11-695: Competitive Engineering

Recurrent Neural Networks

Spring 2018

11-695: Competitive Engineering. Spring 2018 1/ 21

O ut line Carnegie Mellon

@ Regularization in Recurrent Neural Networks

11-695: Competitive Engineering. Spring 2018 2 /21

Carnegie Mell
General Regularization Strategy: Dropout eseTeen

comment allez - vous ? </s>

R SO S

how are you ? <s> "comment"-, allez - vous ?
LA A LA LA LA

e Each colored arrowed can be dropped using the same mask.

o Word embeddings dropout mean to remove the whole word

11-695: Competitive Engineering. Spring 2018 3/ 21

Other Strategies: ¢,

Carnegie Mellon

comment aIIez

r S S

I I I III

s> comment allez -
LA LA LA

how are

e /5 norm of all or some parameters

e (5 norm of all or some hidden states: 3, ||e;]|?, > 1€

e /5 difference of all or some hidden states: >, ||e;

i - ei—1||2’
> 116 — £

11-695: Competitive Engineering. Spring 2018 4 /21

O u t line Carnegie Mellon

® Coding an RNN with TF Dynamic Graph

11-695: Competitive Engineering. Spring 2018 5/ 21

© WO U W N

HellO, O].d Friend: tf .While,IOOp Carnegie Mellon

tf _while_ loop.py

def build_tf_graph:

def condition(i, *args): return tf.less(i, 10)
def body(i, a, b): return i+l, b, a+b

loop_vars = [tf.constant (0, dtype=tf.int32), tf.constant(l, dtype=tf.int32),
tf.constant (1, dtype=tf.int32)]

loop_outputs = tf.while_loop(condition, body, loop_vars)

e What does this do?

o Computes the Fibonacci numbers.

11-695: Competitive Engineering. Spring 2018 6 / 21

Hello, Old Friend: tf.while loop

Carnegie Mellon

© 0N U e WN =

tf_while_loop.py

def build_tf_graph:
def condition(i, *args): return tf.less(i, 10)

def body(i, a, b): return i+l, b, a+b

loop_vars =

loop_outputs

loop_vars:

[tf.constant (0, dtype=tf.int32), tf.constant(l, dtype=tf.int32),

tf.constant (1, dtype=tf.int32)]

= tf.while_loop(condition, body, loop_vars)

11-695: Competitive Engineering.

Spring 2018

7 /21

What Exactly Is loop outputs?

Carnegie Mellon

© 0N O U WN

tf_while_loop_outputs.py

def build_tf_graph:

def condition(i, *args): return tf.less(i, 10)
def body(i, a, b): return i+l, b, a+b

loop_vars = [tf.constant (0, dtype=tf.int32), tf.constant(l,

tf.constant (1, dtype=tf.int32)]
loop_outputs = tf.while_loop(condition, body, loop_vars)
print (type (loop_outputs)) # <type ’list’>

for loop_output in loop_outputs:
print (type (loop_output)) # TF Tensor

e loop_outputs is a nested structure

o the same structure with loop_vars

dtype=tf.int32),

o Each inner-most element is the TF ops that triggers the loop and

returns the corresponding output.

11-695: Competitive Engineering

Spring 2018 8 /21

Carnegie Mellon

Using tf.while loop to Build Machine Translation

tf_rnns.py

def build_tf_graph:
en_sent, fr_sent: Tensors with unknown shapes [1, E], [1, F].
en_sent, fr_sent = read_data()

encoder_states: [1, E, hidden_size]

encoder_states = encoder (en_sent)

decoder_states: [1, F, hidden_size]
decoder_states = decoder (encoder_states, fr_sent)

© 0N O U W N

comment allez

</s>

-

s
=] 2
g -
-

embeddings:

e We will use 2 while loops
o one for encoder; one for decoder

11-695: Competitive Engineering. Spring 2018 9/ 21

WO U WN

Carnegie Mellon

Coding the Encoder with tf.while loop

comment allez - vous ? </s>
R \“.‘ '%'\“_ '_:_'\“.‘ '%'\“.‘ '_:_'\“.‘ f

embeddings: i E i i 5
<s> :".‘comment“"‘. allez - vous ?

tf_seq2seq_encoder.py

def encoder (sent, vocab_size=10000, hidden_size=128):
sent: Tensors with unknown shape [1, E]
with tf.variable_scope("encoder"):
w_emb = tf.get_variable("w_emb", [vocab_size, hidden_size]) # "encoder/w_emb"

def condition(i, sent, *args): return tf.less(i, tf.shape(E)[-11)

def body(i, sent, *args): # later

e Use the unknown length of sent to stop the loop
e Problem: we do not know how much memory to allocate

