem through minimizing a subset of the generalized eigenvalues of
graph Laplacians. In essence, spectral rounding reduces to the following, at each iteration a
small number of eigenvectors, with small eigenvalue, are computed and used to determine a
reweightingw’ for the graph = (V, E, w).

We show the reweighting process induces a k-way multiplicity inkteenallest eigenvalues
of L—i.e. \;(L) = 0for1 < i < k. By obtaining a Laplacian with this nullspace property
we guarantee that the matrix representiisconnected subgraphs, whose vertex membership
can be read off directly from the firégt eigenvectors. In this way a feasible solution to the
mathematical programming problem in Chapte§223 (2.3.1) can be obtained directly from
a spectral method without applying a standard geometric separator (as with the algorithm de-
scribed in Chapter 83.1).

The relationship between the Laplaciam — rank and the number of connected compo-

nents in made concrete in the following lemma.

Lemma 4. Given a graphG = (V, E, w) with generalized Laplaciai, the number of con-

nected components @ is equal to thero — rank of L.

49
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Proof. Recall that the quadratic forni’ Lf for a vertex valuation{f | f : V — R} can
be written asf"Lf = >, wi;(f(i) — f(j)). By observation it is clear that the valuation
(Vi) f(i) = lisinthe kernel of.. Now, assume th&t has exactly two connected components.
Call the two vertex sets associated with these connected compohamisB. We may now
define two valuationg andg such thatf(z) = 0 if x ¢ A and1 otherwise, and(z') = 0 if

x' ¢ B and1 otherwise. The we see that two valuatighandg are orthogonal ad N B = ()

by hypothesis. Further bothandg lie in the kernel ofL. This follows from observing that no
non-zero weight edge exists between the two componerts dhe further generalization of

this property tak is obvious. ]

Corollary 3. For L such thatt = co — rank(L) > 1, k vectors may be chosen as a basis for

Ker(L) constituting a feasible point for the integer programming probler(h3.7).

Proof. As vectors are orthogonal and non-negative, they may be normalizedte behogonal
while still spanning thd{er(L). This satisfies the orthogonality and normalization constraints

in program £.3.1). O]

4.1 TheSR-Algorithm

For a graph? = (V, E,w°) prescribe the number of partitioAsthat the edge cut is to yield.
Given a validreweighting scheme iteration of theSR-Step produces a sequence of
weightings{w™)} such that the grapt™¥ = (V, E,w") is disconnected inté components
by the weightings?.

Algorithm 1 SR-Step(w: |[wl| > 0)
LetF} = [f1 ... fx] denote thé generalized eigenvectors of the matrix pedgilz; w), D(G;w)
associated with thé smallest eigenvalues;, = diag([A; ... \¢)

1. compute w, = R(Fy,Ax),set a=1& v =w,
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2. while  [|w/|[x > ||w||x

a—sa,w =(1-a)w+ aw,

3. return W’

The functionR computes a new weighting of the graph given the firgtigenpairs of’, D.

The norm|| - ||, is taken over weightings of the graph, such that|, = 0 iff the weighting

w disconnects the graph into at ledsipieces. A pairR, || - || is called areweighting
schemef the SR-Step converges in a finite number of iterations. We define Algorithm 2, the
SR-Algorithm , as the iteration of Algorithm 1 untjlw™||, = 0. In the following sections
we proposeRs and corresponding nornfis ||, such that thé&SR-Step andSR-Algorithm

converge in the desired fashion.

4.1.1 Examples of Reweighting Schemes

For the sake of readability, a collection #weighting schemesare quickly defined for the
SR-Algorithm . The properties of these update schemes depend upon results in successive
sections, but a brief mention of the high-lights for each method is given below. In the following
U, (-) denotes the function that returns the height, on the unit circle, of stereographic projection

of the line onto the circle. The reweighting update is given for each édge E(G).

The reweighting schemes are listed in order of simplicity. Each successive scheme can
be thought of as augmenting its predecessor. The first two approaches and instances of the
third can be shown for converge (formally). The last two are more powerful and consistently
generate superior cuts when compared to the standard algorithm. The final reweighting scheme,
FAMR, is shown to make progress at each step and converges rapidly in practice. This scheme,

with the heuristic at the end of the chapter, was used to generate the results in Chapter 5.
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Inverse Reweighting

For ak—way cut, the updated weighis. and progress norm- ||, of theinverse reweighting

are defined as:

we(i,j) = U, (%)-w@j)

[l = &

whereLf, = A\Dfi. In §4.3.1the SR-Algorithm |, underinverse reweighting is shown
to converge on graphs with- ||, < 1. In the case of a 2-cut this reducestg L) < 1. The
class of graphs satisfying this spectral constraint is very general, excluding an uninteresting

collection of graphs for our purposes (known as expander graphs).

Offset Inverse Reweighting

For ak—way cut, the updated weights. and progress norm- ||, of theinverse reweighting

are defined as:

2 42 2
—fi Tt ) ~w(i, 7)

wrlhnd) = q’( =77

-l = A

whereLf,, = A\, D f,. The convergence proof fanverse reweightingis adjusted to address
this case ig4.3.2 The eigenvalue bound ok is weakened to\, < .5857. This bound
is many orders of magnitude higher than we observe in image processing and data mining

applications.
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Mixed-valuation Reweighting

This update constructs an update vegttsom £ eigenvectors ag = Zle wifiandw | ¢' Dg =
1forl1 <i <k, Lf; =\DFf;. The vector is then used in either anverse reweightingor

offset inverse reweightingupdate:

w,(i,7) = U, (ﬁﬂ)-w(i,j)

q; — %)2

k
Il = 3w
=1

The properties of this update rule are giverydn4.1 The convergence results for the previous

methods can be directly applied to Mixed-valuation Reweighting, as it is a single vector update.

Fractional Average Multi-valuation Reweighting

For ak—way cut, the Fractional Average Multi-valuation Reweighting (FAMR) updated weights

w, and progress norm - ||, are constructed as:

- S, f26) + f2() .
wT ’L’ = \:[/h k 1 : : - Ww 27
) <zhﬂﬂww—ﬁmv> )
S LA

|- [lx = :
St DS

This update rule allows the information used in a suite of eigenvectors to be used to determine
a single reweighting that drives down the fractional average of the eigenvalues. The fyector
is taken to satisfy. f; = A\, D f; for the current matrix. At present global convergence results

for this reweighting are strictly empirical.
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4.2 Fractional Averages: a reweighting function

In this section we introduce tHeactional average' (definition 12) of a set of fractions and
demonstrate that the Rayleigh quotiéﬁ% is a fractional average. The existence of a reweight-
ing of the fractions, composing a fractional average, that minimizes this average is shown in
lemmab. Such reweightings are connected to the eigenvalués bfwhen the reweighting is
derived from an eigenvector in lemnda These results are extended to multiple eigenvectors
in theorem6 and lemmal3. The lemmas are then employed to prove that a simplified instance
of the SR-Algorithm  convergences in theorefnof §4.3. This basic convergence proof is
repeated for more complex example of Bie-Algorithm

By lemmal we saw that the Rayleigh quotient could be written as a sum of formal fractions
where the numerators are added separately from the denominators. Disfinebfraction
as a pair of real numbersand itsvalue as the real number/b. We call this average of a set
of formal fractions thefractional average We now prove a few simple but important facts

about fractional averages.

Definition 12. Given formal fractions

a1 Qp

AR
thefractional averageis the formal fraction

E?:l ai
2?:1 bi

where thez;’s andb;’s are reals.

We will simply call formal fractions fractions and only make a distinction between the formal

1The fractional average is also known as the generalized mediant of a set of fractions. While optimizing
functions of the form% falls into the category dinear fractional programming 1.
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fraction and its value when needed. In the case when;th@ndb;’'s are nonnegative we first
observe that the fractional average is a convex combination of the fractions. That is we can
rewrite the sum as
Sob
—~b b
whereb = Y7 | b;. Thus fractional average lies between the largest and smallest fraction.
Possibly a more important interpretation is by viewing each frac%;roas the pointP;, =
(b;, a;) in the plane and the value of the fraction is just its slope. The fractional average is
just the vector sum of the points. Since we are only interested in the value of the fraction,
the slope, we will think of the fractional average as the centroid of the points. If we multiply
the numerator and denominator by a scatare shall say weeweighted the fraction by w.
Geometrically, we are scaling the vectors or poiiteind then computing the centroid.
In the next lemma we show that we can control the slope of the fractional average by

reweighting the formal fractions.

