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Abstract

The task of assigning labels to pixels is central to computer vision. In automatic segmenta-

tion an algorithm assigns a label to each pixel where labels connote a shared property across

pixels (e.g. color, bounding contour, texture). Recent approaches to image segmentation have

formulated this labeling task as partitioning a graph derived from the image. We use spec-

tral segmentation to denote the family of algorithms that seek a partitioning by processing the

eigenstructure associated with image graphs.

In this thesis we analyze current spectral segmentation algorithms and explain their perfor-

mance, both practically and theoretically, on the Normalized Cuts (NCut) criterion. Further,

we introduce a novel family of spectral graph partitioning methods, spectral rounding, and ap-

ply them to image segmentation tasks. Edge separators of a graph are produced by iteratively

reweighting the edges until the graph disconnects into the prescribed number of components.

At each iteration a small number of eigenvectors with small eigenvalue are computed and used

to determine the reweighting. In this way spectral rounding directly produces discrete solu-

tions where as current spectral algorithms must map the continuous eigenvectors to discrete

solutions by employing a heuristic geometric separator (e.g. k-means).

We show that spectral rounding compares favorably to current spectral approximations on

the NCut criterion in natural image segmentation. Quantitative evaluations are performed on

multiple image databases including the Berkeley Segmentation Database. These experiments

demonstrate that segmentations with improved NCut value (obtained using the SR-Algorithm)

are more highly correlated with human hand-segmentations.
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Chapter 1

Introduction

The task of assigning labels to pixels is central to computer vision. Image segmentation re-

quires that the algorithm assign a label to each pixel in the image. This broad definition in-

cludes operations such as stereo depth assignment, object recognition, and image segmentation.

At the low-level, shared segment labels connote a shared statistical quantity between pixels in

the image. At higher levels segmentation problems undertake the task of assigning labels with

semantic value. For example labeling the image pixels as members of either of the abstract

classesfigureor ground, or supplying concrete labels such asface, andcar.

In recent years segmentation has become a central component in mid and high level vision

algorithms. The image parsing system of [TCYZ05] used segmentation to validate detection

events in the image. In their work on geometric pop-up [HEH05] and contextual classification

[HEH06] initial segmentations play a pivotal role in limiting the support of classification events

(both high level, mid-level -i.e. surface orientation). Object detection systems, a recent staple

of the vision community, are being augmented to include segmentation specific support for

feature detection events.

1
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1.1 Problems and Solutions

In this work segmentation is formulated as partitioning an graph defined over the pixels. In

the simplest instance a weighted graphG = (V, E, w) is built from the image in the following

fashion. The vertex set of the graph is taken to be the pixels of the image. The edge-setE is

a fixed for the image and connects neighboring pixels (on a mesh-like lattice). The weights

of these edgesw are determined as a function of the pixel similarity -e.g. intensity or color

correlation. Finding a good segmentation of the image can now be thought of as finding an

inexpensive cut (or cut-set) inG.

In partitioning a graph we must specify a measure of cut cost or quality. Most measures of

partition quality yield NP-hard optimization problems. This raises two important questions.

First, does a particular optimization problem capture good partitions for the image segmenta-

tion domain, especially in light of the optimization being NP-hard and thus we may never know

the true optimum anyway. Second, given that the optimal value is a good characterization are

approximations quickly constructible and do they return good partitions?

One popular formulation, used in image processing and clustering, is the normalized cut

(NCut) of a graph introduced by Shi and Malik [SM00]. The ideas contained therein were

further explored by Nget al. [NJW02] and Yu and Shi [YS03a] both of whom motivated

multi-way partitioning algorithms. In part, our method was motivated by observations made

in [NJW02, YS03a]. Now, how does the NCut optimization problem fare against our two

questions?

It is not difficult to construct image examples for which common image percept does not

correspond to the optimal NCut of the image (e.g. see Shentalet al.’s example [SZHW03]

and see Figure5.6 for an analogous case in natural images). This is unsurprising, and an

acknowledged attribute of all objective measures of cluster or partition quality (see Kleinberg

[Kle03] and Meil̆a [Mei05] for treatment of this issue). But, for many images, as we shall show,
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there are segmentations with a smaller normalized cut value than in those generated by earlier

methods that are at the same time more pleasing. For example, one of the main empirical

advantages of spectral rounding technique seems to be that it is less likely to split the image

in homogeneous regions, see Figure5.2, while returning smaller NCut values. Thus good

image segmentations are generated as graph partitions without reformulating the underlying

combinatorial problem.

The two common paradigms for approximating such objective functions are 1) linear or

semidefinite programming [LR88, XJ03, ARV04]. and 2) spectral methods [Chu92, SM00]. In

this paper we introduce a spectral technique that empirically improves upon existing spectral

algorithms for quotient cuts. Earlier spectral methods consisted of a two stage algorithm. In

the first stage a small collection of, sayk, eigenvectors with small eigenvalues are computed.

While in the second stage these vectors are used to map the graph vertices intoRk and a

geometric separator is then applied [CGT94].

In chapter 3 we introduceSpectral Roundingas an alternative to rounding with geometric

separator. Spectral rounding iteratively reweights the graph in such a fashion that it eventually

disconnects. At each iteration we will use the eigenvalues and eigenvectors of the reweighted

graph to determine new edge weights. At first hand this may seem very inefficient, since

the most expensive step in the two stage method is the eigenvector calculation. By using the

eigenvector from the prior step as a starting point, for finding the new eigenvector, simple

powering methods seem to work in only a small number of steps.

1.2 Related Work

In this section we briefly touch on related and prior work in areas of image segmentation. We

make the distinction between low and high level formulations of the segmentation problem.

Additionally, we briefly touch on the distinguishing differences between modern approaches,
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focusing on what types of constraints are easily encoded in a particular method, and the com-

putational overhead of the various techniques.

1.2.1 Low-Level Segmentation

The low-level segmentation problem has been posed as a feature space clustering problem

[DS80], a statistical estimation problem [CM02], a diffusion process [ZLY95], a level set opti-

mization [Set96], a graph partition [Vek00, SM00], and as inference on probabilistic graphical

models of the image generation process [GG84, Bes86, Li01]. Most modern segmentation

systems employ a mode-seeking statistical estimation approach such as themean-shift, or a

probabilistic technique derived from a graphical model of the image data.

Before continuing on it is worth commenting on why one would choose to use a spectral

segmentation method such as [SM00, YS03a, TM06]. In particular, what desirable features

do spectral relaxations possess as approximations for image segmentation applications. Given

that the pixels are connected in spatially localized patterns, a spectral method will generate

image segments that are connected in the image plane (as well at the graph). This property

of the segments is not guaranteed by segmentations algorithms using [Bis95, CM99, Vek00,

GG84, Li01]. Spectral methods provide a means of bounding several combinatorial (discrete)

functions of cut quality (known collectively as quotient cuts). Such cut functions are covered

in chapter 2 and form the basis of assessment for segmentation quality in graph partitioning

formulations.

We use the term low-level segmentation to denote the collection of segmentation techniques

that are free of semantic information. These methods seek to partition the image into contigu-

ous regions that share a level of coherence. This coherence can be as simple as color similarity,

texture similarity, or boundary smoothness. The majority of such approaches are motivated

by the work of the Gestalt psychologists on the heuristics that guide visual binding. This pro-
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cess in biological systems is analogous to image segmentation in computer vision systems –

features are grouped together to form coherent regions in the visual field.

Clustering Approaches

We group clustering andmean-shiftalgorithms [CM99] into statistical approaches for image

segmentation. Thek−means algorithm [Bis95] seeksk points in feature space that explain

the data as the means of disjoint populations. These points are then used to label pixels in the

image domain by their mean in feature space. Themean-shiftalgorithm is a mode seeking

algorithm. For a given distribution in feature space, the maxima of a density (under a kernel

image) are located through repeated restarting and hill climbing. These modes are then used

to assign labels to pixels in the image domain. In terms of our requirements, both of these

methods share a major short-coming: as the feature spaces may not preserve the geometry of

the image plane, there is no constraint enforcing contiguous segments in image plane.

Contours and Level-Sets

Contour based approaches seek a closed curve in the image plane that satisfies assumptions

about the local differential structure. These methods typically seek to maximize the coverage

of detected edge pixels, while satisfying smoothness constraints on the contour. Thesnake

contour approach for low level segmentation was proposed by Kass and Witkin in [KWT87].

This family of approaches optimizes over a parametric curve with penalty terms on smoothness.

Unlike graph theoretic approaches to low level segmentation, active contours typically require

initialization. In most cases placing a contour interior to the object of interest is sufficient. In

many applications these models are inappropriate because the smoothness terms may dominate

image structure.

Level set optimization can be applied to solve Mumford-Shah functionals [BKS02] and con-

tour parameters. The solutions to Mumford-Shah optimization, a set of piece-wise linear func-
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tionals covering the image, results in an image segmentation. Alternately, the variational level-

set optimization framework can also be applied directly to contour estimation, to extend con-

tour estimation to an edgeless case [CV01] or to combine region and edge information[PD99].

There are two major drawbacks to these approaches. The first is nature of the objective func-

tions. In general the error surface contains many local maxima, and in the case of Mumford-

Shah functional optimization is computationally expensive. Typically contour based methods

suffer from a trade off between the smoothness of the contour and the stability of the solution.

If the penalty term on the smoothness is too low the contour explains a great deal incorrectly

detected edges. If the penalty term is too high, the result is a rigid, overly simple, estimate of

the target segmentation.

Probabilistic Approaches

The probabilistic family of approaches to low-level segmentation originate from the semi-

nal work of Geman and Geman [GG84]. These methods determine low-level pixel label

configurations that are probable under a Markov Random Field (MRF) such thatP (S|I) ∝∏
x∈S P (i(x)|s(x))P (S), wherei(x) is the image observation at the pixelx, s(x) is the seg-

ment label assigned tox, andS is the configuration of pixel labels. There are two major

components worth discussing in the MRF model. First the independence assumption that

P (I|S) =
∏

x∈S P (i(x)|s(x)), which asserts that the observations are conditionally indepen-

dent given the labels. Second, the priorP (S) =
∑

x∈S

∑
v∈N (x) ρ(s(x), s(v)), called the in-

teraction field, biases configurations ofS toward consistent labels on adjacent pixels under the

neighborhoodsN (x). Priors of the form above can be thought of as graphs with topologies

defined by label interactions.

For two class segmentation problems, with an exponential family pair-wise prior, the max-

imum likelihood configuration ofS can be computed in polynomial time as a reduction to

max-flow [FF62]. There are a few technical conditions that must be met by the priorP (S)
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related to graph topology and the penalty functionρ. The class of priors was broadened to

include convex functions by Ishikawa in [Ish03].

Fork−class segmentations, wherek > 2, probable configurations of the MRF can be found

by multi-commodity flow optimizations. This observation inspired the segmentation algorithm

of Veksler [Vek00], using the multi-commodity flow algorithm proposed by Boykovet al.

in [BVZ98]. The class of admissible reductions to multi-flow optimizations where further

charted by Kolmogrov and Zabih in [KZ04]. More complex models beyond the scope of a flow

reduction were proposed by Tuet al. in [KWT01]. Optimization of label configurations for

these models employ a data-driven Markov Chain Monte Carlo to find a local maxima.

Graph Partitioning

The model essential to the MRF formulation in§1.2.1can be thought of a graph whose topol-

ogy is defined by the neighborhood functionsN (x). By dropping the probabilistic interpreta-

tion and thinking only about optimizing a function of the label collisions, this problem can be

thought of as a graph partition. These objective functions include the normalized cut [SM00],

thep−way max flow approaches [BVZ98], as well as a host of other cut functions and opti-

mization techniques. These approaches are addressed in greater detail in chapter 3.

1.2.2 Mid-Level Segmentation

We use mid-level segmentation to denote the set of image segmentation problems that include

some top-level input, but no object information. Examples include the figure-ground method

proposed by Yu in [YS02], and the spatially coherent clustering method developed by Zabih in

[ZK04].

In the work of Yu [YS02] a small set of pixels are constrained to the same class. This

effectively contracts the graph on the labeled vertices. This approach was applied to figure-
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ground segmentation by constraining the border pixels to a single class. The mid-level input

information is taken to be the set of pixel equivalence constraints.

In [ZK04] an iterative scheme is proposed in which a small set of parameters are estimated

for each segment as the flow optimization is performed. These parameters are then used to

re-weight the graph during the optimization. The result is a segmentation routine that is robust

to unstructured noise(e.g. salt-and-pepper)in the image plane. Here the mid-level input is the

model class used in parameter estimation.

High-level Segmentation

The missing ingredient in most image segmentation approaches is the Gestaltist rule ofmodel

consistency. Rightly, this heuristic suggests that the constituent regions of a known object

should be grouped in the visual field. Notable exceptions include the covering work of Boren-

stein and Ullman [BU02], and that of Yu and Shi [YS03b].

The method proposed by Borenstein [BU02] requires a large collection of patches taken from

the parts of the target class. This loose collection of patches, coupled with overlap compatibility

scores, is used to cover the pixels of interest in the image. Thus a segmentation is derived as

the union of on-object pixels from the covering patch collection. The optimization procedure

described in [BU02] contains no guarantees regarding the quality or uniqueness of the solution.

As the template based approach requires hand segmentation for the class patches, the method

carries a heavy burden in hand labeling as well. This method has an implicit representation of

shape in the patch compatibility functions supplied by the exemplars.

The method proposed in [YS03b] attempts to segment out detected objects in the scene

by combining a graph on pixel similarities with scores for object feature configurations. The

configuration of object features are weighted if they are probable under the training set. These

object features are then linked to low-level pixel interactions through edge weights. However,

the method does not have an explicit representation for the global shape of the object.
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Perhaps the easiest to tailor to high-level shape information are the contour based meth-

ods. Active contours for tracking and segmentation use a distribution over contour parameters

estimated from a training corpus to constrain the set of likely shapes. These models, while

powerful, often return overly smooth results in the image. Additionally, a similarity transform

is generally factored out of the shape statistics. By optimizing over the shape and a similarity

transform, many local maxima exist. In earlier work [TMC05] we combined simple statistical

contour models with graph partitioning method to obtain shape guided image segmentations.

1.3 Contributions

The primary contribution of this document is introduced in Chapter 3 onSpectral Rounding.

However, in getting to this point a number of useful results were obtained that extend beyond

the scope of a particular algorithm.

1. A novel rounding algorithm that projects the eigenvectors of a graph Laplacian onto the

feasible set of partition matrices (Chapter 4).

2. An analysis of the “spectral segmentation” problem, including a graph augmentation

scheme that ameliorates some of the short-comings of spectral methods when coupled

with planar local neighborhood graphs (Chapter 3).

3. Data and analysis suggesting that it is not spectral segmentation (properties simply of

the eigenvectors and eigenvalues), but rather the combinatorial objective functionNor-

malized Cut which should be optimized when segmenting images (Chapter 5). This

is shown, both in the prior over cuts induced by theNCut (figure2.3) and the positive

correlation between improved perceptual relevance and lowerNCut cost. The former

property refutes the “balance bias” that is often ascribed the normalized cut function and
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demonstrates its a property of the spectral relaxation. The latter is validated with medical

images and human segmentation of natural imagery.

4. The Cheeger inequality, relating the sparsest cut of a graph to the eigenvalues of the

normalized Laplacian, is adapted to the normalized 2-cut. This bound is then generalized

to the k-way normalized cut and an algorithm is furnished to achieve it (Chapter 2).

1.4 A Roadmap

The document is loosely organized in the following manner. Chapter 2 collects the mathemati-

cal preliminaries required for the analysis of spectral graph algorithms and the derivation of the

spectral rounding algorithm. Chapter 3 provides a detailed analysis of the relationship between

the underlying graph topologies used in spectral image segmentation and the eigenvectors of

the graph. An algorithm is introduced to called “expansion augmentation” that improves spec-

tral segmentation with computational overhead. Chapter 4 introduces the spectral rounding

algorithm which efficiently improves spectral segmentation. Chapter 5 presents results on ran-

dom geometric graphs, natural images, medical images and the Berkeley Hand Segmentation

Database.

Chapter 2 is meant primarily as a reference for use by the reader when faced with an unfamil-

iar concept. The chapter contains a collection of useful definitions and notational conventions

§2.1. The spectrum of the graph Laplacian is addressed in§2.2. In §2.2.1the differentials of

the eigenvalues and eigenvectors of these matrices is covered, with a basic proof existence for

the generalized eigenvalues of a matrix pencil. These tools are needed later in the study of the

spectral rounding algorithm. In§2.3the Cheeger inequality is proved for the Normalized 2-cut

of the graph. This fundamental inequality bounds the cost of the normalized cut by the second

smallest eigenvalue of the normalized Laplacian. The chapter ends with the statement of a
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recent generalization of Fiedler’s theorem relating the topology of the graph and the structure

of the Laplacian eigenvectors.

Chapter 3 discusses spectral image segmentation in detail. The standard spectral partitioning

algorithm is introduced in§3.1. The interaction between mesh-like (spatially localized) graphs

and the standard spectral algorithm is covered in§3.2. A simple method for improving the

performance of standard spectral algorithms is proposed§3.2.2. This method adorns the mesh-

like graph with a small set of random edges (weighted by data in the underlying mesh). This

augmented graph is less likely to produce plane waves as its topological structure is no longer

reducible to that of a string (or mattress of springs).

Chapter 4 introduces theSpectral Rounding algorithm (in §4.1). In §4.1.1 a collection

of reweighting schemes are proposed. These schemes are applied iteratively to reweight the

graph until is eventually disconnects into a prescribed number of pieces. In§4.2, the notion

of a fractional average is introduced and connected to both the reweightings that decrease a

target Rayleigh quotient and the eigenvalues of the normalize Laplacian. In§4.3 convergence

is proved for three reweighting schemes. In§4.4.1 a heuristic for selecting eigenvectors and

choosingk (the number of partitions) based on the derivatives of the eigenvalues are put for-

ward.

Chapter 5 provides results and analysis of the spectral rounding algorithm on random ge-

ometric graphs, natural images and medical images. The analysis includes the expected im-

provement in normalized cut cost between the standard spectral algorithm and the cuts pro-

duced by spectral rounding. The partitions generated by the two methods are compared using

an information theoretic metric that reports the number of bits required to encode the residual

entropy of the two partitions once their mutual information is removed. Finally, image seg-

mentations are validated by human labels when the information is available. This analysis is

done on a simple medical image processing task and the Berkeley segmentation database. The

results provide evidence that the combinatorial (graph theoretic) interpretation of NCuts should
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be preferred to the strictly spectral explanation of NCuts.