11-695: Competitive Engineering. Spring 2018 10 / 21

Coding the Encoder with tf.while loop

Carnegie Mellon

tf_seq2seq_encoder.py

def encoder (sent, vocab_size=10000, hidden_size=128):

sent: Tensors with unknown shape [1, E]
with tf.variable_scope("encoder"):

w_emb = tf.get_variable("w_emb", [vocab_size, hidden_size]) # "encoder/w_emb"

hidden_states = tf.TensorArray(tf.float32, size=tf.shape(E)[-1],
clear_after_read=False)
def condition(i, sent, *args): return tf.less(i, tf.shape(E)[-1])

def body(i, sent, hidden_states):
do the RNN computations; write the new information to hidden_states
return i+l1, sent, hidden_states
loop_vars = [tf.constant (0, dtype=tf.int32), sent, hidden_states]
loop_outputs = tf.while_loop(condition, body, loop_vars)

hidden_states = loop_outputs[-1].stack() # [|E|l, 1, hidden_states]
return tf.transpose(hidden_states, [1, 0, 2])

e Problem: we do not know how much memory to allocate

o Solution: tf.TensorArray supports dynamic memory allocation.

11-695: Competitive Engineering Spring 2018 11 / 21

Writing to tf.TensorArray

Carnegie Mellon

© WO U e W N

O e
S ©XN® LA WN RO

tf_seq2seq_encoder.py

def encoder (sent, vocab_size=10000, hidden_size=128):

create variables: w_emb,

hidden_states = tf.TensorArray(tf.float32, size=tf.shape(E)[-1],
clear_after_read=False)

def condition(i, sent, *args): return tf.less(i, tf.shape(E)[-1])

def body(i, sent, prev_state, hidden_states):
sent[:, il: [1, 1] --> emb: [1, 1, hidden_size]
emb = tf.nn.embedding_lookup(w_emb, sent[:, il)

do the RNN computations; write the new information to hidden_states
next_state = prev_state + emb

hidden_states = hidden_states.write(i, next_state)

return i+l1, sent, next_state, hidden_states

loop_vars = [tf.constant (0, dtype=tf.int32), sent,
tf.zeros([1, 1, hidden_sizel], dtype=tf.float32), hidden_states]
loop_outputs = tf.while_loop(condition, body, loop_vars)
hidden_states = loop_outputs[-1].stack() # [|E|, 1, hidden_states]
return tf.transpose(hidden_states, [1, 0, 2])

e A dummy encoder network

11-695: Competitive Engineering Spring 2018 12 / 21

Vanilla RNN Carnegie Mellon

tf_seq2seq_encoder.py

def encoder (sent, vocab_size=10000, hidden_size=128):
with tf.variable_scope("encoder"):

w_emb = tf.get_variable("w_emb", [vocab_size, hidden_sizel)
w_rnn = tf.get_variable("w_rnn", [hidden_size, hidden_sizel)
w_inp = tf.get_variable("w_inp", [hidden_size, hidden_sizel)

def condition(i, sent, *args): return tf.less(i, tf.shape(E)[-1])
def body(i, sent, prev_state, hidden_states):

sent[:, i]: [1, 1] --> emb: [1, 1, hidden_size]
emb = tf.nn.embedding_lookup(w_emb, sent[:, il)

do the RNN computations; write the new information to hidden_states
next_state = tf.tanh(tf.matmul (prev_state, w_rnn) + tf.matmul(emb, w_inp))
hidden_states = hidden_states.write(i, next_state)

return i+l1, sent, next_state, hidden_states

create loop_vars, calling tf.while_loop, stack, transpose, return

e A less dummy encoder network:

f(Xt, htfl) = tanh (ht,1 . Wh + Xt - Ww) (1)

11-695: Competitive Engineering Spring 2018 13 / 21

Carnegie Mellon

LSTM? No Problem!

e Want Long Short-Term Memory (LSTM)? No problem!
iy = Sigmoid(x¢ - Wi + hy_1 - Wy;)
f; = Sigmoid(x; - Wy +hyq - Wyy)
o; = Sigmoid(x; - Wy + hyq - Wyy,) @
g: = tanh(x; - Wy +hy_y - Wp)
a=hL®c 1 +ir@g:
h; = o; ® tanh(c;)

11-695: Competitive Engineering. Spring 2018 14 / 21

LSTM? No Problem!