Lemma 5. Ifg-;g---g‘;—nandwlz---anthen

Dot @i o Dliy Gl
Db T Y b

The inequality is strict if for some pair> i < j < n we have tha% < Z—j andw; > w;.

Proof. It will suffice to show that

Qi G Qi GWi

0 4.2.1
Db Yo baw T ( )

Multiplying the left hand side through by its denominators we get

a;byw; — a;byw; = a;b;w; — a;bjw; (4.2.2)
j jOi W j j0iW;j

1,J Y] 1,J
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Observe that term whetie= j are zero. Thus we can write the sum as:

Z ajbz-(wl- — wj) -+ aibj(wj — wz) (423)

1<j

Rearranging the last term in the sum gives:

Z (]Jjbi(wz' — ’U)j) — aibj(wi — U)j) (424)

1<j

Finally we get:

Z(ajbi - (Zibj)(w]‘ — U)Z> (425)

1<j
By the hypothesis each term in the sum above is nonnegative which proves the inequality.
The strict inequality follows when one of the pair of terms in the sum are both positive as

prescribed in the hypothesisl

We get an exact expression by observing that the only time we got an inequality was when

we cleared the denominators. Thus we have the following equation.

i aii bjw; — i aiwii b; = Z(ajbi —a;bj)(w; — w;) (4.2.6)
=1 =1 =1 =1 1<J
To determine a reweighting, recall lemrbawhich shows that the Rayleigh quotiejﬁ%
may be rewritten as the fractional average over the set of formal fractions given for each edge
in G. One of the simplest ways to get weights satisfying the hypothesis of Iésnfoasuch
a system, is to picky; = 2— = % if a; iIs not zero. We shall call thiswerse
reweighting. This reweighting scheme gives very large values for small values &¥e have

found that using the stereographic map to normalized the inverse fractions between zero and

one works well.
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Observation 1. The stereographic projectiod : RY — S? preserves the order of points on
the real line, mapping points ab to 1 and points ab to 0. Thus thanverse weight ordering

of the edge update values is preserved by the stereographic map.

If we think of the ¥ as mapping points ilR? to R+, where we are only interested in the

value in thed + 1 dimension, then the images ofc R? is ﬁ:ih >0, h > 0. We useVv,,
to denote the map which returns the value in this dimengientfie “height” on the sphere).
As the Rayleigh quotien% is scale invariant the reweighting is only sensitive to the rank

ordering of the edges which is preserved under the stereographic projection.

Corollary 4. The fractional average of a set Rayleigh quotie{l%} may be minimized

by a single reweightind.’.

Proof. The proof follows by noting thah; = % = fILfi

L= o Thus lemméab may be applied

to these fractions to decrease the fractional average. Thus the fractional average of fractional

averages may also be decreased. Il

4.2.1 From Rayleigh Quotients to Eigenvalues

Above in§4.2 we showed how, given a valuation or set of valuations of a graph, to reweight
the edges so as to reduce the Rayleigh quotient. In general this need not guarantee that if
the valuationf is an eigenvector with eigenvalueof the old graph then the corresponding
eigenpairf” and )\’ of the new graph will have the property thet< \.

Given a new edge weighting’ such that the fractional average of an eigenvector is de-
creased, we show that there is a linear combination of the weights of theuform - w’ for
t > 0 such that the associated eigenvalue is also decreased. This yields an algorithm which
forces the target eigenvalue to zero. And motivates a matrix where the entries are linear func-

tions oft and the following lemma.
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Definition 13. Given two weightings andw’ of G we define thenatrix curve, a1—dimensional
family of matrices, as:

W(t) =W + tW'

for¢ > 0.

As a direct consequence of the scale invariance of the Rayleigh quéﬁgjﬁi any linear
combinationW (t) = W + tWW' may be expressed as a convex combinatiofw) = (1 —
AW +aW on0 < a<1(ea= HLl). The eigenstructure of normalized Laplacians

defined onV (o) andW (¢) are identical by the scale invariance of the Rayleigh quotient.

Lemma 6. Given a weighted graptiy = (V, E, w), matricesL and D, the simple eigenpair
(f.\) | Lf = ADf, and a new weighting”’ such thatjffg,fc < J;%ff = )\ then the derivative
of the eigenvalue functién\(¢) on the matrix curvéV (t) = W +tW" is well defined for small

t and

(1)
) g
a

att = 0.

Proof. For a simple eigenpaitf, ), recall thatﬁéff = )\, asW(0) = W and thusL(0) =

2The proof thati\ exists follows from properties of the characteristic polynomiaLoD and relies on the
implicit function theorem. Details can be found on the differentiabilith@ind f in Chapter 2, or in Lax/[ ]
chapter 9.
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L, D(0) = D by definition. We deduce the bound &hwith a simple calculation.

o (AT f

fr(L =AD" f [dL(t) _
DFF { =1L } (4.2.8)
= (L - \Df (4.2.9)
= fTLf=XTD'f (4.2.10)
<fTL/.fT_/\fTD,f> fTle (4211)
fTD’f fTD’f e
— (ﬁg/} — )\) frD'f (4.2.12)
[y fTLf /
_ (fTD/f — fTDf) fTD'f (4.2.13)

The bound is entailed by observing that 1) the tefhD’ f = ZUGV fQ(U)d’(U) is positive,
and 2) thus the sign &2‘7 is strictly negative due to the mequall < fDLJf The above
derivation demonstrates that the sld}@éL is negative at = 0. By the continuity of\ there
exists at > 0 such that\(¢) < A(0). This insures that the eigenvaltieassociated witlf' can

be decreased algebraically using the procedugéd inon fractional averages. Il

To handle multiple eigenvectors one hope might be to simultaneously bound the derivatives

of the target eigenvalugs\,, ..., A\, } of L(¢), D(t). To do this one arrives at the update criteria

for the re-weightingy’; select av’ such tha*;Té,ff < ]’f:fj} insuring that\;(L(t)) < A;(L) for

2 <i < k. Butin general this may be unrealistic since we must use the same weight per edge
for all the eigenvectorg;. In the case where the aforementioned inequalities do not hold, we
determinew’ so as to decrease the fractional average of the Rayleigh quotients. The average of

the target eigenvalues tends to zero as a consequence of the decrease in the fractional average.
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4.3 Convergence and Termination of Reweighting Schemes

In this section we introduce two simplified reweighting schemes and demonstrate that they con-
verge to disconnected graphs. The target eigenvalue is taken to b& gmallest eigenvalue

of the matrix. Recall that whek, = 0 the weighted graph hasconnected components. The

first scheme is theverse reweightingfor a single vector, associated with the target eigen-
value. The iteration is shown to terminate when the eigenvalue reaches zero thus cutting the
graph intok pieces. The second schemigset inverse reweightingcombines two valuations

in a single update, the constant vectdr.1 = 0 and the target eigenvect@r| Lf = A\, Df.

4.3.1 Inverse Reweighting

We begin by demonstrating convergence for the simplest update rule that which ap@res
reweighting directly. Under such a scheme the pRiland|| - || are specified as follows:
fi2 + fj2

wind) = () wlid) (4.3.1)

-1k = Z/\k (4.3.2)

in this section thenverse reweightingscheme is shown to converge for a broad class of graphs.

In subsequent sections we often refer to functions of the fraction associate with each edge

(fi=1i)?
f2+13

as aj;; update associated with the eddg) € E(G).