Chapter 6 addresses promising directions for future work. The three main issues surround

improved theoretical results for spectral or semi-spectral partitioning methods, the efficient

integration of high-level information into the segmentation task and the computational cost of

the initial eigencomputation. Preliminary approaches are put forth.

The remainder of this chapter sketches out problem definitions and concerns prior work in

the area of segmentation – with special emphasis on graph theoretic approaches in general and

spectral methods in particular. The putative contributions of the thesis can be found at the end

of this chapter.



Chapter 2

Linear Algebra of Graphs

The connection between graphs and matrices provides powerful tools for tackling both graph

theoretic and linear algebra problems. In this chapter we provide a collection of useful results

on the relationship between Laplacians and their underlying graphs. The chapter begins with

the introduction of notation and definitions needed in the remainder of the document. The

combinatorial Laplacian is then introduced, followed by two major theorems - the Cheeger

inequality which bounds the Normalized Cut (see theorem2) and the Nodal Domain theorem

of Fiedler (see theorem3).

Both major theorems in this chapter have implications for spectral image segmentation and

clustering. In the first we furnish an approximation algorithm for the NCut using the eigen-

structure of the normalized Laplacian. The proof is an adaptation of the bound on the “sparsest

cut” to the normalized 2-way cut. The bound is then generalized to the k-way normalized cut.

The second generalizes Fiedler’s famous theorem relating structure in the eigenvectors to

the adjacency pattern of the graph. This in turn bounds the number of connected components

eigenvectors can partition the graph into by theirspectral index.

13
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2.1 Notation and Definitions

We denote a graphG = (V, E, w) with vertex setV , edge setE and an edge weightingw.

By convention|V | = n and |E| = m andw : E → [0, 1]. The graphG is assumed to be

undirected graph without multiple edges or self-loops.

Definition 1. Theweighted adjacencymatrix ofG = (V, E, w), A(G) or simplyA, is defined

as

A(i, j) =

{
aij = wij if (i, j) ∈ E

0 otherwise
(2.1.1)

Definition 2. Theweighted degreeof vertexi is di = vol(vi) =
∑n

j=1 wij. We assume that no

vertex has zero degree. The weighted degree matrix ofG, D(G) or simplyD is defined as

D(i, j) =

{
di if i = j

0 otherwise
. (2.1.2)

Definition 3. Thevolumeof a vertex setV ′ | V ′ ⊆ V (G), denotedvol(V ′), is computed as

vol(V ′) =
∑
i∈V ′

∑
(i,j)∈E(G)

aij =
∑
i∈V ′

di,

wheredi is the weighted degree of the vertexith vertex inV ′.

Definition 4. Thecut associated with a vertex setV ′, i.e. those edges connectingV ′ to the

remainder of the verticesV \ V ′, denotedδV ′ is defined as

δV ′ =
∑

u∈V ′,v∈V \V ′(i,j)∈E

aij.

Definition 5. Thenormalized Laplacian of a graphG = (V, E, w) denotedL, is defined as

L = D−1/2LD−1/2 = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2, and is co-spectral with

minimax points of the generalized Rayleigh quotientxT Lx
xT Dx

.

Definition 6. Thenormalized cut of a graphG = (V, E, w) is defined as

nck(G) = min
{Vi}

:
1

k

k∑
i=1

δ(Vi, V \ Vi)

vol(Vi)
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whereVi ∩ Vj = ∅ andV (G) =
⋃k

i=1 Vi.

Definition 7. Theconductanceof a graphG = (V, E, w) is defined as

Φ(G) = min
V ′

:
δ(V ′, V \ V ′)

vol(V ′)

wherevol(V ′) ≤ 1
2
vol(G).

Definition 8. Thegeneralized Laplacianof a weighted graphG = (V, E, w) denotedL(G)

or simplyL is defined asL = D − A.

Thegeneralized Laplacianwill be referred to as the Laplacian of the graph from this point

forward. We state following useful identity, given a mapf : V → R the symmetric quadratic

form onL yields :

fT Lf = fT Df − fT Af

=
∑

(ij)∈E(G)

aij(f
2
i + f 2

j )− aij(2fifj)

=
∑

(ij)∈E(G)

aij(fi − fj)
2

and, notably, can be used to computeδ(V ′, V \ V ′) on discrete valuationsf .

Definition 9. The matrixrank(M) is equal to the dimension of the column-space ofM , and

theco− rank(M) is equal to the dimension of the nullspace ofM .

We make a simple observation about these generalized Rayleigh quotients:

Lemma 1. Given a weighted symmetric graphG = (V, E, w) then the normalized Rayleigh

quotient can be written as

fT Lf

fT Df
=

∑
(i,j)∈E,i<j(fi − fj)

2wij∑
(i,j)∈E,i<j((fi)2 + (fj)2)wij

(2.1.3)

wherefi = f(vi)

Proof. The fact thefT Lf =
∑

(i,j)∈E,i<j(fi−fj)
2wij andfT Df =

∑
(i,j)∈E((fi)

2 +(fj)
2)wij

are obtained by standard calculations.
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Definition Equation λ−map f−map

L = D − A Lf = λDf · · [Chu92]
[SM00]

L = D−1/2LD−1/2 Lg = λg · g = D1/2f [Chu92]
[NJW02]

T = D−1A Tf = γf γ = 1− λ · [JS89]
[Chu92]
[MS01]

A = D−1/2AD−1/2 Ag = γg γ = 1− λ g = D1/2f [MS01]
[NJW02]

· Lf = ηAf η = λ
λ−1

· [SBB00]
· A−1/2DA−1/2q = σq σ = η + 1 = 1−λ

λ−2
q = A1/2f

Table 2.1: A table of linearly equivalent eigenspaces and associated eigenvalue transforma-
tions. WhereA is taken to be the weighted adjacency,D the weighted degree ofG. Each
generalized Rayleigh quotient is followed by its symmeterized form, and linear map from the
eigenspace ofL, D.

The main importance of Lemma1 is that for each valuationf and each edgeeij we get the

fraction (fi−fj)
2

(fi)2+(fj)2
. These fractions will figure prominently in Chapter 4 on spectral rounding.

2.2 Spectrum of a graph

The eigenvalues of the matrix-pencilL(G), D(G) and matrixL(G) provide a great deal of in-

formation about the graphG. Consider a positively weighted undirected graphG = (V, E, w),

the resulting matricesL(G) andL(G) are symmetric. If we further assume that the graph has no

self-loops thenL andL are symmetric positive semi-definite (SPSD) matrices. Recall that the

spectrum of a SPSD matrixM is the complete set of eigenvalues0 = λ1(M) ≤ . . . ≤ λn(M)

and that all the eigenvalues are real. The indexi in λi(M) is thespectral indexof λi.

The co− rank of L (see def. 9) is the number of connected components contained in

the graphG under the weightingw. Givenk connected components inG there must existk

orthogonal vectors such thatfT
i fj = 0 for i 6= j andfT

i Lfi = 0. As k exclusive subsets

V exist that share no edges thenk orthogonal vectors exist such thatfi(v) = {0, 1} given
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that fT Lf =
∑

(ij)∈E(G) wij(fi − fj)
2 = 0. It is worth noting that the vectors are trivially

D−orthogonal,fT
i Dfj = 0, and are also the minima of the Rayleigh quotient defined on matrix

pencilL, D. This minimum value holds forL as well, consult Table2.1 for the relationship

between the eigenstructure of matrix pencilL, D andL

The eigenvalueλ2(L) is useful in bounding the “isoperimetric number” of a graph. While

the eigenvalueλ2(L) bounds the “conductance” and “normalized 2-cut” of the graph (see§2.3).

The bound on conductance was first shown using the second largest eigenvalue of the transition

matrix, T = D−1A, by [JS89] (see Table2.1 for the relationship betweenT andL), and is

connected to mixing times of random walks onG. For an incomplete graphλ2(L) ≤ 1, and

the maximum value ofλn(L) = 2. The eigenvalue condition,λn(L) = 2, indicates thatG is

2 colorable (i.e. bipartite). A detailed treatment of the relationship between the spectrum ofL

and the properties ofG may be found [Chu92].

A Simple Example: the path graphP3

LetP3 = (V, E, w) denote a path graph on three vertices connected along a straight line, thus

|V | = 3, |E| = 2, and weighted byw (unit below). Recall the Laplacian associated with this

graph is constructed from two matrices, the weighted adjacency matrixA and weighted degree

D:

A $


0 1 0

1 0 1

0 1 0

 , D $


1 0 0

0 2 0

0 0 1

 = Diag(A13). (2.2.1)

Thus

L $


1 −1 0

−1 2 −1

0 −1 1

 =


d1 −w12 0

−w12 d2 −w23

0 −w23 d3

 = D − A (2.2.2)
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The Laplacian amounts to a vectorization of the quadratic form
∑

(i,j)∈E wij(fi−fj)
2 on vertex

valuationsf : V → R, . ForL as above

fT Lf = f1(d1f1 − w12f2) + f2(−w12f1 + d2f2 − w23f3) + f3(−w23f2 + d3f3)

= w12(f
2
1 − f1f2) + f2(−w12f1 + (w12 + w23)f2 − w23f3) + w23(f

2
3 − f2f3)

= w12(f
2
1 − f1f2) + w12(f

2
2 − f1f2) + w23(f

2
2 − f2f3) + w23(f

2
3 − f2f3)

= w12(f
2
1 − 2f1f2 + f 2

2 ) + w23(f
2
2 − 2f2f3 + f 2

3 )

= w12(f1 − f2)
2 + w23(f2 − f3)

2

=
∑

(i,j)∈E

wij(fi − fj)
2 (2.2.3)

In getting from line 1 to line 2 the degrees are expanded out asd1 = w12, d2 = w12 + w23, and

d3 = w23. The terms are reorganized yielding the final form in (2.2.3). For our path graph the

expression simplifies tofT Lf = (f1 − f2)
2 + (f2 − f3)

2.

2.2.1 The Differentials of Laplacian Eigenstructures

The simple eigenvalues and eigenvectors of a matrix (or matrix pencil) are smooth functions of

the matrix entries. Their differentiability follows from examining the characteristic polynomial

det C − λB of the matrix pencilC, B. As the eigenvalues are the roots of a polynomial they

vary smoothly with its coefficients, in this case the entries of the matricesC andB. Locally

these roots are implicit functions of the coefficients, and therefore proving the existence of

their differentials hinges on satisfying the requirements of the implicit function theorem. We

quickly cover some results in this area for the matrix pencilL, D, a more detailed treatment of

matrix differential calculus may be found in [Lax97, MN99].

We begin with the explicit formulae for the differentials of the implicit functionsλ(L) and
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f(L), obtained by differentiatingLf = λDf as follows:

(d L)f + L(d f) = (d λ)Df + λ(d D)f + λD(d f). (2.2.4)

Solving for(d λ), at(λ0, f0), in (2.2.4) we obtain:

(fT
0 D0f0)dλ = fT

0 (L− λD)(d f)− fT
0 ((d L)− λ(d D))f0 (2.2.5)

≡

(d λ) = fT
0 (d L− λ0(d D))f0 (2.2.6)

pre-multiplying (2.2.4) by fT
0 grouping and canceling terms we arrive at (2.2.6). The key

observations are that we may normalizef0 asfT
0 D0f0 = 1 and that(d f)T (L− λ0I)f0 = 0 as

f0 ∈ Ker(L−λI) asL is symmetric. The explicit formula for(d f) follows from manipulation

of (2.2.4).

(L0 − λD0)d f = ((d λ)D0 + λ0(d D)− d L)f0 (2.2.7)

(d f) = (L0 − λD0)
†((d λ)D0 + λ0(d D)− d L)f0 (2.2.8)

whereM † denotes the Penrose-Moore pseudo-inverse ofM . Note, for large sparse systems it

is far more efficient to solve for(d f) with an approximate linear solver than to compute the

dense matrix(L0 − λ0D0)
†.

The second order differentials(d2 λ) and (d2 f) are quickly determined by applying the
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linear operatord to (2.2.4). Again we begin with the eigenvalue.

2(dL) + L(d2f) = (d2λ)Df + λD(d2f) + 2(dλ)(dD)f + (dλ)(dD)(df) (2.2.9)

d2λ = fT (2(dL)− (dλ)(dD))(df)− 2(dλ)(dD)(df) (2.2.10)

= fT (2(dL)− (dλ)(dD))(L− λD)†((dλ)D + λ(dD)− (dL))− 2(dλ)(dD))f

Note that the above shows that the second derivative can be written so as to be independent of

the differential(df).

Existence of the Differentials

We prove thatλ(L, D) andf(L, D) satisfy the implicit function theorem and are thereby dif-

ferentiable functions of the matrix pencilL, D. In the following sectionλ is assumed simple,

andD is assumed full rank. We will show that the derivative of a joint function over the gener-

alized eigenvalues and eigenvalues is defined around the original eigenpairf0, λ0, and that the

derivative is zero at this point.

Theorem 1. The implicit functionsλ(L, D) and f(L, D), satisfyingL(t)f(t) = λD(t)f(t),

are smooth in a local ballN centered at(f0, λ0) | L0f0 = λ0D0f0.

Proof. To prove the existence of the differentials ofλ(L, D) andf(L, D) we define a joint

function and analyze its properties. For the generalized eigenproblem we form the functionF ,

aboutf0, λ0 as

F(f0, λ0; L)
.
=

 A

b

 .
=

 (L− λ0D)f0

fT
0 Df0 − 1

 (2.2.11)

and note that the eigenpairf0, λ0 is a zero ofF . To validateF , and thereby satisfy the

IFT, we must insure that the smooth open ballN (f0, λ0) exists. The first requirement that

F(f0, λ0; L) = 0 follows from the definition; that a functionG = Ḟ exists, and thatG(f0, λ0; L) =
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0 is all that remains. We start by constructing the Jacobian of (2.2.11) is:

JF
.
=


∂A

∂f

∂A

∂λ

∂b

∂f

∂b

∂λ

 =


L− λD D1/2f

fT D1/2 0

 (2.2.12)

asλ is simple, the Jacobian,JF , is invertible and thus the functionG = J−1
F F exists and

satisfies the requirements of theIFT. To show this, we observe thatJF is a bordered matrix1

and its determinant can be written asdet JF = −fT
0 D1/2(L−λ0D)

]
D1/2f0, whereB] denotes

the transpose ofcofactor matrix of B. Recall that for a non-singular matrixB, B−1 = 1
detB

B].

As the(L−λD) has co-rank= 1, the cofactor matrix consists of scaled versions of its nullspace

space. Thereforedet JF > 0 andG exists. This follows(D1/2f)T f > 0, for a positive diagonal

operatorD, and asf is in the nullspace of(L− λD). Given that the conditions of theIFT are

met byG. The simple generalized eigenvalueλ(L, D) is a differentiable function of the entries

of L andD, which themselves are linear function of the graph weightingw.

Entry-wise representation ofλ and f

In this section the contribution of each edge to the total derivation of the eigenvalue(d λ) is

examined. In chapter 4, Spectral Rounding and Fractional Averages, we will return to this for-

mulation in our discussion of the weight updates that optimize eigenvalues. While not covered

here, the edge-contribution for entries of(d f) can be deduced in an analogous fashion.

The standard differentiald λ is easily expressed as a sum of terms over the edges of the

1See Magnus and Neudecker [MN99] for details on the determinants of bordered matrices.
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graphG. In the case of an undirected graph we rewrited λ as

d λ =
fT (d L− λ d D)f

fT Df
(2.2.13)

=
∑

(ij)∈E

d λij. (2.2.14)

We obtain the contribution at each edged λij by breaking apart (2.2.13).

d λ =
∑

(ij)∈E

2l′ijfifj − λ
∑
k∈V

d′kf
2
k (2.2.15)

=
∑

(ij)∈E

−2a′ijfifj +
∑
k∈V

d′kf
2
k − λ

∑
k∈V

d′kf
2
k (2.2.16)

=
∑
ij∈E

a′ij(fi − fj)
2 − λ

∑
(ij)∈E

a′ij(fi + fj)
2 (2.2.17)

wherel′ij = (d L)ij is theijth entry in the Laplacian, andd′k = (dD)kk. Recall that without

parameterization ofG the edge derivative ise′ij = 1. The individual contribution can now be

isolated as

d λij = a′ij
(
(fi − fj)

2 − λ(fi + fj)
2
)

(2.2.18)

= (fi − fj)
2 − λ(fi + fj)

2 (2.2.19)

or, alternately, in terms of the underlying edge weights fromG = (V, E, w) the contribution

simplifies to

d λij = 2fifj − λ(f 2
i f 2

j ). (2.2.20)
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Figure 2.1: An illustration of the threshold cut algorithm studied in§2.3. The graph on the
right is embedded on the real line according a vectorx : V → R. Each threshold is tested,
the red starting from the bottom up and the blue from the top down, until the best threshold is
found. The edge cut, illustrated with a red dashed line, is then returned separating the graph.

2.3 The Cheeger Inequality for the Normalized Cut

The normalize cut of a graph is a NP-hard combinatorial objective function over partitions of

a graph. Ostensibly it seeks an equitable compromise between the cost the partitioning and

the variation in volume of the individual partitions. This objective function can be written as a

quadratically constrained quadratic program (QCQP) [AW00, YS03a].

Normalize Cut QCQP

The definition of the normalized cut (see definition6) can be vectorized as an optimization

over the feasible setB satisfying the constraints below:

min
B∈B

:
1

k

k∑
i=1

BT LB

BT DB
(2.3.1)

s.t. : BT DB = Ik

: Bij =

{
0,

1√
vol(Vj)

}
.
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The two common paradigms for approximating such objective functions are 1) linear or semidef-

inite programming [LR88, XJ03, ARV04]. and 2) spectral methods [CGT94, Chu92, SM00,

NJW02]. Most spectral methods consist of a two stage algorithm. In the first stage a small

collection of, sayk, eigenvectors with small eigenvalues are computed. While in the second

stage these vectors are used to map the graph vertices intoRk and a geometric separator is then

applied [CGT94].

This section provides an approximation bound on the Normalized Cut using the eigenvalues

of the normalized Laplacian. The algorithm is a simplified version of the standard algorithm

used by [CGT94, SM00, YS03a]. First a detailed proof of the bound on a normalized2−cut is

given, followed by a simple sketch of the extension tok−way normalized cuts. The later being

ak−fold application of the argument below.

We now provide an adaptation of Stephen Guattery and Gary Miller’s unpublished note on

the “best cut from a vector” using the the eigenvectors of the generalized graph Laplacian.

