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Abstract

In this assignment, you will implement an image classification system in TensorFlow [Abadi
et al., 2015]. The starter code is provided for you, where a simple softmax classifier has been
implemented. Your job is to understand the starter code and implement two models of yours: a
feed-forward neural network, and a convolutional neural network. For each network, you have the
freedom to explore different architectures, to implement, to train, and to test your model. You
will be working with the CIFAR-10 dataset [Krizhevsky, 2009], where we expect your best method
to reach 65% accuracy.

1 Code and Dataset
Install TensorFlow. If you have not already, please navigate to TensorFlow’s site and follow their
instructions to install the framework. The instructions are at

https://www.tensorflow.org/install/

Their instructions should be sufficient to install TensorFlow and all of its dependencies on your system.
It is possible to complete this assignment without using any GPU, so you do not need to install CUDA
or anything related to GPU programming. However, if you wish to, you are more than encouraged to
install TensorFlow GPU, which will make your implementation much faster.

Download the CIFAR-10 Dataset. You will be working with the CIFAR-10 dataset, which is
available at

https://www.cs.toronto.edu/˜kriz/cifar-10-python.tar.gz

This dataset consist of 50, 000 training images and 10, 000 testing images. All images are RGB images
with the size of 32 × 32. Each image is assigned one of 10 pre-defined labels. You can find out more
about the CIFAR-10 dataset in the paper by Krizhevsky [2009].

The state-of-the-art performance on the CIFAR-10 dataset is 97.7% accuracy, which is achieved
by Neural Architecture Search [Zoph et al., 2017]. In this assignment, your best model is required to
reach 65% accuracy. For each 1% beyond that, rounding up, you will get +1 point for extra credit.
For example, 68.1% accuracy will give you +4 points for extra credit.

The starte code implements some data preprocessing procedures for you. In particular, we reserve
5, 000 training images for validation. Thus, there are 45, 000 images for training. We have also
subtracted the channel mean and divided the channel standard deviation from all images. These are
the standard data preprocessing steps for the CIFAR-10 dataset.

https://www.tensorflow.org/install/
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz


Starter code. The starter code for your project is available at

http://www.cs.cmu.edu/afs/cs/user/hieup/www/11695/starter_code.zip

After downloading and unzipping the code and the CIFAR-10 data, you can navigate to your code
directories, where you will see the folders src and scripts. You will be writing code in the src and
running your work using the shell-script files in scripts. A simple file, scripts/cifar10.sh has
been written for you. If you open the file and change the data path flag into the absolute path to the
directory where you de-compressed CIFAR-10 data, you will be able to run the starter code.

The starter code implements an extremely simple baseline algorithm: a softmax classifier. This
algorithm performs the following steps:

• Flattens each CIFAR-10 images into a vector of 3072 numbers,

• Applies a matrix multiplication to turn the image into a logit vector of 10 numbers,

• Applies the softmax functoin on the logits to obtain the class distributions.

This softmax classification is trained using stochastic gradient descent (SGD), with a fixed learning
rate, which is not a very good setting for SGD. If you run the starter code, which trains this model
for only 1000 steps, you will get around 25% accuracy on the test data.

2 Your Work
The entry point of the program is in the file src/main.py. From this file, relevant modules from
src/models.py. It is your responsibility to read the code and figure out all the relevant points.

You are required to implement the functions conv net and feed forward net and modify the
script scripts/cifar10.sh to execute the corresponding models. You can use any techniques that
you desire, including but not limited to the following suggestions:

• `1 regularization, `2-regularization, etc.

• Activation functions: tf.sigmoid, tf.tanh, tf.nn.relu, etc.

• Momentum training [Nesterov, 1983]. The TF code for this is: tf.train.MomemtumOptimizer,

• DropOut [Srivastava et al., 2014],

• Batch Normalization [Ioffe and Szegedy, 2015]. For TF code, you can use tf.nn.fused batch norm,

• Residual connections [He et al., 2016], Highway connection [Greff et al., 2017],

You can also use any number of layers and architectures. Remember that networks with more layers
are harder to train, but if you can train them appropriately, you can usually get a better performance.

Gradings. The grading breakdowns are as follows:

• Feed-forward network: 20 points.

• Convolutional network: 30 points.

• Performance: 15 points.

• Extra credit: up to 35 points.
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When you submit your assignment, please also submit the running scripts, named scripts/feed forward.sh
and scripts/conv net.sh. These scripts should look like the provided script scripts/cifar10.sh
that we provide you, with --model name=‘‘feed forward’’ and --model name=‘‘conv’’, respec-
tively. You can also set other hyper-parameters of your models by adding flags to these scripts and
use the appropriately. You will get the full credit for your feed-forward and convolutional network if
they run and perform better than our softmax classifier.

For the 15 performance points, your better model (which is very likely the convolutional network)
should reach 65% accuracy. For each percent below 65%, you lose 1 point, and for each percent above
that, you have 1 point of extra credit. All accuracy percents will be rounded up.

Academic Integrity. As normal, you are encouraged to discuss with your friends and the instruc-
tors. Anything they tell you, you can use. However, looking at other’s code should not happen at all
cost.
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