Termination and Convergence

In order to prove that th8R-Algorithm  converges to &-way partition we first need to show
that each step dBR-step terminates. Then we use this termination to show convergence.
To simplify the discussion we only consider one eigenvector. SReAlgorithm  has two

majors steps. In the first step given a valuatfoihcomputes a reweighting,.. We claim with
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a reasonable assumption about the Rayleigh quotient that

FTLf  fTL.f
f7Df ~ fTD,f

(4.3.3)

at each step. Thus by lemniawe know that equatiod.3.3is true as long as not all the
fractionsd;; = (f; — f;)*/(f7 + f}) are equal. We show that if the fractions are all equal the

Rayleigh quotient is at least one, contradicting how we construct affinity graphs.

Lemma 7. Let G = (V, E,w) be a connected graph anfl a valuation such that all the

fractionsd;; = (f; — f;)2/(f2 + fj?) are equal thean;é’} >1

Proof. Let f be a valuation of7 with Rayleigh quotiend. Suppose ab;; = (f; — f;)*/(f? +
ff) over all edges oty are the same value. Observe that:y})> 1 if the sign of f; and f;
differ, 2)6,; = 1if f;f; =0, 3)d;; < 1if f;f; > 0. If we are not case 3) then the value of each

fraction is at least one. Thus by lemrh#he Rayleigh quotient is at least one. Il

Lemma 8. Algorithm SR-step terminates for graphs such thak 1

Proof. Follows from lemma and Lemma’. Observe that eigenvectorsbf D satisfy f* D1 =
0, and thusf changes sign over at least one edgé&inThis eliminates cas@in lemma7. [

By lemma8 we know that each step of procedure SR-step produces a new weighted graph
such that the norrj || is strictly decreasing. We show that in fact the limit norm must be zero,
i.e. theSR-Algorithm  converges.

Again for simplicity of the exposition we only consider the case of a single eigenvector. Let
G, D', X', and f? be theith graph, its degree matrix, its second eigenvalue, and eigenvector.
That isLift = \'D'fi. We also assume that eaghis a unit length vector. Thus all the
eigenvectors all belong to a compact regioRify the unit sphere. The Bolzano-Weierstrass
theorem dictates such a space contains an accumulation poin, sagt { f} be a subse-

guence of eigenvectors that convergg tand letG’,L’, D’, and)\’ be the corresponding graph,
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Laplacian, degree matrix and eigenvalue. The eigenvectors convefgandthe eigenvalues
converge to some value To insure that the graph also converges to a unique graph we apply
the Bolzano-Weierstrass theorem again to the weighted graphs which belong to a compact set
in R™. Thus, we may also assume the graphs and degree matrix convérgd.toD’, and )\’

such thatl/ f' = X' D’ f'.

Theorem 5. The limit of the sequence AV}, as defined above, convergesite- 0

Proof. Suppose that’ > 0. We know by lemma3 that if we runSR-step on G’ we will get
a new graph with\” < \'. Lete = \' — \”. We can also rulsR-Step on eachG¥ getting a
new eigenvalue\”’. Lete’ = A\ — \”. SinceSR-step is a continuous function iG” and
1" we get that the’ converge tce. For sufficiently large it follows thate’ > ¢/2. But this

implies that\” goes to—oco which contradicts the fact the they a bounded below by zefa.

Random Walks and Convergence

The eigenvalue bound entailed by lem®das a natural interpretation in terms of random
walks on weighted graphs. Given thai(£) = 1 is the largest value a less than complete
graph can take, this is a very small set of weighted graphs. Recall the Cheeger bound on the
normalized cut from Chapter 2,(£) < 2®(G). In table2.1 (Chapter 2) the eigenvalues of

the normalized Laplaciad are shown to be reflected and shifted eigenvalues of the transi-
tion matrixT = D' A. For non-bipartite graphs, the mixing time @his a proportional to
A—1(T) =1 = X2(L). So as\y(L) approaches the mixing time tends to zero. In terms of a

cut, we see that there exists an optimal subset of verlice@ssociated with the conductance
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number®(G) and thus

(L) < 20(G) (4.3.4)
oV

1 < 2 4.3.5

— wol(V,) ( )

vol(Vy) < 26V, (4.3.6)

Ve +.1Ve < 26V, (4.3.7)

WV < OV (4.3.8)

where.V, denotes the volume of the internal edged/of In terms of a random walker, this
inequality indicates that every subsetiofvith less than half of the transition probability mass
has an emittence probability of at Ie%stTherefore a random walker leaves any such subset
roughly half the time at each step. Graphs with lakgevalues are termed expander graphs
and pop-up in the study of communication networks, rapidly mixing times of markov chains,

as well as a host of other applications.

4.3.2 Offset Inverse Reweighting

We now state an alternativg; update rule and prove convergence and termination of the re-
sulting reweighting scheme. Recall that if we wish to break the graphtipieces we must
drive thek!" eigenvalue to zero. We begin by fixing the followirgyveighting schemedefine

f| Lf = M\.Df where), is thek! smallest generalized, let

2 2 4 9202
wig) = o (L) i)
-1l = Ak (4.3.10)

(4.3.9)
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V(G)|
Figure 4.1: Left: an illustration of shifted formal fractions producing a constant slope (update
value). The offseRa? is given in red and maps the slopes corresponding to the blue points to
the green co-linear points.€. the green points produce a constant update fracjofor all

edges). Right: the eigenvalug(L£) with respect to the length a$o-0 valuation weighted
line. As|V(G)| — oo the eigenvalue is bound as > .5857.

The terma is taken to bel /+/vol(G), which can thought of as an entry in the normalied
vector (associated with = 0). We now show that this scheme converges, in the desired sense,

on a large set of graphs (in essence we must exclude a larger class of expanderg4ttafy in

At a high level it's worth motivating the use of (3.9 over @.3.1). In particular what deficit
in (4.3.1) does it correct? Itis clear that reweighting accordingit@ () will most aggressively
down-weight edges that spanin the valuationf (i.e. f;f; < 0). Immediately a number
of graphs come to mind where this property is undesirable. For example, a symmetrically
weighted odd-length path graph with a heavy-weight edge at the center will yield a suboptimal
2-cut under 4.3.1) but not @.3.9. This is because, eigenvector of the path graph crosses
zero at the center edge for such a weighting. The update rute3r)(biases toward cutting
edges with large gafy; — f;)* and high magnitud¢’ + /7.

The following lemmas and definitions will be combined to supplant lenimand allow
the remaining technology in the previous section to be employed to demonstrate convergence.
Their purpose is to establish the greatest lower bound.cf 0 on theSR-Algorithm . To
do so we establish that the update rule only admits constant offset fractions, @ygasthow

in figure4.1, for connected graphs with large eigenvalue- .5857. We will call functions of
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the formf : V(G) — R, vertex valuationsand those that produce a constant updgtat
each edgéso—¢ valuations of the graph. These valuations are exactly the fixed points of the

spectral rounding algorithm.

Corollary 5. The Rayleigh quotienjé%{c is invariant to a uniform rescaling of the weighting.
Proof. A direct consequence of the lemran Chapter 2]

With the above corollary, we may choose a global scalef®uch thaty""" | d; = 2, and
by a simple calculation verify tha&n? = 1, simplifying the reweighting scheme. The second
degree of freedom that we fix id (3.9 is the norm off | f7 D f = 1. While this has no effect
on the Rayleigh quotienﬁ%, this scaling has a dramatic effect ah3.9.

Having fixeda and the scale of it is possible to derive aiso—¢ valuation f : V — R,
such as that shown in Figurel, for a weighted path graph. Given such gra weighting of
the path grapltz may be constructed satisfying G) f = X\ D(G)f. We will show that the
weights drop off exponentially as one walks from the center to end of the line, dictating that
the weighted path is an expander graph. Further, from the propertigsvefcan bound the

eigenvalue\, for paths or arbitrary length.

Constructing an iso—¢ valuation for the path graph

Claim 1. Given the update equatialy; with 2o = 1 a vertex valuatiory can be constructed

such that the fraction;; is constant for all edges in the graph.