The proof is adapted to thenormalized Laplacian and the associated bound to one on the

normalized 2-cut of the graph (rather than the “sparsest cut”). Some of the text in is included

“as is” from their original note.

The algorithm employed in obtaining the bound uses a vectorx, called a valuation, which

is a map fromx : V → R. The vertices are then embedded on the line according tox and a

threshold is selected such that the cut cost is minimized (see Figure2.1). Such a cut is referred

to as athreshold cut of the graphG givenx.

Theorem 2. LetG be a connected graph with positive edge weights onn vertices with gener-

alized LaplacianL and weighted degree matrixD. For any vectorx such thatxT D~1 = 0, let

nc∗ be the smallest normalized 2-cut over all threshold cuts based onx. Then

nc∗ ≤
√

2
xT Lx

xT Dx
.

Proof. Assume w.l.o.g. that the vertices of the graph are numbered such that the entries ofx
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occur in non-increasing order: fori < j, xi ≥ xj. Let P be the generalized sum Laplacian,

defined asP = D + A.

We start with two facts about quadratic terms of generalized Laplacians and sum Laplacians.

In the expressions below, letz be any real vector. First, the following fact is well known:

zT Lz =
∑

(i,j)∈E(G)

wij (zi − zj)
2 (2.3.2)

Second,

c
(
zT Lz

) (
zT Pz

)
= c

 ∑
(i,j)∈E(G)

wij (zi − zj)
2

 ∑
(i,j)∈E(G)

wij (zi + zj)
2


= c

 ∑
(i,j)∈E(G)

(√
wij |zi − zj|

)2 ∑
(i,j)∈E(G)

(√
wij |zi + zj|

)2
≥ c

 ∑
(i,j)∈E(G)

wij |z2
i − z2

j |

2

, (2.3.3)

wherec = 1
(zT Dz)2

, and the third line follows from the Cauchy-Schwarz inequality.

It is useful to give a high-level outline of the proof here before proceeding: we have just

shown that the product
(
xT Lx

) (
xT Px

)
provides a connection betweenxT Lx (which is the

weighted sum of squares of differences across edges) and a weighted sum of differences of

the squares of the values at the ends of edges. The second sum telescopes, and can be neatly

divided up in terms of subintervals of the the interval fromxi to xj. This will allow us to break

an edge up into a number of pieces corresponding to the number of thresholds (and hence cuts)

that it crosses. We will rewrite the last sum in (2.3.3) as a weighted sum of cut quotients to

prove the theorem. First an issue must be addressed. Any edge that crosses zero is a potential

problem for the application of telescoping. To resolve this we break the contribution of an edge

into (positive) contributions over subintervals. For an edge(i, j) crossing the zero point, the
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sum of the contributions could be bigger than the differencewij |x2
i − x2

j |. This could violate

the inequalities used to show the upper bound. Therefore it is useful to make two changes: we

shift the values ofx so thatxT = 0 whereT is the index intoV such that
∑T

i=1 di closest to

1
2
vol(G); and we modifyG by breaking any edge that crosses the zero point into two parts,

one part fromxi to a vertex with value zero, and one part from the zero vertex toxj; each of

these parts is assigned weightwij. The next section shows that these changes don’t affect the

preceding upper bound much.

Let G′ be the graph modified as specified in the previous paragraph;G′ has LaplacianL′.

Let z be any nonzero vector such thatzi ≥ zj for all i < j andzT = 0. Then with respect to

equation (2.3.2), zT L′z andzT Lz differ only in the terms for edges that go from some vertex

i < T to some vertexj > T . Note that for each such edge we have

(zi − zj)
2 = z2

i + z2
j − 2zizj > z2

i + z2
j = (zi − 0)2 + (0− zj)

2,

where the inequality holds becausezi and zj have opposite signs by our restriction on the

ordering ofz (the edge weight has been factored out of each expression). As the total degree

of G′ is greater thanG, zT D′z ≥ zT Dz, and thus we have

zT L′z

zT D′z
≤ zT Lz

zT Dz
(2.3.4)

for any such vector.

Now consider the shifted version ofx: Let y = x + α1 whereα = −xT . We have the

following:

yT Ly

yT Dy
=

(x + α1)T L(x + α1)

(x + α1)T D(x + α1)
=

xT Lx

xT Dx + 2αxT D1 + α2
∑

di

<
xT Lx

xT Dx
,

where the second equality follows from the restrictionxT D1 = 0 from the theorem statement,
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and from the fact that1 is the (simple) zero eigenvalue for any (generalized) Laplacian. Since

y meets the restrictions onz in the preceding paragraph, we can combine this result with

inequality (2.3.4) to get

yT L′y ≤ xT Lx

xT Dx
· yT D′y. (2.3.5)

We can perform a similar analysis forP ′, the sum Laplacian ofG′:

yT P ′y

yT D′y
≤ yT Py

yT Dy
=

yT (2D − L)y

yT Dy
<

yT (2D)y

yT Dy
= 2. (2.3.6)

thus

yT P ′y ≤ 2yT D′y. (2.3.7)

The first inequality follows from the fact thatL′ is positive semidefinite, and thaty is not

a multiple of the “all ones” vector, the only zero eigenvalue ofL′. Combining inequali-

ties (2.3.3), (2.3.5), and (2.3.6), we get

2 · x
T Lx

xT Dx
·
(
yT D′y

)2 ≥ (yT P ′y) (yT L′y) ≥

 ∑
(i,j)∈E(G′)

wij |y2
i − y2

j |

2

.

Since only nonnegative values are involved, we can take the square root of the terms above.

Further, since no edges cross the zero point, we can rewrite the summation to eliminate the

absolute value signs. This gives the following:

√
2
xT Lx

xT Dx
·
(
yT D′y

)
≥

∑
(i, j) ∈ E(G′)

i < j ≤ T

wij(y
2
i − y2

j ) +
∑

(i, j) ∈ E(G′)

T ≤ i < j

wij(y
2
j − y2

i ).

(2.3.8)

The rest of the proof essentially follows Mohar [Moh89]; for the application of the telescop-
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ing to work properly we must split the sum and processx inward from the endpoints. In this

fashion the last term of a sum isxT = 0, and thus only the degree terms appear in the sum.

We’ll actually only show the proof for the positive part of the vector, as the argument for the

negative half is symmetric.

We need some notation before we can finish the proof. Note that theyi’s may not be distinct.

Assume that there arek distinct values in the subvector consisting of entriesy1 throughyn, and

denote them ast1 > t2 > . . . > tk−1 > tk = 0. Let δVi be the total weight of the edges(k, l)

in G′ such thatyk ≥ ti andyl < ti; that is,δVi is the weight of the edges crossing the cut at

thresholdti. Let Vi = {j ∈ V (G′) | yj ≥ ti} (for simplicity of notation below, letV0 = ∅).

Consider the following calculation:

∑
(i,j)∈E(G′)

wij (y2
i − y2

j )

yT D′y
≥ 1

yT D′y

k−1∑
i=1

δVi (t2i − t2i+1) (2.3.9)

The first step in deriving equation (2.3.9) is the application of telescoping: Letyi = tl and

yj = tm. Theny2
i − y2

j =
∑m−1

i=l (t2i − t2i+1). This sum is regrouped with respect to the

differencest2i − t2i+1; each such difference is weighted by a factor equal to the weight of the

edges crossing that threshold.

Recall the definition of the normalized 2-cut, and letnci be the normalized cut that separates

Vi from the rest of the graph, and letnc∗ be the minimum normalized cut produced by the

vectory. The cost of a threshold cut can thus be stated as follows:

nci =
1

2

(
δVi

vol(Vi)
+

δVi

vol(V̄i)

)
. (2.3.10)

Note that, by the construction ofG′ andy, the values for thenci’s andnc∗ are unchanged if

the definitions are applied toG andx.
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Consider the following calculation:

∑k−1
i=1 δVi (t2i − t2i+1) + N

yT D′y
=

1

yT D′y

k−1∑
i=1

nci
2vol(Vi)vol(V̄i)

vol(Vi) + vol(V̄i)
(t2i − t2i+1) +

N

yT D′y

=
k−1∑
i=1

nci
2vol(V̄i)

vol(Vi) + vol(V̄i)

vol(Vi) (t2i − t2i+1)

yT D′y
+

N

yT D′y

≥ 1

Z

k−1∑
i=1

nci
2vol(V̄i)

vol(Vi) + vol(V̄i)

vol(Vi) (t2i − t2i+1)

yT D′y
+

N

yT D′y

=
tm∑
i=1

nci Pr(nci; y)

≥ nc∗
tm∑
i=1

Pr(nci; y). (2.3.11)

We useN to denote the portion of the sum constituted by the negative half ofy. As the

manipulations are symmetric the notation is simplified to reduce clutter. In the first line the

normalized cutnci is substituted for the cutδVi by multiplying through by a complicated

instance of1. The telescoping sum reappears as
∑k−1

i=1 vol(Vi) (t2i − t2i+1) =
∑k−1

i=1 y2
i di and

thus the ratio
vol(Vi) (t2i−t2i+1)

yT Dy
sums to1 over the entire vectory. To preserve the inequality

Z ≥ 1 must hold, we see this obtains as2vol(V̄i)

vol(Vi)+vol(V̄i)
> 1. This is accomplished by working

from the positive and negative extreme valuations ofy and then toward the origin. Thus the

smaller shore of the cut is always represented byVi and the larger as̄Vi. Finally, by applying

(2.3.8) we obtain the bound.

Corollary 1. The tightest bound on the normalized-cutnc(G) of a connected graph, givenL,

comes fromy | Ly = λ2Dy, whereλ1 = 0 < λ2 ≤ ... < λn. Thus

nc(G) ≤
√

2λ2.
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Quality of the Spectral Bound

Spectral methods are so named because the second smallest eigenvalueλ2 of thenormalized

Laplacian bounds the best cut obtained from a continuous vector. As shown above, the associ-

ated eigenvectors provide a means of obtaining a discrete solution that satisfies the eigenvalue

bound. The upper bound onΦ(G) is loose in general, as demonstrated by the pathological

graphs constructed by Guattery and Miller in [GM98]. While, guaranteedO( 1√
n
) cut bounds

were exhibited for planar graphs in [ST96].

Equation2.3.1has been studied in the context of image segmentation in the vision commu-

nity [SM00, YS03a] and clustering in the learning community [NJW02, XJ03]. In all cases a

standard spectral algorithm is used. The methods [SM00, YS03a, NJW02] differ primarily in

how the eigenvectors are used to find a feasible solution satisfying the constraints in Equation

2.3.1.

2.3.1 Generalizing the Cheeger bound fornck

The proof of Theorem2 can be extended to the case of ak−way normalized cut of the graphG.

Here we sketch out a high level summary of our strategy. The proof hinges onk−1 applications

of the Cheeger inequality to a series of sub-set restricted valuations of graph. The substitution

of a simple edge sum for a2−cut (see equation2.3.11) will be replaced with a busier term

encapsulating thek−way cut prior. Much like Theorem2 the tightest bound will correspond

to using theD−orthogonal vectors with smallest Rayleigh quotient,i.e. first k generalized

eigenvectors ofL, D. The requirement thatk− 1 vectors be used, rather thank− 1 successive

threshold cuts of Fiedler vector, is necessary to insure that both a sufficient number of threshold

exist and that balancing conditions are met.

Theorem 3. Let G be a connected graph with positive edge weights onn vertices with gen-

eralized LaplacianL. Given a set ofk vectorsX = {x1, ... ,xk} such thatxT
i Dxj = 0 the
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smallest normalizedk−cutnc∗k over successive threshold cuts ofX satisfies

nc∗k ≤
k∑

i=1

√
2
xT

i Lxi

xT
i Dxi

Proof Sketch. Apply the argument in the proof of the Cheeger constantk times. The critical

difference is that volume term, substituted into the calculation (2.3.11) must be modified to

the general form, for theith partition
k

Qk
j=1 6=i vol(Vj)Pk

j=1 6=i

Q
l<j,l6=j vol(Vj)vol(Vl)

vol(Vi). This term has multiple

peaks at1
k

terms rather than the peak at1
2

shown in figure2.3. The full set of eigenvectors, up

to λk must be used to insure that ak−way cut is made, required by theorem3.

2.3.2 Relating Isoperimetric Number and Normalized 2-Cut

In this section we relate the graphconductanceand thenormalized 2-cut of a graph. Below,

vol, is used to denote the sum of weighted edges associated with a set.

We begin by illustrating how thenc(G) andΦ(G) can be made to diverge in a graph depen-

dent fashion. Is the partitioning induced byΦ(G) optimal fornc(G)? Obviously, the answer

is no. A graph in which thenc(G) partitioning differs from theΦ(G) partitioning is show in

Figure2.2.

Lemma 2. The normalized 2-cut is bound by the conductance of the graph

nc(G) ≤ Φ(G).

Proof. For a graphG = (V, E, w) define the function∆(U) = vol(U,V \U)
vol(U)

on the subsets ofV .

Let V1 be the subset such thatΦ(G) = ∆(V1), andV2 = V \ V1. ThatΦ(G) is an upper bound

on ncopt is entailed by the following observation∆(V1) ≥ ∆(V2) asvol(V2) ≥ vol(V1). This

yields the following bound

Φ(G) =
1

2
(∆(V1) + ∆(V1)) ≥

1

2
(∆(V1) + ∆(V2)) ≥ ncopt (2.3.12)
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q*(V1)

nc*(V1)

Figure 2.2: In the above graphnc(G) = 1
2
(2

5
+ 2

14
) andΦ(G) = 3

8
. The green vertices above

constitute thencopt(V1) while the blue vertices constituteΦ(G)(V1). The normalized cut value
associated withΦ(G) isncopt < nc(Φ(G)) = 1

2
(3

8
+ 3

11
) and theq−valueΦ(G) < q(ncopt) = 2

5
.

Thus the two smaller partitions have no overlap and the conjecture is untrue.

as the optimalq-partitionV1, V2 provides an upper bound on the NCut value ofG

Theorem 4. There exists ac | 1
2
≤ c ≤ 1 such thatncopt = c · Φ(G).

Proof. Part 1,c ≤ 1, follows from lemma2. Part 2,1
2
≤ c, associate withΦ(G) the optimal

partition of vertices into two setsV1 andV2. Given such a partition we assume thatV1 is the

smaller without loss of generality. Define a subset ofV2, the interiorVI , as the set of vertices

that do not share an edge withV1. By looking at definition7 we see that edges may be added

arbitrarily toVI without effecting the valueΦ(G), nor the optimal value, while loweringncopt.

In limit this provides a lower bound onncopt as 1
2
Φ(G). This bound holds, as the a cheaper

cut than1
2
Φ(G) would imply that there exists aV ′

1 such that∆(V ′
1) < ∆(V1), which would

contradict the assertion thatΦ(G) is optimal.

Corollary 2. The best normalized cut value derived from a vectory associated withλ2, nc∗,

is bound by the second smallest eigenvalueλ2 of the normalized laplacian as

1

2
λ2 ≤ nc∗(G) ≤

√
2λ2

Proof. By applying lemma2 we havenc∗ ≤ Φ∗, we then apply Cheeger inequality toΦ

to obtainΦ∗ ≤
√

2λ2, thusnc∗ ≤ Φ∗ ≤
√

2λ2. The lower bound is entailed as half the
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Figure 2.3: A comparison of priors, the blue contour indicates the prior over cuts induced by
the normalized cut and the red that induced by the conductance.

lower bound on1
2
λ2 ≤ Φ∗. We tighten it to1

2
by applying Ky Fan’s dominance theorem over

contiguous eigenspaces.

Comparing the Conductance and Normalized Cut

The distribution over cuts induced by a vertex valuation (vector)y for nc2(G; y) is given in

(2.3.11), this differs from the distribution overφ giveny which isPr(φj y) = vol(Vi)∆i

yT Dy
. The

derivation of these two distributions suggests a natural randomized algorithm for achieving the

Cheeger bound (in expectation). The choice of a cut function acts like a prior over volume

terms on the distribution of feasible cuts iny. A comparative plot of the two volume priors is

shown in figure2.3.

For each of these cut functions we assign a probability that each edgee ∈ E(G) is in the

cut. Lete ∈ E(G) and letT (e) denote the set of indices for the threshold values that the edge

e spans iny. Thus the probability that an edge is in the “conductance cut” is computed as:

P (e ∈ δV ; φ,y) =
∑

k∈T (e)

V ol(Vk)
∆k

yT Dy
(2.3.13)
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in the normalized cut as:

P (e ∈ δV ; nc,y) =
∑

k∈T (e)

1

Z

2vol(V̄k)vol(Vk)

vol(Vk) + vol(V̄k)

∆k

yT Dy
. (2.3.14)

2.4 A Generalization of Fiedler’s Theorem

The following lemma is attributed to both Colin de Verdière and van der Holst. The following

bounds the number ofsigned connected componentsinduced in a graph by eigenvectors of

the Adjacency matrix. Here the same general lemma is provided for the generalized graph

LaplacianL(G).

Lemma 3. Let G = (V, E) be a connected graph, andλ an eigenvalue ofL(G) with mul-

tiplicity s such that there arer eigenvalues smaller thanλ. Let x be an eigenvector in the

eigenspaceλ, and leta, b, and c denote the number of connected components spanned by

supp+(x), supp−(x), andsupp(x) respectively.

Then:

1. c ≤ s

2. L has at leasta + b eigenvaluesλ‘|λ‘ ≤ λ.

3. a + b ≤ r + c

4. if x has minimal support, of all vectors in the span of theλ eigenspace thena+b ≤ r+1.

See Lov̀asz’s notes for an Algebraic Graph Theory course offered at the University of Wash-

ington in the Spring of 2005 for a proof.



Chapter 3

Spectral Segmentation

Now we turn our attention to “spectral segmentation”, also dubbed somewhat incorrectly as

NCutsin the vision community. We use spectral segmentation to denote the family of algo-

rithms that seek a segmentation of the image by processing the eigenstructure associated with

the image graph. These graphs are generally mesh-like in topology, as the pixel labels are

expected to be spatially coherent.

The image segmentation problem, and more generally clustering, can be formulated as a set

of m measurements{wij} onn observables defining an undirected graphG = (V, E, w) where

|V | = n and |E| = m. In this chapter we show that the spatially localized graph structure

used in image processing applications is reflected in the graph’s eigenvalues and eigenvectors.

All positive weightings of the graph topology share common properties in their eigenspaces.

This is in part a consequence of theorem3, which characterizes the numbersign connected

componentsan eigenvector of a generalized Laplacian may induce in the graph [Fie73, CdV90,

GG01] - i.e. over all positive weightings ofE(G).