For the weighted path graph envertices it is possible to construct &o—¢ valuation f
insuring that for all edge§, j) the update,; = c. For simplicity we assume thatis odd and
number the vertices, over the integerss | to | 7 |, as the path is odd lengtfy = 0. Given f

there must be an offsetso thatf; = f; + ¢. Thus we can write down the first update value, to
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the right, as
2
oy V20RO (4.3.11)
1-96
or more generally
(fi - fi+l)2 612“
il = = 4.3.12
o Ao+ P+ (fitean)?+1 ( )
the valuationf; ., can be written as
Sfi+ /01 +2f2—(1+ f7)o
fror = fi 4 e = & VOO A28 = (L4 1)) (4.3.13)

0 =1

aniso—o valuation can be constructed by applying this recurrence, starting at the center of the
line and moving toward the end points. We note thatisee 5 valuation grows exponentially
as the above recurrence is strictly greater tfiam ¢, (i + 2¢2)(1 + 2¢2)1, for i > 0, which

grows exponentially with the length of the path.

Claim 2. A weighting of the path graph, with Laplacidnand degree matrix0, can be derived
from a vectorf such thatf | Lf = \2D f

Again, for simplicity assume the path is odd length. The weighting can be computed directly
from f as the equatioh f = A\D f fully constrains the weighting of the line. The valuatifn
is minimal, over the seff | fTD1 = 0}, as it is the unique vector that breaks the path into
exactly two pieces. Lety; = 1 denote the edge linking the center verigxand it's neighbor
f1. Starting at the center we can work out the formugfasw, = w; - % which can

be generalized as the recurrence

(= Nfi—fia
- (=N

w; = w

(4.3.14)

as the term% is positive, it is less tham, and thus the weights exponentially decay
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with the length of the line.

Proposition 1. Aniso §—valuation weighted line graph has an eigenvaldg > .5857, inde-

pendent of length.

The above proposition was determined from a numerical optimization (see4dbier an
illustration of the asymptote). The bound hinges on the relationship between two free param-
eters 1)ol(G) = 2 and 2)fT D f = 1. Given a fixed graph volume and vector normalization

a suitable slopé;; must be determined such that all edge weights are strictly positive and the
valuationf has proper norm. Under these assumptions, for gathsheren > 7, § > .2928

to produce a valid weighting and thus the> .5857 asvol(G) = 2.

From paths to general graphs

We now define the relationship betwedsao- valuations of general graphs and such valuations
of the path. This following statements relate a graph which admitsa# valuation to the

path graph and equates the eigenvalues of the former with latter.

Lemma 9. Given aniso—¢ valuation f for a connected graptr the following properties hold
|. forall vertices(u,v) € E(G) wheref(u) > f(v) thenf(u) = f(v) + €(f(v)),
II. for two vertices» andu where(u, v) € E(G) thenf(u) # f(v),

lll.  graphs with cliques of sizeor greater do not admit iseé valuations.

Proof. We prove the properties for thé* + 1 term, which is assumed to satisfy,; > f;
w.l.o.g. Propertyl follows from the observation that equatidr8.12admits a unique positive
solution fore;, in terms of the known quantities andé. This property dictates that every
edge is between vertices spanning exactly one threshgidRmopertyll is simple to observe,
as all the fractions would equéland asG the orthogonality conditiong D1 = 0 prevents

this. Propertylll depends on andll. By Pl we have that each valuation in the clique must
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be unique. By Pwe establish a contradiction. Label the vertices of clique,asandc using
Pl and Rl we may assume thgt(a) < f(b) < f(c). The unigue monotonicity of the edge

equations contracts this ordering relationship, demonstrétirigr the minimal case. ]

The next lemma shows that &wo-) valuation of a graphG provides a mechanism by which
the graph can be collapsed onto the path graph without loss of generality. Further, that the

eigenvalue of the line is a lowerbound on the eigenvalue of the graph.

Lemma 10. Given an ise-¢ valuation f of a graphG such thatL f = AD f then a line graph

G' may be constructed such thatf’ = AD' f".

Proof. We begin by demonstrating that the thesis holds for a contraction of two vertices with
the same value irf. w.l.0o.g. assume that these vertices are associated with the least valued
vertices of f and order the graph accordingly, generality holds as this is accomplished by

permuting the associated matridesndD. We expand. f = AD f to clarify our assumptions

d1 0 —Wiq; - - a d1 - a
0 d2 —wg’j I a d2 - a
by ds - by

~ A\ . (4.3.15)
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For the first vertex, rewrite the constraint equatioh= AD f as

di-a—X;— > wyb = 0 (4.3.16)

(a — Aa) Z Wi; — U§1 wy;b; = 0 (def. ofd,) (4.3.17)
(a — )\a)vg wi; —QZNUZI wy; = 0 (iso—6 hyp.) (4.3.18)
(U;Nil)\a—b) i wi = 0 (4.3.19)

VUL

analogously the linear constraint foy can be written aga — Aa — b) > wy; = 0. The

Vj~U2

replacement of thé;s with b is a direct consequence Bfl in Lemma9. Thus we see that

the constraint applies only to the weighted degrees,) | wy; = Zvjw wy;. DefineL’

Vi~V
and D’ as the graph witly, andv, contracted ta)}, removing double edges. The contraction
reduces to adding the first two rows and dividing by two, which preserves the total weight

constraint and thus the eigenvector equafiofi = A\D’ f’ preserves\.

We now handle the next contraction, along the order induced.byhe only novel term
introduced is the backward edge to the previously contracted layer. We dropakegtion to

simplify the expressions. We have

(b—Xb—c) Z Wy — a-wy = (b— Ab—c) Z w3 — a - ws; (4.3.20)
as the weightsvy; andws; may be taken to be equal the lower diagonal terms cancel and
the previous argument applies. This operation is repeated along the ordering indu¢ed by

producing a line graph with matricég and D’ such thatifL f = ADf thenL'f' = \D'f". O
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Tying it all together

The results in this section foffset inverse reweightingdemonstrate that graphs with diameter
greater thart and eigenvalues such thgt < .5857 must converge to &—way cut under the
SR-Algorithm . Further lemma demonstrates thatonnectedgraphs containing thé,

minor with p > 2 have no fixed points under the reweighting scheme. Thus we may use the
lemmas in this section of supplant lemrand apply the remaining technology §i.3.1to

prove convergence without modification.

4.4 Multiple Eigenvectors

Combining multiple eigenvectors into a single update is appealing as one can imagine that
lower frequency data is important in regularizing the cuts. In lemi@ave proved that the
fractional average of fractional averages drives the sum of the target eigenvalues down. This
update rule can be applied to reweight the grapt34ld.3we detail a heuristic for choosing a
subset of eigenvectors with which to reweight the graph, based on the differential and structural

properties.

4.4.1 Mixed-valuation Reweighting

Mixed-valuation Reweighting updates (MVR) constructs an update veethereq = Zle w; fi
and||lw|| = 1. The vectorg is then used in either ainverse reweightingor offset inverse

reweighting update:

we(i,j) = U, (%) ~w(i, J)

k

11l = D wike.

i=1
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Given a valuatiory such that% < Zle e —le.g=>" wf; and||w|| = 1. We can

obtain a reweightind.’ using the standard rules for fractional averages such that

q"L'q _ q"Lq
q"D'q  q"Dq

(4.4.1)

The existence of a such a reweighting following from lem#naAs in previous sections (see
lemmat) we define a matrix curvel(t) = A +t - A" and connect its eigenvalues to those of
L(0) = D— A, D(0) = D. We now show that an—weighted average of the eigenvalues must

decrease for sufficiently smaill bounding their derivative bf).

Theorem 6. Given a weighted graptv = (V, E, w) matricesL and D, a set ofk—eigenpairs
Lf; = MNDf; such that); # );, and a new reweighting’ such thatgi—g,‘; < % =
S Wi\ whereq = ¢  w;fi and [|w|]| = 1. Then there exists a mixture, such that

the derivative onle w?); along the matrix curvéV (t) = W + tW’ is bound as

for small¢.