Given an image, we definen image sites, again these could be picture elements, or features

associated with pixels, feature detection sites, or simply data-points in some space that we wish

to cluster. Given such a collection there are(n − 1)n/2 possible symmetric pairwise compar-

35
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Figure 3.1: Compute a set of generalized eigenvectors of the Laplacian of the graphG. The
row entries of these vectors are used to provide a coordinate for each vertex in the graph. The
vertex-points are then projected onto the unit sphere. These coordinates are partitioned, on the
sphere, usingk−means or random hyperplanes (through the center of the sphere)

isons. For large vertex sets, such as those found in image segmentation, all(n−1)n/2 pairwise

comparisons can not be represented in memory. The particular restricted set of comparisons

we choose to make will determine both the cost structure of our combinatorial cut problem

and may bias our relaxation toward particular cuts. In the following sections we will exam-

ine examples how these decisions affect both the optimal cut, with respect to measurement

confidence, and the output of standard spectral algorithms.

3.1 Spectral Partitioning

Before beginning it is worth recalling the standard spectral algorithm (analogous to that used in

[CGT94, SM00, NJW02, YS03a]). As a rule a small set of, sayk, eigenvectors of the Laplacian

(normalized or otherwise) with small eigenvalue provide an embedding of the graph vertices

in Rk. These points are then projected onto the unit sphere and clustered using a geometric

heuristic such ask−means or random hyperplanes. An illustration of the process can be found

in figure3.1. A MATLAB-script description of the algorithm follows.
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Algorithm §3.1Given a weighted graphG = (V, E, w), construct the matricesA, D, L and

return the partition indicator matrixP .

1. [G, Λ] = eigs (D−1/2LD−1/2, k)

2. F = D−1/2GΛ
−1/2
+

3. Vcoords = F./sqrt((F .2)1k)1T
k

4. P = round (Vcoords, k)

While this basic method lies at the heart of most spectral segmentation and clustering al-

gorithms there are a number of variations on the theme. Should one use the eigenvalues or

not? Some authors motivate the use of the1s vector [YS03a], recall that1T L1 = 0, while

most do not [CGT94, SM00, NJW02]. The routineround can be any number of geometric

clustering tools –e.g. k-means , alignment [YS03a], or random hyperplanes. The number

of partitions generated by each algorithm is generally determined by the engineer. However,

there is a great deal of literature on methods to automatically estimate this parameter (and oth-

ers) [RGDP01, TMVJ02, RLBB06]. Including multi-scale methods which provide a collection

segmentations for each data-set (e.g. [AG06]). In chapter 4 we suggest a method for selecting

eigenvectors and the number of clusters based on the differential structure of the eigenvalues of

the normalized Laplacian (see4.4.3). Notes on technical results on the behavior ofAlgorithm

3.1may be found in§2.3.

3.2 Spectral Segmentation of Images

The segmentation problem differs from traditional clustering in that the set of comparisons

between points (pixels, feature sites, etc) is fixed beforehand. In clustering, comparisons are

made in spatial neighborhoods of a metric feature space –i.e. determined by the data. In image

processing the graph structure is meant to enforce local label consistency in the image plane.

We will call this fixed set of edges, or comparisons, the topology of the graph.
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G H G   H

Figure 3.2: Left: the outer product graph,M = G ⊗ H, of the graphsG andH. Right: the
first two harmonic eigenfunctions ofL(M), D(M). Note, that each function is either a copy of
an eigenfunction ofG or H, (red and blue indicate positive and negative values respectively).

Thus the graphs used in image segmentation have mesh-like topology. That is, pixels are

wired to neighboring pixels in a regular fashion (although perhaps with a random sparsity pat-

tern). This highly localized topology can be contracted onto the mesh defined on a smaller num-

ber of vertices without loss of generality. Accordingly, we analyze the properties of weighted

4-connected meshes. Such mesh-like topologies affect both the optimal point of thecombina-

torial problem“normalized cut”, and therelaxed instanceof partitioning with eigenvectors.

3.2.1 The Mesh

Imagine an image of size220 × 400 pixels (roughly a9 : 16 ratio). As is standard practice,

we’ll wire up pixels to their neighbors in a4−connected lattice – called the mesh. How are the

low-frequency eigenspaces of the mesh affected by its topology? If we construct a mesh with

this aspect ratio what cut properties can we expect?

Before answering these questions we quickly introducegraph automorphismsandgraph

outer products (covered in detail in [GG01]). These tools allow us to analyze the eigenstruc-

ture of the mesh in terms of path graphsPn. For simplicity we will concern ourselves with

the eigenstructure of the combinatorial Laplacian,L = D − A, rather than that of the normal-

ized Laplacian. This choice lessons the complexity of the relationships between outer product

graphs and their eigenstructure. The results are essentially the same for the normalized case,
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i.e. solutions toLf = λDf rather thanLx = σx.

Definition 10. For graph G = (V, E) an automorphism is a permutation of the vertices

π : V → V such that if the edge(u, v) ∈ E(G) then(π(u), π(v)) ∈ E(Gπ).

The rectangular mesh has twoautomorphisms, as it is symmetric about its horizontal and

vertical axes. The square mesh has two additional automorphism, as the graph may be reflected

across the diagonals without altering graph connectivity.

Definition 11. Theouter product of two graphsG = (Vg, Eg) andF = (Vf , Ef ), H = G⊗F ,

defines a graphH whereH = (Vh, Eh). The vertex setVh = V (G) ⊗ V (F ) and edge set is

taken to be the union of all edges at vertex inG andF under the outer productV (G)⊗ V (F ).

Analogous to the operation suggested by figure3.2, our mesh may be constructed by taking

the graph outer product of two path graphsG = P220 ⊗ P400. As the mesh maybe constructed

in this fashion we might expect that it shares many properties withP220 andP400.

The graphH, H = G ⊗ F , inherits two main properties fromG andF . First the Lapla-

cian eigenvalues ofH consistent of, exactly, all unique pairwise combinations of the in-

dividual Laplacian eigenvalues ofG and F [Fie73]. Further, the eigenvectors associated

with these values inherit a great deal of structure as well. For example, the second small-

est eigenvalue of the mesh,Mnn′ = Pn ⊗ Pn′, is determined by the longer path graph

λ2(M) = min(λ2(Pn), λ2(Pn′)). Assuming thatn′ > n, this will beλ2(Pn′). The eigenvector

associated with this value consists ofn copies of the eigenvectorf such thatL(Pn′)f = λ2f .

The eigenvector associated withλ3(M) consists ofn′ copies ofg such thatL(Pn)g = λ2g.

These two eigenfunctions are depicted in figure3.2.

The eigenfunctions ofMnn′ are constrained by the automorphisms of bothPn′ andPn.

In our case, the automorphisms are reflections across the centers of the two underlying path

graphs. Note that applying such a permutation twice returns the vertices to their original or-

dering (i.e. a double reflection). In [GM98] the authors prove that the eigenvector of such a
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graph will be either symmetric or skew symmetric relative to every automorphism of the graph.

Given an automorphismπ every eigenvectorf | Lf = λf behaves asfi = fπi
or fi = −fπi

.

For example, figure3.2 the left valuation is same-signed over an “up-down” reflection and

flips sign over a “left-right” reflection. Each of the eigenvectors of the mesh will possess this

property.

Now that we known how the eigenstructure of the mesh is constrained by its underlying

generating paths, we can ask how this set of comparisons affects spectral algorithms. From

this point forward we’ll return to normalized Laplacians and state approximate bounds on the

behavior of the cut.

The Mesh: its Generalized Laplacian Eigenvalues and the Normalized Cut

The properties of the rectangular meshMnn′, both in terms of eigenvalues and cuts can be

expressed in terms of the aspect ration
n′

, wheren′ > n. Given an unweighted mesh it is clear

that the conductance of the graphΦ(M) = n
1
2
vol(M)

. In the following section we will analyze

the cutΦ and eigenvalues associated with theM under a simple re-weighting of the edges.

LetMnn′ denote the mesh defined asMnn′ = Pn ⊗Pn′. For simplicity assume thatn′ > n

and that bothn andn′ are even. LetMnn′(α) denote the weighted mesh, where the center

row consists ofn′ edges taking the weight{α | 0 < α ≤ 1}, and all other edges are unit. The

conductance ofMnn′(α) is given by

Φ(Mnn′(α)) = min

(
n

1
2
vol(Mnn′(α))

,
α · n′

1
2
vol(Mnn′(α))

)
. (3.2.1)

Therefore the conductanceΦ andnc2 are determined by testing the inequalityα < n
n′

.

Recall the Cheeger bound on the conductance of the graphΦ(G) given a threshold cut of the

graph induced by a vectory : V (G)→ R, , see Chapter 2 theorem2. The Cheeger inequality
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can be reversed to bound the Rayleigh quotient associated with a cut as

1

2
Φ(G; y)2 ≤ yT Ly

yT Dy
≤ 2Φ(G; y) (3.2.2)

for any vectory such thatyT D1 = 0. For the mesh, we wish to examine the relationship

between the two eigenfunctionsf |Lf = λ2Df andg | Lg = λ3Dg (as pictured in figure3.2).

As eigenfunctions of the matrix pencilL, D bothf andg satisfy the conditions ony in (3.2.2).

In the case of the unit weighted rectangular mesh, we can compute the valuesΦ(G), Φ(G; f)

andΦ(G; g) directly and use them to bound the eigenvaluesλ2 andλ3. By the definitions off

andg, given above, we arrive at :

1

2

(
n

1
2
vol(G)

)2

≤ λ2(L(G)) ≤ 2
n

1
2
vol(G)

(3.2.3)

1

2

(
αn′

1
2
vol(G)

)2

≤ λ3(L(G)) ≤ 2
αn′

1
2
vol(G)

(3.2.4)

wherevol(G) = 1
(4nn′+2n+n′+αn′−4)

.

The normalized cut and conductance switch to the longer horizontal cut exactly when0 ≤

α < n
n′

. To determine the behavior of the standard spectral algorithms we must examine the

bounds onλ2 andλ3. By inspection the lower bounds and upper bounds onλ2 andλ3 intersect

at n
n′

. This verifies that the combinatorial solution exchanges to theα−cut whenα < n
n′

.

The lower bound onλ2 and the upper bound onλ3 intersect at n2

2vol(Mnn′ )n
′ . This is the lowest

possibleα−value at which the vectorsf andg exchange position in the spectral index ofL, D.

Therefore the solution returned by the spectral algorithm may require thatα < n2

2 vol(Mnn′ )n
′ in

order to match the combinatorial optimal cut. This is because it uses the “wrong” eigenvector

to partitionG as f only spans cuts that are orthogonal to the optimal cut. In practice, we

observe that the spectral solution exchanges whenα / nθ

n′4
, whereθ =

(
n′

n

)2
.

The lag between the spectral solution and the combinatorial solution has significant prac-
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tical implications. First, we saw that the standard spectral algorithm may lag behind the true

combinatorial optimum by a significant amount. For example, in the meshM20,40(α), the

combinatorial solution switches from short to long axis whenα < 1
2
, where as the spectral so-

lution switches only whenα < 1
16

. In image processing applications this can be thought of as

a statement on how sharp the image derived edge weights must be to get the spectral algorithm

to match the NCuts criterion. This problem is illustrated by a seemingly trivial segmentation

problem in figure3.5. In the next section, we propose a method that mitigates the errors in-

troduced through this topological bias in spectral segmentation. Further complications arise as

mesh-like topologies produce sinusoidal functions in the eigenvector over regions of smooth

texture in the image plane. This follows from our observations on how the eigenvectors of the

graph are constrained by it’s topology. Thus a constant region of the image will produce a unit

weighted subgraph in the mesh – which tends toward a plane wave in the eigenvector (when

viewed as an image).

3.2.2 Expansion Augmentation

Expansion augmentation attacks the topological eigen-gap problem directly by constructing

sparse graph topologies with larger edge expansion. Intuitively, expanders are graphs that do

not possess small cut-sets. Concretely, will we call a graph an expander ifλ2(L) is sufficiently

large. An example of such a graph, and the partitioning it induces is shown in Figure3.5. As

the topology contains no sensible spatial cuts a priori, the image derived data (in the form of

edge weights) dominates the structure of the eigenvectors.

Recall that for a connected graph the generalized eigenvalues ofL(G), D(G) are bounded

and ordered as0 = λ1 < λ2 ≤ ... ≤ λn ≤ 2. Let GM4 = (V, EM, w) andGT = (V, ET ,1m)

denote the weighted mesh and the unweighted augmentation graph respectively. In terms of

our previous observations, asλ2(GT ) approaches the maximal possible value1 of λ2 ≤ 1 the
1Recall that the sum of the eigenvalues is equal to the trace of the matrix. For the normalized Laplacian,
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Figure 3.3: The original mesh is augmented with approximate 80 edges reducing the eigen-
gap λ3−λ2

λ2
by over 99%. The expansion augmentation edges are shown above in red, while the

initial mesh edges are shown in blue. The final number of edges in the augmented graph is
only about 5% more than in the mesh. The plot (right) shows the concentration in the first 9
(non-zero) eigenvalues as edges are added.

eigen-gapλk − λ2 on the graph tend to its minimum(0 if GT is allowed to be the complete

graphKn). This differs from mesh-reducible graphs which possess cheap spectral cuts [ST96]

and large eigen-gaps. In order to generate perceptually relevant segmentations large eigen-gaps

in spectrum of the unweighted mesh must be overwhelmed by the image induced weightingw.

Unfortunately, this is often too much to ask.

In practice the condition thatλ2(GT ) ≈ 1 is impractical in a sparse graph. Alternately, we

may fix a normalized eigen-gap thresholdλk−λ2

λ2
< θ. To obtain topologies that satisfy this

criteria we apply the expansion augmentation algorithm:

Expansion Augmentation Iteration Given a graphG = (V, E) augment the edge set ofG

until
(

λk(L)−λ2(L)
λ2(L)

)
< θ.

While
(

λk(L)−λ2(L)
λ2(L)

)
> θ, do

and associated co-spectral matrices, this value isn. A direct consequence of the definition ofL = D−1/2(D −
A)D−1/2 = In − D−1/2AD−1/2, thus trace(L) = trace(In) = n. It follows that no graph onn vertices has a
λ2 > n

n−1 by observing that
∑n

i=1 λi = n andλ1 = 0. Further ifG is not complete1 ≥ λ2.
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Figure 3.4: In clockwise order: the initial weighted mesh over the image pixels. An example
of random edge augmentation. Such edges are added at until the target eigenvalue bound
1
2

< θλ ≤ λ2(GT ) is obtained. The edge weight is computed via a “source-sink” cut between
the incident vertices (in dashed-blue) and normalized by a volume term. In contrast to the
inaccurate weighting obtained intervening contour cue, as the random edges may be long range.

1. Compute the partial eigenstructureLG = GΛk, and setF = D−1/2G.

2. Choose a random subsetS ⊂ V (G).

3. SetE(G) = E(G) ∪ argmax
(u,v)∈S

: ||F (u)− F (v)||2

end

We are guaranteed thatλ2(L) increases monotonically under this iteration by Rayleigh’s

monotonicity principle [Bol02]. In the limit, asGT tends towardKn we must achieve our

threshold,
(

λk(L)−λ2(L)
λ2(L)

)
< θ, as the eigenvalues concentrate with each iteration. This follows

by observing that the lower bound on the (non-zero) eigenvaluesλ2(L) increases and that the

sum of the eigenvalues is fixed. An example of the affect expansion augmentation procedure

has on the meshP20 ⊗ P40 eigenvalues is shown in figure3.3.
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Weighting the Expansion Edges

There are several possible ways to weight the new expansion edges. To maintain useful spatial

structure in the cut we must derive the edge weights by processing the weights in the underlying

mesh. The weighting procedure for the expansion edges breaks down into two steps. First a

minimum weight path onG is found for each edgeeij ∈ E(GT ). The path cost is computed on

a reflected set of edge weightsw′
ij = 1− wij, so that cheap paths correspond to heavy weight

paths inG. The average of this path inG with weightingw is then used to weight the expansion

edge. If the path costp(i, j; w′) > θp then a flow computation froms : i → t : j is computed

in G. The threshold,θp, amounts to finding at least one lightweight edge onG in p(i, j, w′). We

adopt this procedure for two reasons, the first is motivated by the approximation factor given

in [KRV06] and the second is due to the inaccurate weights obtained by intervening contour

computations on long range edges (see figure3.4).

Expansion Augmentation: Two Interpretations

There are two straightforward interpretations of expansion augmentation. The first is that we

are constructing an initial topology, defined over the image pixels, that has little preference

over partitions of the pixels (e.g.compare the eigenvector and value in figure3.5). This follows

from the near multiplicity in the low frequency eigenvalues ofL:{λ2, ... ..., λk′} for k′ << n

exhibited by augmented graphs. Thus the set of cuts spanned by the low frequency eigenspace

is large relative that of the mesh.

The second is that we are computing a path embedding of the expanderGT into our image

graphG. In this sense each expansion edge can be imagined as a query on the graph and its

eigenvectors. As noted by [GM98, LR04] spectral algorithms confuse long paths with small

cuts in the graph. Thus each expansion edge probes this very ambiguity. If a small cut exists

between the two vertices of the edge, the weight will be small. If instead no cheap cut exists,
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the weight will be large and the long path inG eliminated.

The expansion augmentation in effect is a lazy version of the near optimal expander em-

bedding algorithm of [KRV06]. In their work [KRV06] iteratively construct an expander forG

with weights proportional the flow between the the sitesvi & vj. They obtain an approximation

factor ofO(log2 n) for the “sparsest-cut” and the conductanceΦ of the graph (which is worse

than the best known ofO(
√

log n) [ARV04] but better than the spectral bound). As shown in

chapter 2 the conductanceΦ and the normalized cut are closely related quantities and so strong

approximations forΦ are likely to translate to the same for the normalized cut.

Computational Issues

The expander remedy faces several computational hurdles before becoming practical. The

first is that the edge embedding may still involve a large number of Max-Flow computations.

As there is regular geometric structure on the underling pixel graph efficient reuse of these

computations is possible [BJ06]. In our current experiments the augmentation weighting adds,

worst case, a computational cost ofO(|V |2 · |E|) – using a preflow-push algorithm. In the

worst case, this is prohibitively expensive for standard image sizes. The second has to do with

the sparse matrix representation ofGT , as an expander it may have large fill, and is not well-

ordered under the above sampling procedure (see [Dem97a] for details on sparse matrix fill).

This implies that matrix operations will be slow and memory use high. Improved orderings can

be sought forGT by looking at the vector associated withλ2(GT ) prior to weighting. Further,

given that most images fall into a small number of known sizes (or can be corrected to), it

is feasible to pre-compute a small set of augmented graphs{GT } with optimized fill orders

to improve compute times. Then given an input image, select the appropriate expander from

the set and perform the weight optimization. In the next section we hint at a complementary

approach to addressing the topological bias problem.
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3.2.3 Local vs. Global Geometry

The failure of the standard spectral algorithm hinges on the use of the eigenvector rows as

global coordinates for the vertices. This follows from the insight that the eigenvectors effect

the slowest possible oscillation on the graph. Expansion augmentation mitigates the affect of

this decision, but does not “solve” the problem. Thus Algorithm§3.1 acts as if the eigenspace

provides an embedding of the graph on a manifold. We know that such metricizations of the

graph involve using all the eigenvectors of the Laplacian simultaneously (see Euclidean Com-

mute Times in [Bol02]) or solving semi-definite programs with triangle inequality constraints

(e.g. [ARV04, GW95]). Unfortunately both of these optimizations are prohibitively expen-

sive for large graphs. As shown in3.5 the partition boundaries tend to occur on vertices with

near zero value in the eigenspace (gray is zero). This yields cuts in the smooth sign functions

demonstrating that the global coordinate interpretation of the eigenvectors is dangerous (in

general).

If instead we treat the the vertex coordinates as elements of local charts on some unknown

embedding of the graph, defined by the topology at each vertex, their utility is apparent. Intu-

itively we see that slow oscillations result in locally smooth charts, while coherent edge drops

result in locally structured charts, and that smooth oscillations around the origin are no differ-

ent than those at the extreme values. In the next chapter we develop the Spectral Rounding

algorithm as a means of using the eigenvectors in such a fashion.
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λ2 ≈ 2.0× 10−5 λ3 ≈ 5.0× 10−5 λ4 ≈ 6.0× 10−5 λ5 ≈ 7.0× 10−5

λ2 ≈ .00661 λ3 ≈ .00662 λ4 ≈ .00664 λ5 ≈ .00665

Exp. Vector Exp. Vector Mesh Vector Mesh Vector

λ2(G) ≈ 0.5× 10−4 λ3(G) ≈ 1.0× 10−4 λ2(M) ≈ 1.1× 10−5 λ3(M) ≈ 4.0× 10−5

Input Feature Image Expansion Cut Mesh Cut

nc(G) = 0.00005 nc(G) = 0.00125

Figure 3.5: The first row contains the first four harmonic eigenvectors of the unweighted mesh
220 by 400. The second row contains the first four harmonic eigenvectors of the unweighted
expansion augmented mesh. The normalized eigen-gap,λ5−λ2

λ2
, for the mesh topology is3.667

and0.006 for the expansion augmented mesh topology. Approximately 200 edges were added
to E(G) to obtain this ratio (i.e. |Ea| <

√
|E|). The third row contains the second (used

in partitioning) and third eigenvectors of the augmented mesh and mesh after edge weighting
with image data. The forth row contains the input data and obtained cuts. The normalized
cut values,nc(G), are reported for the original image weighted mesh. The expansion aug-
mented graph generates a superior cut on the underlying mesh. The intervening contour cue
was used to weight the edge based on the data in the Feature Image using the authors’ pa-
rameters [SM00, YS03a]. The weighted normalized eigen-gap ratios are2.25 (mesh) and0.13
(expansion augmented mesh).



Chapter 4

Spectral Rounding & Fractional Averages

The family of procedures, we termspectral rounding algorithms obtain discrete solutions to

the graph partitioning problem through minimizing a subset of the generalized eigenvalues of

graph Laplacians. In essence, spectral rounding reduces to the following, at each iteration a

small number of eigenvectors, with small eigenvalue, are computed and used to determine a

reweightingw′ for the graphG = (V, E, w).

We show the reweighting process induces a k-way multiplicity in thek smallest eigenvalues

of L – i.e. λi(L) = 0 for 1 ≤ i ≤ k. By obtaining a Laplacian with this nullspace property

we guarantee that the matrix representsk disconnected subgraphs, whose vertex membership

can be read off directly from the firstk eigenvectors. In this way a feasible solution to the

mathematical programming problem in Chapter 2§2.3 (2.3.1) can be obtained directly from

a spectral method without applying a standard geometric separator (as with the algorithm de-

scribed in Chapter 3§3.1).

The relationship between the Laplacianco− rank and the number of connected compo-

nents in made concrete in the following lemma.

Lemma 4. Given a graphG = (V, E, w) with generalized LaplacianL, the number of con-

nected components inG is equal to theco− rank of L.

49
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Proof. Recall that the quadratic formfT Lf for a vertex valuation{f | f : V → R} can

be written asfT Lf =
∑

i<j wij(f(i) − f(j))2. By observation it is clear that the valuation

(∀i) f(i) = 1 is in the kernel ofL. Now, assume thatG has exactly two connected components.

Call the two vertex sets associated with these connected componentsA andB. We may now

define two valuationsf andg such thatf(x) = 0 if x /∈ A and1 otherwise, andg(x′) = 0 if

x′ /∈ B and1 otherwise. The we see that two valuationsf andg are orthogonal asA ∩ B = ∅

by hypothesis. Further bothf andg lie in the kernel ofL. This follows from observing that no

non-zero weight edge exists between the two components ofG. The further generalization of

this property tok is obvious.

Corollary 3. For L such thatk = co − rank(L) > 1, k vectors may be chosen as a basis for

Ker(L) constituting a feasible point for the integer programming problem in§(2.3.1).

Proof. As vectors are orthogonal and non-negative, they may be normalized to beD−orthogonal

while still spanning theKer(L). This satisfies the orthogonality and normalization constraints

in program (2.3.1).

4.1 TheSR-Algorithm

For a graphG = (V, E, w0) prescribe the number of partitionsk that the edge cut is to yield.

Given a validreweighting scheme, iteration of theSR-Step produces a sequence ofN

weightings{w(N)} such that the graphGN = (V, E, wN) is disconnected intok components

by the weightingwN .

Algorithm 1 SR-Step(w: ||w||k > 0)

LetFk = [f1 ... fk] denote thek generalized eigenvectors of the matrix pencilL(G; w), D(G; w)

associated with thek smallest eigenvaluesΛk = diag([λ1 ... λk])

1. compute wr = R(Fk, Λk), set α = 1 & w′ = wr
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2. while ||w′||k ≥ ||w||k
α← 1

2
α, w′ = (1− α)w + αwr

3. return w′

The functionR computes a new weighting of the graph given the firstk eigenpairs ofL, D.

The norm|| · ||k is taken over weightings of the graph, such that||w||k = 0 iff the weighting

w disconnects the graph into at leastk pieces. A pairR, || · ||k is called areweighting

schemeif the SR-Step converges in a finite number of iterations. We define Algorithm 2, the

SR-Algorithm , as the iteration of Algorithm 1 until||w(N)||k u 0. In the following sections

we proposeRs and corresponding norms|| · ||k such that theSR-Step andSR-Algorithm

converge in the desired fashion.

4.1.1 Examples of Reweighting Schemes

For the sake of readability, a collection ofreweighting schemesare quickly defined for the

SR-Algorithm . The properties of these update schemes depend upon results in successive

sections, but a brief mention of the high-lights for each method is given below. In the following

Ψh(·) denotes the function that returns the height, on the unit circle, of stereographic projection

of the line onto the circle. The reweighting update is given for each edge(ij) ∈ E(G).

The reweighting schemes are listed in order of simplicity. Each successive scheme can

be thought of as augmenting its predecessor. The first two approaches and instances of the

third can be shown for converge (formally). The last two are more powerful and consistently

generate superior cuts when compared to the standard algorithm. The final reweighting scheme,

FAMR, is shown to make progress at each step and converges rapidly in practice. This scheme,

with the heuristic at the end of the chapter, was used to generate the results in Chapter 5.
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Inverse Reweighting

For ak−way cut, the updated weightswr and progress norm|| · ||k of the inverse reweighting

are defined as:

wr(i, j) = Ψh

(
f 2

i + f 2
j

(fi − fj)2

)
· w(i, j)

|| · ||k = λk

whereLfk = λkDfk. In §4.3.1the SR-Algorithm , underinverse reweighting, is shown

to converge on graphs with|| · ||k < 1. In the case of a 2-cut this reduces toλ2(L) < 1. The

class of graphs satisfying this spectral constraint is very general, excluding an uninteresting

collection of graphs for our purposes (known as expander graphs).

Offset Inverse Reweighting

For ak−way cut, the updated weightswr and progress norm|| · ||k of the inverse reweighting

are defined as:

wr(i, j) = Ψh

(
f 2

i + f 2
j + 2α2

(fi − fj)2

)
· w(i, j)

|| · ||k = λk

whereLfk = λkDfk. The convergence proof forinverse reweighting is adjusted to address

this case in§4.3.2. The eigenvalue bound onλk is weakened toλk ≤ .5857. This bound

is many orders of magnitude higher than we observe in image processing and data mining

applications.



4.1. THE SR-ALGORITHM 53

Mixed-valuation Reweighting

This update constructs an update vectorq fromk eigenvectors asq =
∑k

i=1 ωifi andω | qT Dq =

1 for 1 ≤ i ≤ k, Lfi = λiDfi. The vectorq is then used in either aninverse reweightingor

offset inverse reweightingupdate:

wr(i, j) = Ψh

(
q2
i + q2

j

(qi − qj)2

)
· w(i, j)

|| · ||k =
k∑

i=1

ω2
i λk.

The properties of this update rule are given in§4.4.1. The convergence results for the previous

methods can be directly applied to Mixed-valuation Reweighting, as it is a single vector update.

Fractional Average Multi-valuation Reweighting

For ak−way cut, the Fractional Average Multi-valuation Reweighting (FAMR) updated weights

wr and progress norm|| · ||k are constructed as:

wr(i, j) = Ψh

( ∑k
l=2 f 2

l (i) + f 2
l (j)∑k

l=2
1

λf
(fl(i)− fl(j))2

)
· w(i, j)

|| · ||k =

∑k
l=1 fT

l Lfl∑k
i=1 fT

l Dfl

.

This update rule allows the information used in a suite of eigenvectors to be used to determine

a single reweighting that drives down the fractional average of the eigenvalues. The vectorfl

is taken to satisfyLfl = λlDfl for the current matrix. At present global convergence results

for this reweighting are strictly empirical.
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4.2 Fractional Averages: a reweighting function

In this section we introduce thefractional average1 (definition 12) of a set of fractions and

demonstrate that the Rayleigh quotientfT Lf
fT Df

is a fractional average. The existence of a reweight-

ing of the fractions, composing a fractional average, that minimizes this average is shown in

lemma5. Such reweightings are connected to the eigenvalues ofL, D when the reweighting is

derived from an eigenvector in lemma6. These results are extended to multiple eigenvectors

in theorem6 and lemma13. The lemmas are then employed to prove that a simplified instance

of theSR-Algorithm convergences in theorem5 of §4.3. This basic convergence proof is

repeated for more complex example of theSR-Algorithm .

By lemma1 we saw that the Rayleigh quotient could be written as a sum of formal fractions

where the numerators are added separately from the denominators. Define aformal fraction

as a pair of real numbersa
b

and itsvalue as the real numbera/b. We call this average of a set

of formal fractions the fractional average. We now prove a few simple but important facts

about fractional averages.

Definition 12. Given formal fractions

a1

b1

, · · · , an

bn

thefractional average is the formal fraction

∑n
i=1 ai∑n
i=1 bi

where theai’s andbi’s are reals.

We will simply call formal fractions fractions and only make a distinction between the formal

1The fractional average is also known as the generalized mediant of a set of fractions. While optimizing
functions of the formwT a

wT b
falls into the category oflinear fractional programming[Boy04].
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fraction and its value when needed. In the case when theai’s andbi’s are nonnegative we first

observe that the fractional average is a convex combination of the fractions. That is we can

rewrite the sum as
n∑

i=1

bi

b̄
· ai

bi

whereb̄ =
∑n

i=1 bi. Thus fractional average lies between the largest and smallest fraction.

Possibly a more important interpretation is by viewing each fractionai

bi
as the pointPi =

(bi, ai) in the plane and the value of the fraction is just its slope. The fractional average is

just the vector sum of the points. Since we are only interested in the value of the fraction,

the slope, we will think of the fractional average as the centroid of the points. If we multiply

the numerator and denominator by a scalarw we shall say wereweighted the fraction by w.

Geometrically, we are scaling the vectors or pointsPi and then computing the centroid.

In the next lemma we show that we can control the slope of the fractional average by

reweighting the formal fractions.

Lemma 5. If a1

b1
≤ · · · ≤ an

bn
andw1 ≥ · · · ≥ wn then

∑n
i=1 ai∑n
i=1 bi

≥
∑n

i=1 aiwi∑n
i=1 biwi

The inequality is strict if for some pair1 ≥ i < j ≤ n we have thatai

bi
<

aj

bj
andwi > wj.

Proof. It will suffice to show that

∑n
i=1 ai∑n
i=1 bi

−
∑n

i=1 aiwi∑n
i=1 biwi

≥ 0 (4.2.1)

Multiplying the left hand side through by its denominators we get

∑
i,j

ajbiwi −
∑
i,j

ajbiwj =
∑
i,j

ajbiwi − ajbiwj (4.2.2)
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Observe that term wherei = j are zero. Thus we can write the sum as:

∑
i<j

ajbi(wi − wj) + aibj(wj − wi) (4.2.3)

Rearranging the last term in the sum gives:

∑
i<j

ajbi(wi − wj)− aibj(wi − wj) (4.2.4)

Finally we get:

∑
i<j

(ajbi − aibj)(wj − wi) (4.2.5)

By the hypothesis each term in the sum above is nonnegative which proves the inequality.

The strict inequality follows when one of the pair of terms in the sum are both positive as

prescribed in the hypothesis.�

We get an exact expression by observing that the only time we got an inequality was when

we cleared the denominators. Thus we have the following equation.

n∑
i=1

ai

n∑
i=1

biwi −
n∑

i=1

aiwi

n∑
i=1

bi =
∑
i<j

(ajbi − aibj)(wj − wi) (4.2.6)

To determine a reweighting, recall lemma1, which shows that the Rayleigh quotientfT Lf
fT Df

may be rewritten as the fractional average over the set of formal fractions given for each edge

in G. One of the simplest ways to get weights satisfying the hypothesis of lemma5, for such

a system, is to pickwi = bi

ai
= f(ui)

2+f(vi)
2

(f(ui)−f(vi))2
, if ai is not zero. We shall call thisinverse

reweighting. This reweighting scheme gives very large values for small values ofai. We have

found that using the stereographic map to normalized the inverse fractions between zero and

one works well.
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Observation 1. The stereographic projectionΨ : Rd → Sd preserves the order of points on

the real line, mapping points at∞ to 1 and points at0 to 0. Thus theinverse weight ordering

of the edge update values is preserved by the stereographic map.

If we think of theΨ as mapping points inRd to Rd+1, where we are only interested in the

value in thed + 1 dimension, then the images ofv ∈ Rd is vT v
vT v+h

≥ 0, h > 0. We useΨh

to denote the map which returns the value in this dimension (i.e. the “height” on the sphere).

As the Rayleigh quotientf
T Lf

fT Df
is scale invariant the reweighting is only sensitive to the rank

ordering of the edges which is preserved under the stereographic projection.

Corollary 4. The fractional average of a set Rayleigh quotients
{

fT
i Lfi

fT
i Dfi

}
may be minimized

by a single reweightingL′.

Proof. The proof follows by noting thatλi = ai

bi
=

fT
i Lfi

fT
i Dfi

. Thus lemma5 may be applied

to these fractions to decrease the fractional average. Thus the fractional average of fractional

averages may also be decreased.

4.2.1 From Rayleigh Quotients to Eigenvalues

Above in §4.2 we showed how, given a valuation or set of valuations of a graph, to reweight

the edges so as to reduce the Rayleigh quotient. In general this need not guarantee that if

the valuationf is an eigenvector with eigenvalueλ of the old graph then the corresponding

eigenpairf ′ andλ′ of the new graph will have the property thatλ′ ≤ λ.

Given a new edge weightingw′ such that the fractional average of an eigenvector is de-

creased, we show that there is a linear combination of the weights of the formw + t · w′ for

t > 0 such that the associated eigenvalue is also decreased. This yields an algorithm which

forces the target eigenvalue to zero. And motivates a matrix where the entries are linear func-

tions oft and the following lemma.
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Definition 13. Given two weightingsw andw′ ofG we define thematrix curve , a1−dimensional

family of matrices, as:

W (t) = W + tW ′

for t ≥ 0.

As a direct consequence of the scale invariance of the Rayleigh quotientfT Lf
fT Df

, any linear

combinationW (t) = W + tW ′ may be expressed as a convex combinationW (α) = (1 −

α)W + αW ′ on 0 ≤ α ≤ 1 (i.e. α = t
t+1

). The eigenstructure of normalized Laplacians

defined onW (α) andW (t) are identical by the scale invariance of the Rayleigh quotient.

Lemma 6. Given a weighted graphG = (V, E, w), matricesL andD, the simple eigenpair

(f, λ) | Lf = λDf , and a new weightingw′ such thatf
T L′f

fT D′f
< fT Lf

fDf
= λ then the derivative

of the eigenvalue function2 λ(t) on the matrix curveW (t) = W + tW ′ is well defined for small

t and
dλ(t)

dt
< 0

at t = 0.

Proof. For a simple eigenpair(f, λ), recall that fT Lf
fT Df

= λ, asW (0) = W and thusL(0) =

2The proof thatdλ exists follows from properties of the characteristic polynomial ofL, D and relies on the
implicit function theorem. Details can be found on the differentiability ofλ andf in Chapter 2, or in Lax [Lax97]
chapter 9.
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L, D(0) = D by definition. We deduce the bound ondλ
dt

with a simple calculation.

dλ(t)

dt
=

fT
(

dL(t)

dt
− λ

dD(t)

dt

)
f

fT DfT
(4.2.7)

=
fT (L′ − λD′)f

fDfT

{
dL(t)

dt
= L′

}
(4.2.8)

= fT (L′ − λD′)f (4.2.9)

= fT L′f − λfT D′f (4.2.10)

=

(
fT L′fT

fT D′f
− λ

fT D′f

fT D′f

)
fT D′f (4.2.11)

=

(
fT L′f

fT D′f
− λ

)
fT D′f (4.2.12)

=

(
fT L′f

fT D′f
− fT Lf

fT Df

)
fT D′f (4.2.13)

The bound is entailed by observing that 1) the termfT D′f =
∑

v∈V f 2(v)d′(v) is positive,

and 2) thus the sign ofdλ(t)
dt

is strictly negative due to the inequalityf
T L′f

fT D′f
< fT Lf

fDf
. The above

derivation demonstrates that the slopedλ(t)
dt

is negative att = 0. By the continuity ofλ there

exists at > 0 such thatλ(t) < λ(0). This insures that the eigenvalueλ associated withf can

be decreased algebraically using the procedure in§4.2on fractional averages.