Proof. To begin we note that,

CTOLO) 5~ LS OLOLA()
0D~ 2 T @42)
= D W) (4.4.3)

where we assume thgf (+)D(t) f;(t) = 1 w.l.o.g.— the above reduction directly follows from
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lemmall. Given4.4.3we may apply the derivative operator and obtain

T k .
A [TWLONY] 5 o)

q¢" (1) D(t)q(t) bodt

=1

k
_ N
2 (f?D'fi fIDJ;

k TLI ) TL
-y (wf ]]:.ITD']; - ;]TD‘;) fID'f; . (4.4.6)
i=1 i !

) fID'fi (4.4.5)

=1

. Tr/f, .
The bound follows as there must exist ansuch thath:1 w? ;TZL)’; < g;fgj] given that

Trr T . . . .
¢ ta ~ 419 For example, any of the indicator vectars= e; will suffice by lemmas as
q" D'q q* Dq

will perturbations about those vectors by continuity. Thus we may take the average difference

in 4.4.6to be negative and the bound obtains. As all the eigenvalues are continuous along the

matrix curve (by theorerii) there must exist ahsuch thal " | w?\;(t) < 2 w?),(0). [

Lemma 11.If ¢ = Ele w; fi, where allf; satisfyLf; = \;D f;, D~'L has simple structure

and||w|| = 1, then
k

T
q Lq N Z 2
i=1

k .
Proof. From lemma12 (4.4.7) simplifies to —251:22;;;};

i=1"4

D—orthogonal. We may choogg D f; = 1 for alli w.l.og. simplifying @.4.)to > | w?fTLf; =

as the basis of is both L— and

S°F | w2\, verifying the hypothesis. O

Lemma 12. Given vectors andg, satisfyingLf = AD f and Lg = A’ Dg whereX # X', then

g'Lf=f"Lg=0, ¢"Df = f'Dg = 0.

Proof. The conditionsf” Lg = ¢" Lf andf" Dg = ¢* D f follow from the symmetry of. and
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D. Their L—orthogonality andD—orthogonality is shown in the following calculation

ffLg=XNf"Dg,  ¢g"Lf=xg"Df (byhyp.) (4.4.8)
MTDg = N¢"'Df (bysym ofL) (4.4.9)
AfT'Dg = Nf"Dg (bysym ofD) (4.4.10)

For the final equality to hold”Dg = ¢"Df = 0 by hypothesis as\ # ). Given that
ffDg = 0 this implies thatf"Lg = 0 asfTLg = N fTDg = 0. O

We include “Theorem 12" from[\ ] on the derivatives of multiple eigenvalues. The
result is attributed to Lancaster, and pertains to the eigenvalues of matrix cltyes R™*".
Three assumptions are made on the cutyg: 1) the elements aofi(¢) are analytic functions
of in some neighborhood df= 0, 2) the matrixA(t);—o hassimple structure®, and 3) if (¢)

is an eigenvalue ofi(t) thenlz;mgt A(t) = A(0)

Theorem 7. If ¥4 is the first non-vanishing derivative (), then then eigenvalues\(t)

of A(t) are differentiable at least times att = 0 and their firsty — 1 derivatives all vanish at

See | ] for a proof of Theoreny.

Convergence of Mixture Valuation Schemes

Assuming the generalized Rayleigh quoti%ﬁ%% satisfies the eigenvalue constraint§4n3.1
oninverse reweightingthen the remaining proof technology may be applied. Alternatively, we
my applyoffset inverse reweightingwith assured convergence if the conditiong4n3.2are
met. The convergence proof is further complicated if we allot® change over the sequence

of iterations. By the Bolzano-Weierstrauss theorem a seqyengeconverges agjw|| =

3A matrix hassimple structure if all of its eigenvalues are simple. The eigenvalues have only linear elemen-
tary divisors.
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1. In the next section we describe two possible ways to upddtetween iterations of the

SR-Algorithm

Optimizing the mixture coefficients of ¢

An intuitively appealing update for the entries ©fis the reciprocals of the corresponding
eigenvalues. That is, let;, = \/LT andw = 1-®. A potentially more powerful update to the

ll&fl2

entries ofu comes from working with the differentials of Lg with respect ta;.

The differentials 0f0(q) = 1 ((¢" D'q)(¢" Lq) — ¢" L'q) W.r.tw;, subject to|w|| = 1 can be

written as:
36(?::1; = Ww (Z W (fi(w) = fi(0))* + wi fi(u) — fi(v)) (¢ (u) + QQ(U)))
- ((ﬂ(u) — fi(w))a(u) — q(v) + %(ﬁ(u) ~ f(0))(glu) - q<v>>)

(4.4.11)

recall thatw!,, = wfuﬂ wherew!,, = (¢*(u) + ¢*(v))/(q(u) — q(v))?. With the second order
terms (which we omit) a standard Gauss-Newton iteration can be employed, optimizing the
mixture coefficientsv; so as to maximiz&). By maximizingO we move in the direction of
steepest descent with respect to the mixture of the eigenvalliesw?),(t). By lemma 5 and

lemma 7 theD(q) is strictly positive and bounded.
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4.4.2 Fractional Averages of Fractional Averages

For ak—way cut, the updated weights. and progress nori - ||, are constructed as:

. S, F2G) + f20) ) .
w, (2, = v, — » _ w(i,
) (El:27f<fz<z>—fl<J>>2 )
S fILfi
Sy [EDfi

-1k =

This update rule allows the information in a suite of eigenvectors to be used to determine
a single reweighting that drives down the fractional average of the eigenvalues. The above
notation is a bit overloaded, a5 is taken to satisfyL.f; = \;Df; for the current matrix.

At present global convergence for this reweighting is not proven. We note that the updating
is analogous to (MVR) where the numerator and denominator are allowed to have different
mixture coefficients. In practice we observe that this method converges to a disconnected graph
in a small number of iterations (less than 10 for most image derived graphs). This reweighting
scheme was used in to obtain the results in Chapter 5 (see figifor the effect of an iteration

on the eigenvectors). The following lemma demonstrates that the above reweighting scheme

drives the target eigenvalues down.

Lemma 13. For a weighted grapld: = (V, £/, w) with matrices. and D and simple eigenpairs
(f,Ap) | Lf =AgDfand(g, ;) | Lg = A\;Dg, given a reweighting’ such that

U +5.9"lg S fTLf+ 59 Ly B

JTD'f+4'Dg ~ JTDf +4¢"Dyg (4.4.12)
then dAs(t) N dX(t) <0
dt dt
att = 0.

Proof. We begin by stating a related quantity of interest, the derivative of the fractional average
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of Rayleigh quotients orf andg for the matrix curvav = w + ¢ - w’ as:

(4.4.13)

d [ /TOLOF) + 59" (OLg(D)
dt | fTO)DE)f() + ") D(t)g(t)

and examine its derivative centeredtat 0. First we must fix the scale of the eigenvectors

f(t) andg(t), we choosef (1) D(t) f(t) = g(t)' D(t)g(t) = 1 w.l.o.g Thus equation.4.13

simplifies to
d [ OLOSO + " OLOO] 11 d 1 d
a[ 41 ]ZQQEEM@+E£%@>

by the linearity of the derivative. Substitute the functional forrrS’—)Qf2 and obtain

1/14d 1d
5(;@M@+g@%@)—
1 /1

1
5 <)\—ffT(L’ — A\ D) f+ )\—ggT(L’ - /\gD’)g> (4.4.14)

assume the bound holds on equatiof.14 thus

1/1 ., Y 1 A
- _ L/ _ 7 TD/ _ TL/ __g TD/ O
5 (Aff f )\ff f+Agg g Agg g) <
1 1
()\—fTL’f—fTD’f+)\—gTL’g— gTD’g> < 0 (4.4.15)
f g

arriving at

1 1
)\_ffTLlf+/\_gTL/g < fTle+gTD/g
g

which is equivalent to the hypothesis in equatior.12 The remainder of the proof follows

the continuity argument in lemnta O
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In lemmal3we proved that the fractional average of fractional averages drives the sum of
the target eigenvalues down. This update rule can be applied to reweight the graph, and is
highly effective (as shown in Chapter 5). At present, we observe that the method convergences
to a disconnected graph empirically. If an intermediate fixed point were to arise, any of the
previously covered methods could be applied for an iteration to break the symmetry across the

edges.