To handle multiple eigenvectors one hope might be to simultaneously bound the derivatives

of the target eigenvalues{λ2, ..., λk} of L(t), D(t). To do this one arrives at the update criteria

for the re-weightingw′; select aw′ such thatf
T
i L′fi

fT
i D′fi

<
fT

i Lfi

fT
i Dfi

insuring thatλi(L(t)) < λi(L) for

2 ≤ i ≤ k. But in general this may be unrealistic since we must use the same weight per edge

for all the eigenvectorsfi. In the case where the aforementioned inequalities do not hold, we

determinew′ so as to decrease the fractional average of the Rayleigh quotients. The average of

the target eigenvalues tends to zero as a consequence of the decrease in the fractional average.
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4.3 Convergence and Termination of Reweighting Schemes

In this section we introduce two simplified reweighting schemes and demonstrate that they con-

verge to disconnected graphs. The target eigenvalue is taken to be thekth smallest eigenvalue

of the matrix. Recall that whenλk = 0 the weighted graph hask connected components. The

first scheme is theinverse reweighting for a single vector, associated with the target eigen-

value. The iteration is shown to terminate when the eigenvalue reaches zero thus cutting the

graph intok pieces. The second schemeoffset inverse reweightingcombines two valuations

in a single update, the constant vector1 | L1 = 0 and the target eigenvectorf | Lf = λkDf .

4.3.1 Inverse Reweighting

We begin by demonstrating convergence for the simplest update rule that which appliesinverse

reweighting directly. Under such a scheme the pairR and|| · ||k are specified as follows:

wr(i, j) = Φh

(
f 2

i + f 2
j

(fi − fj)2

)
· w(i, j) (4.3.1)

|| · ||k =
k∑

i=1

λk (4.3.2)

in this section theinverse reweightingscheme is shown to converge for a broad class of graphs.

In subsequent sections we often refer to functions of the fraction associate with each edge

(fi−fj)
2

f2
i +f2

j
as aδij update associated with the edge(ij) ∈ E(G).

Termination and Convergence

In order to prove that theSR-Algorithm converges to ak-way partition we first need to show

that each step ofSR-step terminates. Then we use this termination to show convergence.

To simplify the discussion we only consider one eigenvector. TheSR-Algorithm has two

majors steps. In the first step given a valuationf it computes a reweightingwr. We claim with
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a reasonable assumption about the Rayleigh quotient that

fT Lf

fT Df
>

fT Lrf

fT Drf
. (4.3.3)

at each step. Thus by lemma5 we know that equation4.3.3 is true as long as not all the

fractionsδij = (fi − fj)
2/(f 2

i + f 2
j ) are equal. We show that if the fractions are all equal the

Rayleigh quotient is at least one, contradicting how we construct affinity graphs.

Lemma 7. Let G = (V, E, w) be a connected graph andf a valuation such that all the

fractionsδij = (fi − fj)
2/(f 2

i + f 2
j ) are equal thenfT Lf

fT Df
≥ 1

Proof. Let f be a valuation ofG with Rayleigh quotientλ. Suppose allδij = (fi− fj)
2/(f 2

i +

f 2
j ) over all edges ofG are the same value. Observe that: 1)δij > 1 if the sign offi andfj

differ, 2) δij = 1 if fifj = 0, 3) δij < 1 if fifj > 0. If we are not case 3) then the value of each

fraction is at least one. Thus by lemma1 the Rayleigh quotient is at least one.

Lemma 8. Algorithm SR-step terminates for graphs such thatλk < 1

Proof. Follows from lemma6and Lemma7. Observe that eigenvectors ofL, D satisfyfT D1 =

0, and thusf changes sign over at least one edge inG. This eliminates case3 in lemma7.

By lemma8 we know that each step of procedure SR-step produces a new weighted graph

such that the norm|| ||k is strictly decreasing. We show that in fact the limit norm must be zero,

i.e. theSR-Algorithm converges.

Again for simplicity of the exposition we only consider the case of a single eigenvector. Let

Gi, Di, λi, andf i be theith graph, its degree matrix, its second eigenvalue, and eigenvector.

That isLif i = λiDif i. We also assume that eachf i is a unit length vector. Thus all the

eigenvectors all belong to a compact region inRn, the unit sphere. The Bolzano-Weierstrass

theorem dictates such a space contains an accumulation point, say,f . Let {f (i)} be a subse-

quence of eigenvectors that converge tof , and letG′,L′, D′, andλ′ be the corresponding graph,
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Laplacian, degree matrix and eigenvalue. The eigenvectors converge tof and the eigenvalues

converge to some valueλ. To insure that the graph also converges to a unique graph we apply

the Bolzano-Weierstrass theorem again to the weighted graphs which belong to a compact set

in Rm. Thus, we may also assume the graphs and degree matrix converge toG′, L′, D′, andλ′

such thatL′f ′ = λ′D′f ′.

Theorem 5. The limit of the sequence of{λ(i)}, as defined above, converges toλ = 0

Proof. Suppose thatλ′ > 0. We know by lemma8 that if we runSR-step onG′ we will get

a new graph withλ′′ < λ′. Let ε = λ′ − λ′′. We can also runSR-Step on eachGi′ getting a

new eigenvalueλi′′. Let εi = λi′ − λi′′. SinceSR-step is a continuous function inGi′ and

f i′ we get that theεi converge toε. For sufficiently largei it follows that εi ≥ ε/2. But this

implies thatλi′ goes to−∞ which contradicts the fact the they a bounded below by zero.

Random Walks and Convergence

The eigenvalue bound entailed by lemma8 has a natural interpretation in terms of random

walks on weighted graphs. Given thatλ2(L) = 1 is the largest value a less than complete

graph can take, this is a very small set of weighted graphs. Recall the Cheeger bound on the

normalized cut from Chapter 2,λ2(L) ≤ 2Φ(G). In table2.1 (Chapter 2) the eigenvalues of

the normalized LaplacianL are shown to be reflected and shifted eigenvalues of the transi-

tion matrixT = D−1A. For non-bipartite graphs, the mixing time onT is a proportional to

λn−1(T ) = 1− λ2(L). So asλ2(L) approaches1 the mixing time tends to zero. In terms of a

cut, we see that there exists an optimal subset of verticesV∗ associated with the conductance
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numberΦ(G) and thus

λ2(L) ≤ 2Φ(G) (4.3.4)

1 ≤ 2
δV∗

vol(V∗)
(4.3.5)

vol(V∗) ≤ 2δV∗ (4.3.6)

δV∗ + ιV∗ ≤ 2δV∗ (4.3.7)

ιV∗ ≤ δV∗ (4.3.8)

whereιV∗ denotes the volume of the internal edges ofV∗. In terms of a random walker, this

inequality indicates that every subset ofV with less than half of the transition probability mass

has an emittence probability of at least1
2
. Therefore a random walker leaves any such subset

roughly half the time at each step. Graphs with largeλ2 values are termed expander graphs

and pop-up in the study of communication networks, rapidly mixing times of markov chains,

as well as a host of other applications.

4.3.2 Offset Inverse Reweighting

We now state an alternativeδij update rule and prove convergence and termination of the re-

sulting reweighting scheme. Recall that if we wish to break the graph intok pieces we must

drive thekth eigenvalue to zero. We begin by fixing the followingreweighting scheme, define

f | Lf = λkDf whereλk is thekth smallest generalized, let

wr(i, j) = Φh

(
f 2

i + f 2
j + 2α2

(fi − fj)2

)
· w(i, j) (4.3.9)

|| · ||k = λk. (4.3.10)
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Figure 4.1: Left: an illustration of shifted formal fractions producing a constant slope (update
value). The offset2α2 is given in red and maps the slopes corresponding to the blue points to
the green co-linear points (i.e. the green points produce a constant update fractionδij for all
edges). Right: the eigenvalueλ2(L) with respect to the length ofiso-δ valuation weighted
line. As |V (G)| → ∞ the eigenvalue is bound asλ2 > .5857.

The termα is taken to be1/
√

vol(G), which can thought of as an entry in the normalized1s

vector (associated withλ = 0). We now show that this scheme converges, in the desired sense,

on a large set of graphs (in essence we must exclude a larger class of expanders than in§4.3.1).

At a high level it’s worth motivating the use of (4.3.9) over (4.3.1). In particular what deficit

in (4.3.1) does it correct? It is clear that reweighting according to (4.3.1) will most aggressively

down-weight edges that span0 in the valuationf (i.e. fifj < 0). Immediately a number

of graphs come to mind where this property is undesirable. For example, a symmetrically

weighted odd-length path graph with a heavy-weight edge at the center will yield a suboptimal

2-cut under (4.3.1) but not (4.3.9). This is becauseλ2 eigenvector of the path graph crosses

zero at the center edge for such a weighting. The update rule in (4.3.9) biases toward cutting

edges with large gap(fi − fj)
2 and high magnitudef 2

i + f 2
j .

The following lemmas and definitions will be combined to supplant lemma7, and allow

the remaining technology in the previous section to be employed to demonstrate convergence.

Their purpose is to establish the greatest lower bound ofλk = 0 on theSR-Algorithm . To

do so we establish that the update rule only admits constant offset fractions, over allδij as show

in figure4.1, for connected graphs with large eigenvalueλ > .5857. We will call functions of
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the formf : V (G) → R, vertex valuationsand those that produce a constant updateδij at

each edgeiso−δ valuations of the graph. These valuations are exactly the fixed points of the

spectral rounding algorithm.

Corollary 5. The Rayleigh quotientf
T Lf

fT Df
is invariant to a uniform rescaling of the weighting.

Proof. A direct consequence of the lemma1 in Chapter 2�

With the above corollary, we may choose a global scale forw such that
∑n

i=1 di = 2, and

by a simple calculation verify that2α2 = 1, simplifying the reweighting scheme. The second

degree of freedom that we fix in (4.3.9) is the norm off | fT Df = 1. While this has no effect

on the Rayleigh quotientf
T Lf

fT Df
, this scaling has a dramatic effect on (4.3.9).

Having fixedα and the scale off it is possible to derive aniso−δ valuation f : V → R,

such as that shown in Figure4.1, for a weighted path graph. Given such anf , a weighting of

the path graphG may be constructed satisfyingL(G)f = λ2D(G)f . We will show that the

weights drop off exponentially as one walks from the center to end of the line, dictating that

the weighted path is an expander graph. Further, from the properties off we can bound the

eigenvalueλ2 for paths or arbitrary length.

Constructing an iso−δ valuation for the path graph

Claim 1. Given the update equationδij with 2α2 = 1 a vertex valuationf can be constructed

such that the fractionδij is constant for all edges in the graph.

For the weighted path graph onn vertices it is possible to construct aniso−δ valuation f

insuring that for all edges(i, j) the updateδij = c. For simplicity we assume thatn is odd and

number the vertices, over the integers−bn
2
c to bn

2
c, as the path is odd lengthf0 = 0. Givenf0

there must be an offsetε so thatf1 = f0 + ε. Thus we can write down the first update value, to
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the right, as

ε = ±
√

2α2
√

δ√
1− δ

(4.3.11)

or more generally

δi,i+1 =
(fi − fi+1)

2

f 2
i + f 2

i+1 + 1
=

ε2
i+1

f 2
i + (fi + εi+1)2 + 1

(4.3.12)

the valuationfi+1 can be written as

fi+1 = fi + εi+1 = fi ±
δfi +

√
δ (1 + 2f 2

i − (1 + f 2
i )δ)

|δ − 1|
(4.3.13)

aniso−δ valuation can be constructed by applying this recurrence, starting at the center of the

line and moving toward the end points. We note that theiso−δ valuation grows exponentially

as the above recurrence is strictly greater thanfi > ε1(i + 2ε2
1)(1 + 2ε2

1)
i−1, for i > 0, which

grows exponentially with the length of the path.

Claim 2. A weighting of the path graph, with LaplacianL and degree matrixD, can be derived

from a vectorf such thatf | Lf = λ2Df

Again, for simplicity assume the path is odd length. The weighting can be computed directly

from f as the equationLf = λDf fully constrains the weighting of the line. The valuationf

is minimal, over the set{f | fT D1 = 0}, as it is the unique vector that breaks the path into

exactly two pieces. Letw1 = 1 denote the edge linking the center vertexv0 and it’s neighbor

f1. Starting at the center we can work out the form ofw2 asw2 = w1 · f1(1−λ)−f0

f2−f1+λf2
, which can

be generalized as the recurrence

wi = wi−1 ·
(1− λ)fi − fi−1

fi+1 − (1− λ)fi

(4.3.14)

as the term(1−λ)fi−fi−1

fi+1−(1−λ)fi
is positive, it is less than1, and thus the weights exponentially decay
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with the length of the line.

Proposition 1. An iso δ−valuation weighted line graph has an eigenvalueλ2 > .5857, inde-

pendent of length.

The above proposition was determined from a numerical optimization (see table4.1 for an

illustration of the asymptote). The bound hinges on the relationship between two free param-

eters 1)vol(G) = 2 and 2)fT Df = 1. Given a fixed graph volume and vector normalization

a suitable slopeδij must be determined such that all edge weights are strictly positive and the

valuationf has proper norm. Under these assumptions, for pathsPn wheren > 7, δ > .2928

to produce a valid weighting and thus theλ2 > .5857 asvol(G) =
δij

λ
.

From paths to general graphs

We now define the relationship betweeniso-δ valuationsof general graphs and such valuations

of the path. This following statements relate a graph which admits aniso-δ valuation to the

path graph and equates the eigenvalues of the former with latter.

Lemma 9. Given aniso−δ valuation f for a connected graphG the following properties hold

I . for all vertices(u, v) ∈ E(G) wheref(u) > f(v) thenf(u) = f(v) + ε(f(v)),

II . for two verticesv andu where(u, v) ∈ E(G) thenf(u) 6= f(v),

III . graphs with cliques of size3 or greater do not admit iso−δ valuations.

Proof. We prove the properties for theith + 1 term, which is assumed to satisfyfi+1 ≥ fi

w.l.o.g. PropertyI follows from the observation that equation4.3.12admits a unique positive

solution forεi+1 in terms of the known quantitiesfi andδ. This property dictates that every

edge is between vertices spanning exactly one threshold inf . PropertyII is simple to observe,

as all the fractions would equal0 and asG the orthogonality conditionsfD1 = 0 prevents

this. PropertyIII depends onI andII . By PII we have that each valuation in the clique must
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be unique. By PI we establish a contradiction. Label the vertices of clique asa, b, andc using

PI and PII we may assume thatf(a) < f(b) < f(c). The unique monotonicity of the edge

equations contracts this ordering relationship, demonstratingIII for the minimal case.

The next lemma shows that aniso-δ valuation of a graphG provides a mechanism by which

the graph can be collapsed onto the path graph without loss of generality. Further, that the

eigenvalue of the line is a lowerbound on the eigenvalue of the graph.

Lemma 10. Given an iso−δ valuationf of a graphG such thatLf = λDf then a line graph

G′ may be constructed such thatL′f ′ = λD′f ′.

Proof. We begin by demonstrating that the thesis holds for a contraction of two vertices with

the same value inf . w.l.o.g. assume that these vertices are associated with the least valued

vertices off and order the graph accordingly, generality holds as this is accomplished by

permuting the associated matricesL andD. We expandLf = λDf to clarify our assumptions



d1 0 −w1,i . . .

0 d2 −w2,j . . .

. .

. .

. .

.





a

a

b1

.

.

.


= λ



d1 · a

d2 · a

d3 · b1

.

.

.


. (4.3.15)
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For the first vertex, rewrite the constraint equationLf = λDf as

d1 · a− λd1 −
∑
vi∼v1

w1ibi = 0 (4.3.16)

(a− λa)
∑
vi∼v1

w1i −
∑
vi∼v1

w1ibi = 0 (def. ofd1) (4.3.17)

(a− λa)
∑
vi∼v1

w1i − b
∑
vi∼v1

w1i = 0 (iso−δ hyp.) (4.3.18)

(a− λa− b)
∑
vi∼v1

w1i = 0 (4.3.19)

analogously the linear constraint forv2 can be written as(a − λa − b)
∑

vj∼v2
w2j = 0. The

replacement of thebis with b is a direct consequence ofP I in Lemma9. Thus we see that

the constraint applies only to the weighted degrees,i.e.
∑

vi∼v1
w1i =

∑
vj∼v2

w2j. DefineL′

andD′ as the graph withv1 andv2 contracted tov′1, removing double edges. The contraction

reduces to adding the first two rows and dividing by two, which preserves the total weight

constraint and thus the eigenvector equationL′f ′ = λD′f ′ preservesλ.

We now handle the next contraction, along the order induced byf . The only novel term

introduced is the backward edge to the previously contracted layer. We drop the′ notation to

simplify the expressions. We have

(b− λb− c)
∑
vi∼v2

w2i − a · w21 = (b− λb− c)
∑

vj∼v3

w3j − a · w31 (4.3.20)

as the weightsw21 andw31 may be taken to be equal the lower diagonal terms cancel and

the previous argument applies. This operation is repeated along the ordering induced byf ,

producing a line graph with matricesL′ andD′ such that ifLf = λDf thenL′f ′ = λD′f ′.
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Tying it all together

The results in this section foroffset inverse reweightingdemonstrate that graphs with diameter

greater than7 and eigenvalues such thatλk < .5857 must converge to ak−way cut under the

SR-Algorithm . Further lemma9 demonstrates thatconnectedgraphs containing theKp

minor with p > 2 have no fixed points under the reweighting scheme. Thus we may use the

lemmas in this section of supplant lemma5 and apply the remaining technology in§4.3.1to

prove convergence without modification.

4.4 Multiple Eigenvectors

Combining multiple eigenvectors into a single update is appealing as one can imagine that

lower frequency data is important in regularizing the cuts. In lemma13 we proved that the

fractional average of fractional averages drives the sum of the target eigenvalues down. This

update rule can be applied to reweight the graph. In§4.4.3we detail a heuristic for choosing a

subset of eigenvectors with which to reweight the graph, based on the differential and structural

properties.