4.4.3 Heuristics for Choosingk < k' << n

In this section we detail a heuristic for choosing a subset of eigenvectors with which to reweight
the graph, based on their differential and structural properties. The problem of choosing which
eigenvectors to use is common in spectral image processing and data mining applications. An
ambiguity arises when the eigengap ; — )\ is small, or when two eigenvectors decompose

the graph into the same numbersfin connected componentésees2.4 lemma3s). Under

such conditions, what criteria can we rely upon to select a “good” suite of eigenvectors for
partitioning. An intuitive answer comes in the form of the derivatives of the generalized eigen-

values along the matrix curves constructed in the previous sections.

Recall that the number @&ign connected componentéSCCs) an eigenvector decomposes
the graph into is, in part, determined by the eigenvector’s spectral index. If the veaor
associated with thé” smallest eigenvalue, then it may decompose the graph into (at most)
connected subgraphs. This provides a natural mechanism for grouping eigenvectors into equiv-
alence classes k€. those vectors that decompose the graph into the same number of SCCs.
For example, given a rectangular mesh the second and third eigenvectors both decompose the
graph into two pieces. To motivate the use of the updated eigenvalues, recall the mesh exam-

ple in Chapter 33.2.1 Where the eigen-gap betweapn and \; maybe quite small, but the

d X3(t)

derivative o

is far steeper than that of. In breaking the graph in two it appears sensible
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to choose the vector that will do so most rapidly.
To make the above intuition concrete we specify the following vector selection heuristic.
SCCs Heuristic

1. computeLFy, = DF Ay
2. groupFy into k | k < k' sets wheref; and f; are grouped iBCCs(f;) = SCCs(f;)

3. return the steepest vector from each set (combined fermay update).

The (approximate) vector of steepest descent in a population of vectors can be determined
in a number of fashions. In the case where we employ a multi-valuation updating scheme
we process the vectors in a coarse to fine fashion (small &8&sfirst). That is, we con-
struct aggregate reweighing matrix curves by augmenting the current reweighting (obtained in
previous steps) by each of the candidate vectors independently to determine the affect on the
eigenvalues. Given this assumption the most of obvious approximation is a partial Taylor ex-
pansion of the eigenvaluegt) ~ A(0) +t%(0) + <Zf:2§.—§ : %(O)) along the matrix curves.

In chapter 2 the first and second order derivatives of an eigenvalue were given in terms of the
entries of the adjacency matriX. In practice this may be extremely expensive as the higher
order derivatives involve solving large linear systems. Accordingly we choose to perform a
small number of powering operations to estimate the change in eigenvalues.

To automatically determine the number of segments we use a strategy much like the eigen-
gap heuristic (see’[506] for a recent treatment), but based on the effects each increment in
the number of segments has on the eigen-gap after update reweighting. Therefore assuming
thatk’ is an upper bound on desired the number of connected components — we may use the
eigen-gap heuristic to choosekd & < £’ — in effect breaking the graph into segments that
are highly predicted by the eigenvectors. The notion that these are predictions is easily derived

from the vector induced distributions over cuts shown chaptér2219.



Chapter 5

Results

This chapter presents quantitative and qualitative comparisons betwesggetiteal rounding
algorithm (SR) and the standard spectral algorithm. Each problem is formulated as the min-
imization of the Normalized Cut over partitionings of the graph. The proceeding evaluation
focuses on the model-free segmentation of natural and medical images. The results indicate
that reductions in cut cost correspond to increased overlap with human segmentations.

Spectral rounding compares favorably to recent spectral approximations for the Normalized
Cut criterion (NCut). The evaluation comparesH to the method proposed by Yu and Shi
[ ], (EIG), as it returned stable cuts with respect to parameter perturbation and initial-
ization. This is in contrast to methods that employ K-means which tend to be highly sensitive
to initialization —e.g [ ]. In the following sections results are given in geometric clus-
tering, and medical and natural image segmentation. Natural image segmentations results are
given for an image collection obtained from Google image search and the Corel images used
in Berkeley Hand Segmentation Database | ].

The remainder of this section introduces two quantitative measures of segmentations that
form the basis of comparisof5.1 compares the SR-algorithm and EIG on random geometric

graphs. Int5.2.1the SR-algorithm and EIG are compared on a collection of images extracted

79
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from Google image searclj5.2.2evaluates SR and EIG on a simple medical image segmen-
tation task. Model-free segmentations of the left ventricle were generated for a collection of
NMR images over a 40 subject population. The segmentations were compared with those gen-
erated by an expert. Finally §b.3the SR-algorithm and the EIG-algorithm are compared on

the Berkeley Segmentation Database. The variation in information is reported for both meth-
ods with respect to the human hand segmentations when appropriate. For the medical and
Berkeley data sets, an improvement in normalized cut correlates with an increase in the mutual

information between human and machine segmentations.

The Problem and Analysis

In all cases, the same graph= (V, £, w,), is passed to both algorithms. The normalized

cut cost is reported on the initial weighting of the graph The affinity graphs used on
medical image evaluation and Google search collection were constructed using the Intervening
Contour | ]. In the Berkeley Segmentation dataset the affinity graph was constructed

using Martin and Fowlkes’ “probability of a boundary” detectb'i{ ].

To compare the partitioning we report the expected change in NCut value, on the initial
graphG = (V, E,w), and thevariation of information between clusterings. The expected
change can be expressed as a positive sealech thatic(SR) = c - nc(FIG) on average. In
the case where < 1 spectral roundindinds an improved cut on average.

Throughout this section we report thariation of information described in If ] to

measure the difference between two partitioningsand P, of the vertex set’, defined as

Dy(P,, P,) = H(P,) + H(P,) — 2I(P,, P,) (5.0.1)

with I(P,, Py) = — >0 >0 ==t log =4, H(P) = — >} _, " log "%, wheren,, is number

of vertices in thek’" partition, n; ; the size of the overlap between ti partition in P, and
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7-);3?\ )’ S = p~ =y
Geo-Graph nc(SR)=.064 nc(ElG)=.109

Figure 5.1: A (V| = 300) geometric graph, and two 5-way cuts.

4 partition in P,, andn = |V/|. The entropy ternt{ (P) can be thought of as the number of

bits required to represent the distribution of partition sizes. Wheie &s P,) is the mutual
information between the two partitioning3, and /,. And so,D,; can be thought of as the
number of bits required to encode the aggregate difference between the overlapping partitions

of P, andP,. As expected,,;(P,, F,) = 0.

5.1 Random Geometric Graphs

We compareSRandEIG in the expected partition cost on a collection of random geometric
graphs. The vertices @f = (V, E, w) are associated with uniformly distributed coordinates in

R?. The edge set of(G) is then constructed using the following rule, for,v € V]u # v},

(u,v) € E <= dist(u,v) < r. We sampled 10000 graphs with 1000 vertices and chose
the radiusr such that the expected degree of each vertex was approxiniaigly’|). As

shown in Figures.1 such graphs afford a large number of inexpensive cuts. Tableontains

the improvement factor, and the cluster divergence. We note that the divergence distance,
relative to partition entropy{ (SR), highlights that the NCut improvements are not due to a
small number of boundary vertex exchanges, but rathertiaand £ 1G return significantly

different subgraphs.
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| [ D..(SR, Big) | ne(SR) = ¢ - na(BIG) |
| geo-graph| 0.910 £ .219 | c=.690+.113 |

Table 5.1: Comparison between spectral round®Rand the multi-way cut algorithm of Yu
and Shi | ] EIG. The partition entropy fo6 R wasH (SR) = 1.935.

5.2 Image Segmentation

The parameters used in constructing a weighted graph from an image were fixed for all the
results presented in this section. The gréph- (V, E, w) represents an image as follows. For
each pixel in the image a vertex In is assigned. If two pixels are connectedAna weight

in w is determined based on the image data. The graph connectiyityyas generated by
connecting pixels to 15% of their neighboring pixels in a 5 pixel radius. The initial weighting
w of the graphG = (V, £/, w) was determined using thetervening Contoucue described in

[ ]. This cue assigns small weights to pixels which lie on opposite sides of a strong

image boundary, and large weights otherwise.

5.2.1 Natural Image Segmentation (google dataset)

We compiled a set of a 100 images from Google Images using the keyfards sports,
flowers, mountains, & petsExamples from this data set, and segmentations can be found in
Figure5.9. Again, we note that changes in the cut value often correlate with large changes in
the co-membership relationships on the image pixels. To quantitatively compare the methods
on natural images we report the divergence distance and NCut improvementdacitie

effect of the SR iteration at an intermediate iteration can be found in figGre

| | D..(SR, Eig) | nc(SR) = ¢ - nc(EIG) |
| natural]| 1.234+.160 | c=.536+.201 |

Table 5.2: Comparison between spectral round@®Rand the multi-way cut algorithm of Yu
and Shi | ] EIG on segmentations of natural images. The average cluster entropy over
SRsegmentations of the image collectiorn i§2 + .4.
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Feature Map

Input Data Eig [YS034 SR

nc(SR) = .0064

ne(EIG) =

.0151

ne(EIG) = 0119  nc(SR) = .0030

ne(E1G) = .0069 = .0033

nc(EIG 019 ne(SR) = .0015

Figure 5.2: The first four rows provide qualitative examples of the improvements in NCut
value for natural images. Column three contains segmentations generated by the published
code of Yu and Shi{S034. Column four contains results f@pectral RoundingThe number

of segments: is fixed for each comparison. We emphasize that the cut cost was evaluated on
identical combinatorial problems (graphs).

5.2.2 Medical Image Segmentation

To a degree, clustering methods are only successful in that are useful in servicing a particular
task. We have selected a simple medical task, segmenting out the left ventricle (a fluid sack
located in the brain), as it is well defined.e. the boundary of the percept is agreed upon by

experts. While this task appears to be relatively easy, a successful automatic method represents
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Input Data Eig [ YS034 Intermediate SRfinal

k=6, SRiteration  nc(EIG) =.0074 i=1,nc(SR) = .0062i = 4,nc(SR) = .0057

Figure 5.3: A sequence of iterations projected onto the feasible set, starting left with solution
from Yu’'s method and ending with the fourth and firgRiteration on the right. Notice that
the large cuts in the sky and field shift to small cuts in the area around the farm.

‘ bt ‘ bt [

! EEN K
\ {?)J 4 R A

nc(SR)=.019 nc(EIG)=.061 nc(SR) .024 nc(EIG)=.057 nc(SR)=.048  nc(EIG)=.068  nc(SR)=.021 nc(EIG)=.021

Figure 5.4: Examples of the left ventricle, and qualitative results forStRand EIG algo-
rithms. Segmentations required approximateyseconds foEIG and1.9 seconds foSR

a significant reduction in human effort for a common labeling task.

The evaluation was performed on a collection of 200 NMR images containing the left ven-
tricle. The collection was built by taking 5 slices each from scans of 40 individuals. Images
were selected randomly from slices containing the left ventricle. As shown in Figditbe

appearance of the ventricle varies substantially in shape and size.

The comparison of segmentations obtained from spectral rounding and the eigenvector method
of Yu and Shi [rS034 with the human labels is given in Tabte3. The divergence distance
and expected cut improvement are given in Table The average cluster entropy f8Rwas
0.611 4+ .131. As this is a two-class problem, this suggests that one of the segments tends to be

much smaller than the other. This is due to the often small size of the ventricle in the image.
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’ H nc(SR) ‘ ne(EI1G)] ] ‘
| Pr(veT(m)) | 95+ .04 | 37+.12 |

Table 5.3: The valu@’r(v € T'(Im)) is reported over the population of images, whE(ém,)

is the expert’'s hand segmentation @ v € T'(Im)) is the probability that a pixel in a seg-
ment is also contained ifi(/m) — this statistic was computed for the segment with the majority
overlap withT'(Im). Change this to &,, statistic for(E/G, human) and(S R, human).

| [ D.i(SR, Eig) | nc(SR) = ¢ ne(EIG) |
| medical | 1.856 +.192 | c=.598+ 237 |

Table 5.4: The divergence and expected value improvement for the medical image data set.
The average cluster entropy fBRsegmentations on the medical data set wésl + .131.

5.3 Human Segmentation and SR

The Berkeley Human Segmentation Database (BHSID)[M01] provides a means of evalu-

ating the Normalized Cut as a measure of image segment salience. At first blush the question
seems obvious, do human segmentations consistently cost less than machine generated cuts?
Or, perhaps, do human segmentations span a large set of low cost cuts? Given the means of
obtaining improved cuts automatically, does this decrease in NCut value predict an increase the
overlap with a human segmentations? In this section we employ spectral rounding to improve
the cut value over images in the BHSD dataset and demonstrate that cut improvements increase

the mutual information between human segmentation and automatic segmentation.

Human segmentations often contain a large number of segments, resulting in the partitions
with high cost. However, a coarsening of the segmentation, using the human selected partitions
as a basis results in very low cost low order cuts. (small k). In the following section we
detail segmentation for the normalized cut over multiple orders grouping human segments to
generate low-cost low-order cuts. These cut values and co-membership structures are used to

compare thé&Ralgorithm and standard spectral algorithm.
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Human Seg.

Quotient Graph k=10

\ IR
Figure 5.5: The input image and human segmentations are combined into a quotient graph
representation of the image.

Boundary Correction

The human segmentation boundaries in the BHSD are often near, but slightly removed from,
the locally optimal partition boundary. To amend this a local minimum cut boundary opti-
mization is performed. The procedure is as follows, for each boundary. For adjacent image
segmentsd and B a region of pixels is selected. We uéed) and§(B) to denote the sets

of vertices with edges in the “human” cut. The nearest set of pixels outside these regions are
added to the sets. These vertex sets are labeled source and sink respectively. The minimum
S-T cut of§(A) U §(B) is computed. If the value of S-T cut is significantly less than that of

the human generated boundary it is transplanted as the boundary between the two regions. In
practice, this condition fails when an two image regions is too small, and therefore every pixel

with in it is adjacent to the cut.

The best k-way human cut

We report segmentation comparisons ko 2, ..., 20. Given a human, or set of human seg-
mentations, we collapse the human segmentation down to each settingamfa given setting
of k a “best human cut” is determined by searching over planar cuts in quotient graph defined

by the fine grained human segmentation. This is illustrated in figlixe
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Judging significance

The BHSD contains 290 images, split into 197 train and 93 test images. Fahtentains
statistics on the reduction wariation of information , D,;, when usingSR over EIG with

respect to human segmentation. The table reports bootstrap estimates of standard errors and
70" percentile sample confidence intervals. To determine if the improvemént iis signif-

icant, we consider each algorithm as generating samples from a continuous random variable
of (Vol) bits. The two distributions are highly skewed (asymmetric) and have dramatically
different variances. First we employ the Kolmogorov-Smirnov two-sample tést(4 to

test the Null Hypothesis that the sample sets are drawn from the same underlying distribution.
The test rejects the Null Hypothesis with a significance.ef .00005, which verifies that the
distributions are distinct. Thus the improvemeirg.(reduction) in variation of information is

statistically significant by comparison of means.

We determined that the distributions ovey; induced by the segmentation methods were in-
variant oftest-trainsplit of the image collection. A bootstrap Kolomogorov-Smirnov 2 sample-
test was applied for each algorithm comparing the sample distributiontedtandtrain. In
both cases the Null Hypothesis was accepted indicating that results testh@dtrain sets
were drawn over the same distribution over bits for each algorithm. Therefore we employ all

293 images in our analysis.