4.4.1 Mixed-valuation Reweighting

Mixed-valuation Reweighting updates (MVR) constructs an update vectorq whereq =
∑k

i=1 ωifi

and ||ω|| = 1. The vectorq is then used in either aninverse reweightingor offset inverse

reweighting update:

wr(i, j) = Ψh

(
q2
i + q2

j

(qi − qj)2

)
· w(i, j)

|| · ||k =
k∑

i=1

ω2
i λk.
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Given a valuationq such thatq
T Lq

qT Dq
≤ 1

k

∑k
i=1 λk – i.e. q =

∑n
i=1 ωifi and||ω|| = 1. We can

obtain a reweightingL′ using the standard rules for fractional averages such that

qT L′q

qT D′q
<

qT Lq

qT Dq
. (4.4.1)

The existence of a such a reweighting following from lemma5. As in previous sections (see

lemma6) we define a matrix curveA(t) = A + t · A′ and connect its eigenvalues to those of

L(0) = D−A, D(0) = D. We now show that anω−weighted average of the eigenvalues must

decrease for sufficiently smallt, bounding their derivative by0.

Theorem 6. Given a weighted graphG = (V, E, w) matricesL andD, a set ofk−eigenpairs

Lfi = λiDfi such thatλi 6= λj, and a new reweightingw′ such that qT L′q
qT D′q

< qT Lq
qT Dq

=∑k
i=1 ω2

i λi whereq =
∑k

i=1 ωifi and ||ω|| = 1. Then there exists a mixtureω, such that

the derivative of
∑k

i=1 ω2
i λi along the matrix curveW (t) = W + tW ′ is bound as

k∑
i=1

ω2
i

dλi(t)

dt
< 0

for smallt.

Proof. To begin we note that,

qT (t)L(t)q(t)

qT (t)D(t)q(t)
=

n∑
i=1

ω2
i

fT
i (t)L(t)fi(t)

ωT ω
(4.4.2)

=
k∑

i=1

ω2
i λi(t) (4.4.3)

where we assume thatfT
i (t)D(t)fi(t) = 1 w.l.o.g.– the above reduction directly follows from
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lemma11. Given4.4.3we may apply the derivative operator and obtain

d

d t

[
qT (t)L(t)q(t)

qT (t)D(t)q(t)

]
=

k∑
i=1

ω2
i

d λi(t)

d t
(4.4.4)

=
k∑

i=1

ω2
i

(
fT

i L′fi

fT
i D′fi

− fT
i Lfi

fT
i Dfi

)
fT

i D′fi (4.4.5)

=
k∑

i=1

(
ω2

i

fT
i L′fi

fT
i D′fi

− qT Lq

qT Dq

)
fT

i D′fi . (4.4.6)

The bound follows as there must exist anω such that
∑k

i=1 ω2
i

fT
i L′fi

fT
i D′fi

< qT Lq
qT Dq

, given that

qT L′q
qT D′q

< qT Lq
qT Dq

. For example, any of the indicator vectorsω = ei will suffice by lemma6 as

will perturbations about those vectors by continuity. Thus we may take the average difference

in 4.4.6to be negative and the bound obtains. As all the eigenvalues are continuous along the

matrix curve (by theorem7) there must exist ant such that
∑k

i=1 ω2
i λi(t) <

∑k
i=1 ω2

i λi(0).

Lemma 11. If q =
∑k

i=1 ωifi, where allfi satisfyLfi = λiDfi, D−1L has simple structure

and||ω|| = 1, then

qT Lq

qT Dq
=

k∑
i=1

ω2
i λi (4.4.7)

Proof. From lemma12 (4.4.7) simplifies to
Pk

i=1 ω2
i fT

i LfiPk
i=1 ω2

i fT
i Dfi

as the basis ofq is both L− and

D−orthogonal. We may choosefT
i Dfi = 1 for all i w.l.og. simplifying (4.4.7) to

∑k
i=1 ω2

i f
T
i Lfi =∑k

i=1 ω2
i λi verifying the hypothesis.

Lemma 12. Given vectorsf andg, satisfyingLf = λDf andLg = λ′Dg whereλ 6= λ′, then

gT Lf = fT Lg = 0, gT Df = fT Dg = 0.

Proof. The conditionsfT Lg = gT Lf andfT Dg = gT Df follow from the symmetry ofL and
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D. TheirL−orthogonality andD−orthogonality is shown in the following calculation

fT Lg = λ′fT Dg, gT Lf = λgT Df (by hyp.) (4.4.8)

λfT Dg = λ′gT Df (by sym ofL) (4.4.9)

λfT Dg = λ′fT Dg (by sym ofD) (4.4.10)

For the final equality to holdfT Dg = gT Df = 0 by hypothesis asλ 6= λ′. Given that

fT Dg = 0 this implies thatfT Lg = 0 asfT Lg = λ′fT Dg = 0.

We include “Theorem 12” from [MN99] on the derivatives of multiple eigenvalues. The

result is attributed to Lancaster, and pertains to the eigenvalues of matrix curvesA(t) ∈ Rn×n.

Three assumptions are made on the curveA(t): 1) the elements ofA(t) are analytic functions

of in some neighborhood oft = 0, 2) the matrixA(t)t=0 hassimple structure3, and 3) ifλ(t)

is an eigenvalue ofA(t) thenlimit
t→0

λ(t) = λ(0)

Theorem 7. If dqA(t)
dt

is the first non-vanishing derivative ofA(t), then then eigenvaluesλ(t)

of A(t) are differentiable at leastq times att = 0 and their firstq − 1 derivatives all vanish at

t = 0.

See [MN99] for a proof of Theorem7.

Convergence of Mixture Valuation Schemes

Assuming the generalized Rayleigh quotientqT Lq
qT Dq

satisfies the eigenvalue constraints in§4.3.1

on inverse reweightingthen the remaining proof technology may be applied. Alternatively, we

my applyoffset inverse reweightingwith assured convergence if the conditions in§4.3.2are

met. The convergence proof is further complicated if we allowω to change over the sequence

of iterations. By the Bolzano-Weierstrauss theorem a sequence{ωN} converges as||ω|| =

3A matrix hassimple structure if all of its eigenvalues are simple. The eigenvalues have only linear elemen-
tary divisors.
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1. In the next section we describe two possible ways to updateω between iterations of the

SR-Algorithm .

Optimizing the mixture coefficients of q

An intuitively appealing update for the entries ofω is the reciprocals of the corresponding

eigenvalues. That is, let̂ωi = 1√
λi

andω = 1
||ω̂||2 ω̂. A potentially more powerful update to the

entries ofω comes from working with the differentials ofqT Lq with respect toωi.

The differentials ofO(q) = 1
2
((qT D′q)(qT Lq)− qT L′q) w.r.t ωi, subject to||ω|| = 1 can be

written as:

∂Ouv

∂ωi

= wuv

(
k∑

i=1

ω2
i (fi(u)− fi(v))2 + ωi(fi(u)− fi(v))(q2(u) + q2(v))

)

−
(

(fi(u)− fj(v))(q(u)− q(v)) +
∂w′

uv

∂ωi

(fi(u)− fj(v))(q(u)− q(v))

)
(4.4.11)

recall thatw′
uv = ŵ′

uv

ŵ′
uv+1

, whereŵ′
uv = (q2(u) + q2(v))/(q(u)− q(v))2. With the second order

terms (which we omit) a standard Gauss-Newton iteration can be employed, optimizing the

mixture coefficientsωi so as to maximizeO. By maximizingO we move in the direction of

steepest descent with respect to the mixture of the eigenvalues
∑k

i=1 ω2
i λi(t). By lemma 5 and

lemma 7 theO(q) is strictly positive and bounded.
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4.4.2 Fractional Averages of Fractional Averages

For ak−way cut, the updated weightswr and progress norm|| · ||k are constructed as:

wr(i, j) = Ψh

( ∑k
l=2 f 2

l (i) + f 2
l (j)∑k

l=2
1

λf
(fl(i)− fl(j))2

)
· w(i, j)

|| · ||k =

∑k
i=1 fT

i Lfi∑k
i=1 fT

i Dfi

.

This update rule allows the information in a suite of eigenvectors to be used to determine

a single reweighting that drives down the fractional average of the eigenvalues. The above

notation is a bit overloaded, asfi is taken to satisfyLfi = λiDfi for the current matrix.

At present global convergence for this reweighting is not proven. We note that the updating

is analogous to (MVR) where the numerator and denominator are allowed to have different

mixture coefficients. In practice we observe that this method converges to a disconnected graph

in a small number of iterations (less than 10 for most image derived graphs). This reweighting

scheme was used in to obtain the results in Chapter 5 (see figure5.3for the effect of an iteration

on the eigenvectors). The following lemma demonstrates that the above reweighting scheme

drives the target eigenvalues down.

Lemma 13. For a weighted graphG = (V, E, w) with matricesL andD and simple eigenpairs

(f, λf ) | Lf = λfDf and(g, λg) | Lg = λgDg, given a reweightingw′ such that

1
λf

fT L′f + 1
λg

gT L′g

fT D′f + gT D′g
<

1
λf

fT Lf + 1
λg

gT Lg

fT Df + gT Dg
= 1 (4.4.12)

then
dλf (t)

dt
+

dλg(t)

dt
< 0

at t = 0.

Proof. We begin by stating a related quantity of interest, the derivative of the fractional average
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of Rayleigh quotients onf andg for the matrix curvew = w + t · w′ as:

d

dt

[
1

λf
fT (t)L(t)f(t) + 1

λg
gT (t)L(t)g(t)

fT (t)D(t)f(t) + gT (t)D(t)g(t)

]
(4.4.13)

and examine its derivative centered att = 0. First we must fix the scale of the eigenvectors

f(t) andg(t), we choosef(t)T D(t)f(t) = g(t)T D(t)g(t) = 1 w.l.o.g. Thus equation4.4.13

simplifies to

d

dt

[
1

λf
fT (t)L(t)f(t) + 1

λg
gT (t)L(t)g(t)

1 + 1

]
=

1

2

(
1

λf

d

dt
λf (t) +

1

λg

d

dt
λg(t)

)

by the linearity of the derivative. Substitute the functional form ofdλ(t)
dt

and obtain

1

2

(
1

λf

d

dt
λf (t) +

1

λg

d

dt
λg(t)

)
=

1

2

(
1

λf

fT (L′ − λfD
′)f +

1

λg

gT (L′ − λgD
′)g

)
(4.4.14)

assume the bound holds on equation4.4.14, thus

1

2

(
1

λf

fT L′f − λf

λf

fT D′f +
1

λg

gT L′g − λg

λg

gT D′g

)
< 0(

1

λf

fT L′f − fT D′f +
1

λg

gT L′g − gT D′g

)
< 0 (4.4.15)

arriving at

1

λf

fT L′f +
1

λg

gT L′g < fT D′f + gT D′g

which is equivalent to the hypothesis in equation4.4.12. The remainder of the proof follows

the continuity argument in lemma6.
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In lemma13 we proved that the fractional average of fractional averages drives the sum of

the target eigenvalues down. This update rule can be applied to reweight the graph, and is

highly effective (as shown in Chapter 5). At present, we observe that the method convergences

to a disconnected graph empirically. If an intermediate fixed point were to arise, any of the

previously covered methods could be applied for an iteration to break the symmetry across the

edges.

4.4.3 Heuristics for Choosingk < k′ << n

In this section we detail a heuristic for choosing a subset of eigenvectors with which to reweight

the graph, based on their differential and structural properties. The problem of choosing which

eigenvectors to use is common in spectral image processing and data mining applications. An

ambiguity arises when the eigengapλk+1 − λk is small, or when two eigenvectors decompose

the graph into the same number ofsign connected components(see§2.4 lemma3). Under

such conditions, what criteria can we rely upon to select a “good” suite of eigenvectors for

partitioning. An intuitive answer comes in the form of the derivatives of the generalized eigen-

values along the matrix curves constructed in the previous sections.

Recall that the number ofsign connected components(SCCs) an eigenvector decomposes

the graph into is, in part, determined by the eigenvector’s spectral index. If the vectorf is

associated with theith smallest eigenvalue, then it may decompose the graph into (at most)i

connected subgraphs. This provides a natural mechanism for grouping eigenvectors into equiv-

alence classes –i.e. those vectors that decompose the graph into the same number of SCCs.

For example, given a rectangular mesh the second and third eigenvectors both decompose the

graph into two pieces. To motivate the use of the updated eigenvalues, recall the mesh exam-

ple in Chapter 3§3.2.1. Where the eigen-gap betweenλ2 andλ3 maybe quite small, but the

derivatived λ3(t)
d t

is far steeper than that ofλ2. In breaking the graph in two it appears sensible
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to choose the vector that will do so most rapidly.

To make the above intuition concrete we specify the following vector selection heuristic.

SCCs Heuristic:

1. computeLFk′ = DFk′Λk′

2. groupFk′ into k | k ≤ k′ sets wherefi andfj are grouped ifSCCs(fi) = SCCs(fj)

3. return the steepest vector from each set (combined for ak−way update).

The (approximate) vector of steepest descent in a population of vectors can be determined

in a number of fashions. In the case where we employ a multi-valuation updating scheme

we process the vectors in a coarse to fine fashion (small orderSCCsfirst). That is, we con-

struct aggregate reweighing matrix curves by augmenting the current reweighting (obtained in

previous steps) by each of the candidate vectors independently to determine the affect on the

eigenvalues. Given this assumption the most of obvious approximation is a partial Taylor ex-

pansion of the eigenvaluesλ(t) ≈ λ(0) + tdλ
dt

(0) +
(∑k

i=2
ti

i!
· diλ

diλ
(0)
)

along the matrix curves.

In chapter 2 the first and second order derivatives of an eigenvalue were given in terms of the

entries of the adjacency matrixA. In practice this may be extremely expensive as the higher

order derivatives involve solving large linear systems. Accordingly we choose to perform a

small number of powering operations to estimate the change in eigenvalues.

To automatically determine the number of segments we use a strategy much like the eigen-

gap heuristic (see [AG06] for a recent treatment), but based on the effects each increment in

the number of segments has on the eigen-gap after update reweighting. Therefore assuming

thatk′ is an upper bound on desired the number of connected components – we may use the

eigen-gap heuristic to choose ak | k ≤ k′ – in effect breaking the graph into segments that

are highly predicted by the eigenvectors. The notion that these are predictions is easily derived

from the vector induced distributions over cuts shown chapter 2 (2.3.14).



Chapter 5

Results

This chapter presents quantitative and qualitative comparisons between thespectral rounding

algorithm (SR) and the standard spectral algorithm. Each problem is formulated as the min-

imization of the Normalized Cut over partitionings of the graph. The proceeding evaluation

focuses on the model-free segmentation of natural and medical images. The results indicate

that reductions in cut cost correspond to increased overlap with human segmentations.

Spectral rounding compares favorably to recent spectral approximations for the Normalized

Cut criterion (NCut). The evaluation compared (SR) to the method proposed by Yu and Shi

[YS03a], (EIG), as it returned stable cuts with respect to parameter perturbation and initial-

ization. This is in contrast to methods that employ K-means which tend to be highly sensitive

to initialization –e.g. [NJW02]. In the following sections results are given in geometric clus-

tering, and medical and natural image segmentation. Natural image segmentations results are

given for an image collection obtained from Google image search and the Corel images used

in Berkeley Hand Segmentation Database [MFTM01].

The remainder of this section introduces two quantitative measures of segmentations that

form the basis of comparison.§5.1compares the SR-algorithm and EIG on random geometric

graphs. In§5.2.1the SR-algorithm and EIG are compared on a collection of images extracted

79
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from Google image search.§5.2.2evaluates SR and EIG on a simple medical image segmen-

tation task. Model-free segmentations of the left ventricle were generated for a collection of

NMR images over a 40 subject population. The segmentations were compared with those gen-

erated by an expert. Finally in§5.3 the SR-algorithm and the EIG-algorithm are compared on

the Berkeley Segmentation Database. The variation in information is reported for both meth-

ods with respect to the human hand segmentations when appropriate. For the medical and

Berkeley data sets, an improvement in normalized cut correlates with an increase in the mutual

information between human and machine segmentations.

The Problem and Analysis

In all cases, the same graphG = (V, E, wo), is passed to both algorithms. The normalized

cut cost is reported on the initial weighting of the graphwo. The affinity graphs used on

medical image evaluation and Google search collection were constructed using the Intervening

Contour [MBLS01]. In the Berkeley Segmentation dataset the affinity graph was constructed

using Martin and Fowlkes’ “probability of a boundary” detector [MFTM01].

To compare the partitioning we report the expected change in NCut value, on the initial

graphG = (V, E, w), and thevariation of information between clusterings. The expected

change can be expressed as a positive scalerc such thatnc(SR) u c ·nc(EIG) on average. In

the case wherec < 1 spectral roundingfinds an improved cut on average.

Throughout this section we report thevariation of information described in [Mei03] to

measure the difference between two partitionings,Pa andPb of the vertex setV , defined as

Dvi(Pa, Pb) = H(Pa) + H(Pb)− 2I(Pa, Pb) (5.0.1)

with I(Pa, Pb) = −
∑p

i=1

∑p
j=1

ni,j

n
log

ni,j

n
, H(P ) = −

∑p
k=1

nk

n
log nk

n
, wherenk is number

of vertices in thekth partition,ni,j the size of the overlap between theith partition inPa and
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Geo-Graph nc(SR)=.064 nc(EIG)=.109

Figure 5.1: A (|V | = 300) geometric graph, and two 5-way cuts.

jth partition inPb, andn = |V |. The entropy termH(P ) can be thought of as the number of

bits required to represent the distribution of partition sizes. Where asI(Pa, Pb) is the mutual

information between the two partitioningsPa andPb. And so,Dvi can be thought of as the

number of bits required to encode the aggregate difference between the overlapping partitions

of Pa andPb. As expectedDvi(Pa, Pa) = 0.

5.1 Random Geometric Graphs

We compareSRandEIG in the expected partition cost on a collection of random geometric

graphs. The vertices ofG = (V, E, w) are associated with uniformly distributed coordinates in

Rd. The edge set ofE(G) is then constructed using the following rule, for{u, v ∈ V |u 6= v},

(u, v) ∈ E ⇐⇒ dist(u, v) < r. We sampled 10000 graphs with 1000 vertices and chose

the radiusr such that the expected degree of each vertex was approximatelylog(|V |). As

shown in Figure5.1such graphs afford a large number of inexpensive cuts. Table5.1contains

the improvement factor, and the cluster divergence. We note that the divergence distance,

relative to partition entropyH(SR), highlights that the NCut improvements are not due to a

small number of boundary vertex exchanges, but rather thatSR andEIG return significantly

different subgraphs.
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Dvi(SR, Eig) nc(SR) = c · nc(EIG)

geo-graph 0.910± .219 c = .690± .113

Table 5.1: Comparison between spectral roundingSRand the multi-way cut algorithm of Yu
and Shi [YS03a] EIG. The partition entropy forSR wasH(SR) u 1.935.

5.2 Image Segmentation

The parameters used in constructing a weighted graph from an image were fixed for all the

results presented in this section. The graphG = (V, E, w) represents an image as follows. For

each pixel in the image a vertex inV is assigned. If two pixels are connected inE a weight

in w is determined based on the image data. The graph connectivity,E, was generated by

connecting pixels to 15% of their neighboring pixels in a 5 pixel radius. The initial weighting

w of the graphG = (V, E, w) was determined using theIntervening Contourcue described in

[MBLS01]. This cue assigns small weights to pixels which lie on opposite sides of a strong

image boundary, and large weights otherwise.

5.2.1 Natural Image Segmentation (google dataset)

We compiled a set of a 100 images from Google Images using the keywordsfarm, sports,

flowers, mountains, & pets. Examples from this data set, and segmentations can be found in

Figure5.9. Again, we note that changes in the cut value often correlate with large changes in

the co-membership relationships on the image pixels. To quantitatively compare the methods

on natural images we report the divergence distance and NCut improvement factorc. The

effect of the SR iteration at an intermediate iteration can be found in figure5.3.

Dvi(SR, Eig) nc(SR) = c · nc(EIG)

natural 1.23± .160 c = .536± .201

Table 5.2: Comparison between spectral roundingSRand the multi-way cut algorithm of Yu
and Shi [YS03a] EIG on segmentations of natural images. The average cluster entropy over
SR-segmentations of the image collection is1.62± .4.
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Input Data Feature Map Eig [YS03a] SR

k=4 nc(EIG) = .0151 nc(SR) = .0064

k=5 nc(EIG) = .0119 nc(SR) = .0030

k=5 nc(EIG) = .0069 nc(SR) = .0033

k=5 nc(EIG) = .0019 nc(SR) = .0015

Figure 5.2: The first four rows provide qualitative examples of the improvements in NCut
value for natural images. Column three contains segmentations generated by the published
code of Yu and Shi [YS03a]. Column four contains results forSpectral Rounding. The number
of segmentsk is fixed for each comparison. We emphasize that the cut cost was evaluated on
identical combinatorial problems (graphs).

5.2.2 Medical Image Segmentation

To a degree, clustering methods are only successful in that are useful in servicing a particular

task. We have selected a simple medical task, segmenting out the left ventricle (a fluid sack

located in the brain), as it is well defined –i.e. the boundary of the percept is agreed upon by

experts. While this task appears to be relatively easy, a successful automatic method represents
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Input Data Eig [ YS03a] Intermediate SRfinal

k=6, SR iteration nc(EIG) = .0074 i = 1, nc(SR) = .0062 i = 4, nc(SR) = .0057

Figure 5.3: A sequence of iterations projected onto the feasible set, starting left with solution
from Yu’s method and ending with the fourth and finalSRiteration on the right. Notice that
the large cuts in the sky and field shift to small cuts in the area around the farm.

nc(SR)=.019 nc(EIG)=.061 nc(SR)=.024 nc(EIG)=.057

nc(SR)=.021 nc(EIG)=.021nc(SR)=.048� � nc(EIG)=.068

nc(SR)=.019 nc(EIG)=.061 nc(SR)=.024 nc(EIG)=.057

nc(SR)=.021 nc(EIG)=.021nc(SR)=.048� � nc(EIG)=.068

Figure 5.4: Examples of the left ventricle, and qualitative results for theSRandEIG algo-
rithms. Segmentations required approximately1.2 seconds forEIG and1.9 seconds forSR.

a significant reduction in human effort for a common labeling task.

The evaluation was performed on a collection of 200 NMR images containing the left ven-

tricle. The collection was built by taking 5 slices each from scans of 40 individuals. Images

were selected randomly from slices containing the left ventricle. As shown in Figure5.4 the

appearance of the ventricle varies substantially in shape and size.

The comparison of segmentations obtained from spectral rounding and the eigenvector method

of Yu and Shi [YS03a] with the human labels is given in Table5.3. The divergence distance

and expected cut improvement are given in Table5.4. The average cluster entropy forSRwas

0.611± .131. As this is a two-class problem, this suggests that one of the segments tends to be

much smaller than the other. This is due to the often small size of the ventricle in the image.
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nc(SR) nc(EIG)[YS03a]

Pr(v ∈ T (Im)) .95± .04 .37± .12

Table 5.3: The valuePr(v ∈ T (Im)) is reported over the population of images, whereT (Im)
is the expert’s hand segmentation andPr(v ∈ T (Im)) is the probability that a pixelv in a seg-
ment is also contained inT (Im) – this statistic was computed for the segment with the majority
overlap withT (Im). Change this to aDvi statistic for(EIG, human) and(SR, human).

Dvi(SR, Eig) nc(SR) = c · nc(EIG)

medical 1.856± .192 c = .598± .237

Table 5.4: The divergence and expected value improvement for the medical image data set.
The average cluster entropy forSRsegmentations on the medical data set was0.611± .131.

5.3 Human Segmentation and SR

The Berkeley Human Segmentation Database (BHSD) [MFTM01] provides a means of evalu-

ating the Normalized Cut as a measure of image segment salience. At first blush the question

seems obvious, do human segmentations consistently cost less than machine generated cuts?

Or, perhaps, do human segmentations span a large set of low cost cuts? Given the means of

obtaining improved cuts automatically, does this decrease in NCut value predict an increase the

overlap with a human segmentations? In this section we employ spectral rounding to improve

the cut value over images in the BHSD dataset and demonstrate that cut improvements increase

the mutual information between human segmentation and automatic segmentation.

Human segmentations often contain a large number of segments, resulting in the partitions

with high cost. However, a coarsening of the segmentation, using the human selected partitions

as a basis results in very low cost low order cuts (i.e. small k). In the following section we

detail segmentation for the normalized cut over multiple orders grouping human segments to

generate low-cost low-order cuts. These cut values and co-membership structures are used to

compare theSRalgorithm and standard spectral algorithm.
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Image Human Seg. Quotient Graph k = 10

Figure 5.5: The input image and human segmentations are combined into a quotient graph
representation of the image.

Boundary Correction

The human segmentation boundaries in the BHSD are often near, but slightly removed from,

the locally optimal partition boundary. To amend this a local minimum cut boundary opti-

mization is performed. The procedure is as follows, for each boundary. For adjacent image

segmentsA andB a region of pixels is selected. We useδ(A) andδ(B) to denote the sets

of vertices with edges in the “human” cut. The nearest set of pixels outside these regions are

added to the sets. These vertex sets are labeled source and sink respectively. The minimum

S-T cut ofδ(A) ∪ δ(B) is computed. If the value of S-T cut is significantly less than that of

the human generated boundary it is transplanted as the boundary between the two regions. In

practice, this condition fails when an two image regions is too small, and therefore every pixel

with in it is adjacent to the cut.

The best k-way human cut

We report segmentation comparisons fork = 2, ..., 20. Given a human, or set of human seg-

mentations, we collapse the human segmentation down to each setting ofk. For a given setting

of k a “best human cut” is determined by searching over planar cuts in quotient graph defined

by the fine grained human segmentation. This is illustrated in figure5.5.
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Judging significance

The BHSD contains 290 images, split into 197 train and 93 test images. Table5.5 contains

statistics on the reduction invariation of information , Dvi, when usingSR over EIG with

respect to human segmentation. The table reports bootstrap estimates of standard errors and

70th percentile sample confidence intervals. To determine if the improvement inDvi is signif-

icant, we consider each algorithm as generating samples from a continuous random variable

of (VoI) bits. The two distributions are highly skewed (asymmetric) and have dramatically

different variances. First we employ the Kolmogorov-Smirnov two-sample test [Was04] to

test the Null Hypothesis that the sample sets are drawn from the same underlying distribution.

The test rejects the Null Hypothesis with a significance ofα < .00005, which verifies that the

distributions are distinct. Thus the improvement (i.e. reduction) in variation of information is

statistically significant by comparison of means.

We determined that the distributions overDvi induced by the segmentation methods were in-

variant oftest-trainsplit of the image collection. A bootstrap Kolomogorov-Smirnov 2 sample-

test was applied for each algorithm comparing the sample distributions fortestand train. In

both cases the Null Hypothesis was accepted indicating that results on thetestandtrain sets

were drawn over the same distribution over bits for each algorithm. Therefore we employ all

293 images in our analysis.

Dvi(SR, Eig) Dvi(Eig, H) Dvi(SR, H) NCut

Std. 1.13± 0.30 1.43± .79 .634± 0.32 c = .58± 0.2
C.I. NA 1.47 : {−.63, +0.53} 0.61 : {−0.25, +0.13} NA

Table 5.5: Thevariation of information ,Dvi, for: the SR versus EIG, EIG versus Human, and
the SR versus Human. Statistics are shown with standard errors and confidence intervals. The
Kolmogorov-Smirnov two-sample test [Was04] verifies that the distributions overDvi induced
by theSRandEIG are distinct with a significance ofα < .00005. The forth column reports
the expected improvement in normalized cutnc(SR) = c · nc(EIG).
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Input Data Eig SR Cut Detail
Flow Computation 

Comparison

Nodes 

{Sink,Source, Null} 

Min Cut     <     

Forced Min Cut

nc5 = .0103 nc5 = .0055
Input Data Feature Map Eig [YS03a] SR

k=2, comparison nc(EIG) = .0021 nc(SR) = .0021

Figure 5.6: The first row contains a segmentation that does not match the common human
perception of the foreground (a penguin). In the forth column, the lines in the image illustrate
various node types in ans-t cutcomputation. The yellow line indicates the sink, the green the
initial source, and the black lines denotes the boundary. The blue line is the minimum cut,
the red line is the “forced” minimum cut with the blue line used as source. The second row
illustrates a 2-way cut in which the NCut values are nearly identical, but which support very
different percepts.

The Normalized Cut & Human Segmentations

As mentioned in the introduction, and demonstrated above, a superior Normalized Cut while

positively correlated with perceptually relevant segmentations is not guaranteed to be match

the common human perception of the image contents (percept). The images in figure5.6

demonstrate that the pixel affinity graph may contain ambiguous segmentations, or may miss

the target percept (see the second row).

The image containing the penguin, row 1 figure5.6, is example of a case in which the cut

that closely matches our perception of the foreground is not contained in the affinity graph.

However, as illustrated in the forth column, the red edge cut does not actually trace the contour

of the foreground, but rather is fortuitously close to it. In fact the cut, indicated in red, is more

expensive than that indicated indicated in blue.
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Input Image Human EIG SR

k = 4 nc = .0051 nc = .0017

k = 5 nc = .0076 nc = .0060

k = 11 nc = .0068 nc = .0033

k = 4 nc = .0039 nc = .0009

k = 7 nc = .0023 nc = .0011

k = 8 nc = .0012 nc = .010

Figure 5.7: Example segmentations from the Berkeley Hand Segmentation Database. Image
results comparing thek−way cut generated from hand segmentation (column 2), the standard
spectral algorithm (column 3), and spectral rounding with expansion edges and the derivative
heuristic (column 4). For each image, the number of segments was fixed for both the spectral
rounding algorithmSR and the standard algorithmEig. Each method was initialized with the
same weight matrix, and the reported cut costs are given on the original weighted graph (i.e.
affinity matrix).
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Input Data Eig SR Input Data Eig SR

nc = .0093 nc = .0048 nc = .0085 nc = .0080

nc = .0081 nc = .0055 nc = .0047 nc = .0006

nc = .0122 nc = .0090 nc = .0159 nc = .0102

nc = .0145 nc = .0121 nc = .0098 nc = .0043

Figure 5.8: Example Images
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Input Data Eig SR Input Data Eig SR

nc5 = .0143 nc5 = .0063 nc3 = .0095 nc3 = .0021

nc2 = .0018 nc2 = .00008 nc5 = .0039 nc5 = .0012

Input Data Eig SR Input Data Eig & SR

nc2 = .0077 nc2 = .0032 nc2 = .00002

Input Data SR Input Data SR

nc = .001 nc = .012

Input Data SR Input Data SR

nc = .011 nc = .009

Figure 5.9: Example Images
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Chapter 6

Moving Forward

Efficiency

Spectral graph theory has seen wide application in construction of efficient PDE solvers, basic

algorithm construction, machine learning, and computer vision. However, the computational

complexity of the underlying sparse eigencomputation remains a major barrier against the in-

tegration of spectral techniques into large scale data-mining problems and vision. At present

the best known [KW92, AHK05] average case time bound onε−approximate estimation of an

extremal eigenpair is̃O(m
√

n
ε
), for generalized Laplacians withn = |V | andm = |E|.

Fortunately, empirical evidence and recent theoretical results suggest the possibility of nearly-

linear time eigencomputation. In [TCB05] we demonstrated that rudimentary multi-level meth-

ods are effective for rapid approximate eigenvector computation. This is in part due to the

smoothness of the systems arising from image data. Spielman and Teng [ST04] furnish a multi-

level method for solving linear systems with a theoretical bound of near linear-time. Their

work has been further improved to a linear-time algorithm in the planar graph case (a common

case in vision applications) by Koutis and Miller. Such work suggests thatε−approximate

eigencomputation may soon fall into same time complexity, as iterative linear system solv-

ing is central to several techniques computing eigenvectors and eigenvalues. For example, the

93
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inverse iteration and Rayleigh quotient iteration [Dem97b] both compute eigenvectors by re-

peatedly solving linear systems that converge upon an eigenpair of a matrix. The Rayleigh

quotient iteration exhibits cubic convergence yeilding a set of iterationsk wherek < log(m).

However, the deflation step required in the Rayleigh quotient iteration must be addressed in

order to successfully adapt [ST04] to eigenvector computation. As [ST04] assume that the ma-

trix is diagonally dominant – which will not hold true for a deflated matrix. Another promising

direction of inquiry involves employing Fiedler’s theorem directly in an eigensolver. We are

currently exploring both strategies for efficient Laplacian eigenvector computation.

An improved theoretical bound

We have presented a new rounding technique for the eigenvectors of graph laplacians in order

to partition a graph. The method was shown to converge and demonstrated empirical improve-

ments over the standard rounding strategy on a variety of problems. In ongoing work we are

seeking a theoretical bound for variants of theSR-Algorithm in terms of the Normalized

Cut.

As theSR-Algorithm is exactly a spectral algorithm we have no way of improving upon

the Cheeger bound without modifying the approach. This sad state of affairs is a direct conse-

quence of the work of Guattery and Miller [GM98], in which they construct families of graphs

where the required eigenvectors (for a good cut) are given arbitrarily large spectral index. How-

ever, as shown in Chapter 3 modifying the graph, so as to correct some of the spectral methods

short comings may provide a route to such improvements. The expansion augmentation strat-

egy put forward in Chapter 3 provides one possible to path two achieving such an improved

bound. The plausibility of such an improvement is high due to the success of [KRV06] with

their expansion embedding algorithm for bounding the conductance number. For practical al-

gorithms, the issue with graph augmentation is speed – to this end we are seeking a strictly

spectral version of expansion augmentation coupled with theSR-Algorithm .
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Guided Cuts

In many domains, such as medical image processing, we know the type of structure we wish

to segment in the image or volume. Alternately, in graphics and image editing applications the

user is often able to provide a sparse set of inputs that suggest a particular target segmentation.

Accordingly, developing a mechanism for guiding the optimization of the graph cut with side

is highly desirable.

In previous work, [TMC05] we put forth a joint spectral partitioning and shape estimation

optimization that improved the over all segmentation and shape estimates relative of human

hand segmentation. We observed that in optimizing shape based segmentations, eigenvector

methods possess desirable properties compared to flow based optimization. Primarily this fol-

lows from examining the intermediate solutions generated by both techniques. For spectral

methods there is a great deal of global information about the geometry of the cut contained in

eigenvectors of the graph. Accordingly, they can be used to update estimates of shape param-

eters. This differs from the intermediate solutions in the flow optimization are not necessarily

geometrically meaningful. However, flow-based methods support statistical parameter estima-

tion over populations as shown in the spatially coherent clustering method proposed by Zabih

[ZK04].

In [TMC05] we incorporate model data into a segmentation by aligning the target eigenvec-

tors with a vector (or subspace) encoding the current estimate of the shape. The shape estimate

is then updated by fitting regions in the Fiedler vector that are likely to contain the cut. This

resulted in an alternating gradient ascent algorithm switching between shape parameters esti-

mation (with respect to the current eigenvectors) followed by an alignment step in which matrix

entries are updated to align the eigenvector to the current shape estimate.

In ongoing work we use “the probability of an edge” (in the cut) from Chapter 2 and the

probability of a contour passing through an image region (which can also be expressed as a
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Pr((uv) ∈ δ(S, S̄)) to provide strictly probabilistic shape optimization. This has the advantage

of providing a strictly probabilistic algorithm for optimization shape and cut with respect to

matrix eigenstructure. Further, human data can be natural incorporated into such a scheme as

constraints on the distribution over cuts.



Bibliography

[AG06] Arik Azran and Zoubin Ghahramani. Spectral methods for automatic multiscale

data clustering. InComputer Vision and Pattern Recognition, pages 190–197,

2006. 37, 78

[AHK05] S. Arora, E. Hazan, and S. Kale. Fast algorithms for approximate semidefinite

programming using the multiplicative weights update method.FOCS, pages 339–

348, 2005. 93

[ARV04] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric

embeddings and graph partitioning. InSTOC, pages 222–231, 2004.3, 24, 46,

47

[AW00] K. Anstreicher and H. Wolkowicz. On lagrangian relaxation of quadratic matrix

constraints.SIAM Journal Matrix Analysis Applications, 22(1):44–55, 2000.23

[Bes86] Julian Besag. On the statistical analysis of ditry pictures.Journal of the Royal

Statistical Society, 3:259–302, 1986.4

[Bis95] Christopher Bishop.Neural Networks for Pattern Recognition. 1995. 4, 5

[BJ06] Yuri Boykov and Olivier Juan. Active graph cuts. volume 1, pages 1023–1029,

2006. 46

97



98 BIBLIOGRAPHY

[BKS02] A. Brook, R. Kimmel, and N. A. Sochen. Variational segmentation of color im-

ages.IJCV, ?(?):?–?, 2002.5
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