Std. 1.13 4+ 0.30 1.434+.79 .634 +0.32 c=.58%+0.2
ClI. NA 147 : {—.63,4+0.53} | 0.61:{—0.25,+0.13} NA

Table 5.5: Thevariation of information , D,;, for: the SR versus EIG, EIG versus Human, and

the SR versus Human. Statistics are shown with standard errors and confidence intervals. The
Kolmogorov-Smirnov two-sample testjas04 verifies that the distributions ové?,; induced

by theSRandEIG are distinct with a significance ef < .00005. The forth column reports

the expected improvement in normalized autSR) = c - nc(EIG).
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Input Data _ Eig - SR . Cut Detall

necs = .0103 nes = .0055

Input Data Feature Map Eig [YS039 SR

k=2, comparison ne(E1G) = .0021 nc(SR) = .0021

Figure 5.6: The first row contains a segmentation that does not match the common human
perception of the foreground (a penguin). In the forth column, the lines in the image illustrate
various node types in astt cutcomputation. The yellow line indicates the sink, the green the
initial source, and the black lines denotes the boundary. The blue line is the minimum cut,
the red line is the “forced” minimum cut with the blue line used as source. The second row
illustrates a 2-way cut in which the NCut values are nearly identical, but which support very
different percepts.

The Normalized Cut & Human Segmentations

As mentioned in the introduction, and demonstrated above, a superior Normalized Cut while
positively correlated with perceptually relevant segmentations is not guaranteed to be match
the common human perception of the image contents (percept). The images in5figure
demonstrate that the pixel affinity graph may contain ambiguous segmentations, or may miss
the target percept (see the second row).

The image containing the penguin, row 1 figlré, is example of a case in which the cut
that closely matches our perception of the foreground is not contained in the affinity graph.
However, as illustrated in the forth column, the red edge cut does not actually trace the contour
of the foreground, but rather is fortuitously close to it. In fact the cut, indicated in red, is more

expensive than that indicated indicated in blue.
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Input Image Human EIG SR

k=28 nc = .0012 nc = .010

Figure 5.7: Example segmentations from the Berkeley Hand Segmentation Database. Image
results comparing the—way cut generated from hand segmentation (column 2), the standard
spectral algorithm (column 3), and spectral rounding with expansion edges and the derivative
heuristic (column 4). For each image, the number of segments was fixed for both the spectral
rounding algorithmSR and the standard algorithEig. Each method was initialized with the
same weight matrix, and the reported cut costs are given on the original weighted iggaph (
affinity matrix).
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Input Data Eig - SR Input Data Eig SR

nc=.0093 nc=.0048 nc = .0085 nc = .0080

nc = .0047 nc = .0006

nc = .0122 nc = .0090 nc = .0159 nc = .0102

nc = .0145 nc=.0121

Figure 5.8: Example Images
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Input Data Eig SR

Eig

-

ncs = 0143 ncs = .0063 - neg = 0095 nc3 = .0021

Input Data

nce = .0018 ncy = .00008 nes = 0039 nes = 0012
Eig SR Input Data Eig & SR

Input Data

ney = 0077 ney = .0032 ney = .00002
Input Data SR Input Data SR

Input Data

Figure 5.9: Example Images
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Chapter 6

Moving Forward

Efficiency

Spectral graph theory has seen wide application in construction of efficient PDE solvers, basic
algorithm construction, machine learning, and computer vision. However, the computational
complexity of the underlying sparse eigencomputation remains a major barrier against the in-
tegration of spectral techniques into large scale data-mining problems and vision. At present
the best knowni{ , ] average case time bound erapproximate estimation of an
extremal eigenpair ié)(m\/?), for generalized Laplacians with= |V'| andm = |E]|.

Fortunately, empirical evidence and recent theoretical results suggest the possibility of nearly-
linear time eigencomputation. Inf{ ] we demonstrated that rudimentary multi-level meth-
ods are effective for rapid approximate eigenvector computation. This is in part due to the
smoothness of the systems arising from image data. Spielman and3gng furnish a multi-
level method for solving linear systems with a theoretical bound of near linear-time. Their
work has been further improved to a linear-time algorithm in the planar graph case (a common
case in vision applications) by Koutis and Miller. Such work suggestsethapproximate
eigencomputation may soon fall into same time complexity, as iterative linear system solv-

ing is central to several techniques computing eigenvectors and eigenvalues. For example, the

93
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inverse iteration and Rayleigh quotient iteration:| } both compute eigenvectors by re-
peatedly solving linear systems that converge upon an eigenpair of a matrix. The Rayleigh
quotient iteration exhibits cubic convergence yeilding a set of iterafionkerek < log(m).
However, the deflation step required in the Rayleigh quotient iteration must be addressed in
order to successfully adagt| 04 to eigenvector computation. AS| 04 assume that the ma-

trix is diagonally dominant — which will not hold true for a deflated matrix. Another promising
direction of inquiry involves employing Fiedler’s theorem directly in an eigensolver. We are

currently exploring both strategies for efficient Laplacian eigenvector computation.

An improved theoretical bound

We have presented a new rounding technique for the eigenvectors of graph laplacians in order
to partition a graph. The method was shown to converge and demonstrated empirical improve-
ments over the standard rounding strategy on a variety of problems. In ongoing work we are
seeking a theoretical bound for variants of 8R-Algorithm  in terms of the Normalized
Cut.

As theSR-Algorithm  is exactly a spectral algorithm we have no way of improving upon
the Cheeger bound without modifying the approach. This sad state of affairs is a direct conse-
guence of the work of Guattery and Millet[/19¢], in which they construct families of graphs
where the required eigenvectors (for a good cut) are given arbitrarily large spectral index. How-
ever, as shown in Chapter 3 modifying the graph, so as to correct some of the spectral methods
short comings may provide a route to such improvements. The expansion augmentation strat-
egy put forward in Chapter 3 provides one possible to path two achieving such an improved
bound. The plausibility of such an improvement is high due to the success:efl[5] with
their expansion embedding algorithm for bounding the conductance number. For practical al-
gorithms, the issue with graph augmentation is speed — to this end we are seeking a strictly

spectral version of expansion augmentation coupled witls®ReAlgorithm
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Guided Cuts

In many domains, such as medical image processing, we know the type of structure we wish
to segment in the image or volume. Alternately, in graphics and image editing applications the
user is often able to provide a sparse set of inputs that suggest a particular target segmentation.
Accordingly, developing a mechanism for guiding the optimization of the graph cut with side

is highly desirable.

In previous work, | ] we put forth a joint spectral partitioning and shape estimation
optimization that improved the over all segmentation and shape estimates relative of human
hand segmentation. We observed that in optimizing shape based segmentations, eigenvector
methods possess desirable properties compared to flow based optimization. Primarily this fol-
lows from examining the intermediate solutions generated by both techniques. For spectral
methods there is a great deal of global information about the geometry of the cut contained in
eigenvectors of the graph. Accordingly, they can be used to update estimates of shape param-
eters. This differs from the intermediate solutions in the flow optimization are not necessarily
geometrically meaningful. However, flow-based methods support statistical parameter estima-

tion over populations as shown in the spatially coherent clustering method proposed by Zabih
[ZK04].

In[ ] we incorporate model data into a segmentation by aligning the target eigenvec-
tors with a vector (or subspace) encoding the current estimate of the shape. The shape estimate
is then updated by fitting regions in the Fiedler vector that are likely to contain the cut. This
resulted in an alternating gradient ascent algorithm switching between shape parameters esti-
mation (with respect to the current eigenvectors) followed by an alignment step in which matrix

entries are updated to align the eigenvector to the current shape estimate.

In ongoing work we use “the probability of an edge” (in the cut) from Chapter 2 and the

probability of a contour passing through an image region (which can also be expressed as a
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Pr((uv) € §(S,S)) to provide strictly probabilistic shape optimization. This has the advantage
of providing a strictly probabilistic algorithm for optimization shape and cut with respect to
matrix eigenstructure. Further, human data can be natural incorporated into such a scheme as

constraints on the distribution over cuts.
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