Carnegie Mellon

e Want Long Short-Term Memory (LSTM)? No problem!
i; = Sigmoid(x; - Wy +hy 1 - Wpy)
f; = Sigmoid(x; - Wy +hyq - Wyy)
o; = Sigmoid(x; - Wy + hyq - Wyy,)
g: = tanh(x; - Wy +hy_y - Wp)
a=hL®c 1 +ir@g:
h;

0; ® tanh(cy)

tf_1stm.py

def 1lstm(x, prev_c, prev_h, w_lstm):

ifog = tf.matmul (tf.concat([x, prev_h], axis=2))

i, £, o, g = tf.split(ifog, 4, axis=1)

i, f, o, g = tf.sigmoid (i), tf.sigmoid(f), tf.sigmoid(o), tf.tanh(g)

next_c = f * prev_c + i *x g
next_h = o * tf.tanh(next_c)
return next_c, next_h

11-695: Competitive Engineering Spring 2018 14 / 21

Changing The “Footprint” of body

Carnegie Mellon

WO U WN -

e e
[S e =]

tf_seqg2seqg_encoder.py

def lstm(x, prev_c, prev_h, w_lstm): # previous slide
def encoder (sent, vocab_size=10000, hidden_size=128):
with tf.variable_scope("encoder"):
w_emb = tf.get_variable("w_emb", [vocab_size, hidden_size])
w_lstm = tf.get_variable("w_lstm", [2 * hidden_size, 4 * hidden_size])

def condition(i, sent, *args): return tf.less(i, tf.shape(E)([-11)
def body(i, sent, prev_c, prev_h, hidden_states):
emb = tf.nn.embedding_lookup(w_emb, sent[:, il)
next_c, next_h = lstm(emb, prev_c, prev_h, w_lstm)
hidden_states = hidden_states.write(i, next_h)
return i+l1, sent, next_c, next_h, hidden_states

create loop_vars, calling tf.while\ _loop, stack, transpose, return

11-695: Competitive Engineering. Spring 2018 15 / 21

© 0N O U R WN =

Carnegie Mellon

Coding the Decoder with tf.while loop

embeddings:

<s> comment allez - vous ?

tf_seq2seq_decoder.py

def build_tf_graph:
en_sent, fr_sent: Tensors with unknown shapes [1, E], [1, FJ].

en_sent, fr_sent = read_data()

encoder_states: [1, E, hidden_size]

encoder_states = encoder (en_sent)

decoder_states: [1, F, hidden_size]
decoder_states = decoder (encoder_states, fr_sent)

e Idea: almost the same with Encoder...

11-695: Competitive Engineering. Spring 2018 16 / 21

Carnegie Mellon

Handle encoder_states from encoder

© 00D U s W N

e e e e
DU W N = O

£ [F]

embeddings:

RER

how are you ? <s> comment allez - vous

tf_seq2seq_decoder.py

def decoder (sent, encoder_states, vocab_size=10000, hidden_size=128):

sent: Tensor of size [1, F]
with tf.variable_scope("decoder"):

w_emb = tf.get_variable("w_emb", [vocab_size, hidden_sizel)
w_rnn = tf.get_variable("w_rnn", [hidden_size, hidden_size])
w_inp = tf.get_variable("w_inp", [hidden_size, hidden_size])

def condition(i, sent, *args): return tf.less(i, tf.shape(E)[-11)
def body(i, sent, prev_state, hidden_states):
emb = tf.nn.embedding_lookup(w_emb, sent[:, il)
next_state = tf.tanh(tf.matmul (prev_state, w_rnn) + tf.matmul(emb, w_inp))
hidden_states = hidden_states.write(i, next_state)
return i+l1, sent, next_state, hidden_states

In encoder: tf.zeros([1, hidden_size]). Now: prev_state
loop_vars = [tf.constant (O, dtype=tf.int32), sent, encoder_state, hidden_states]

11-695: Competitive Engineering Spring 2018 17 / 21

Dealing with hidden states

Carnegie Mellon

WO U e WN -

(ORI I I Rl i e
NP O ©WTOU A XN~ O ©

tf_seq2seq_decoder.py

def decoder (sent, encoder_states, vocab_size=10000, hidden_size=128):
sent: [1, F]. define other variables, define while_loop, etc.
loop_outputs = tf.while_loop(condition, body, loop_vars)

hidden_states = loop_outputs[-1].stack () # [F, 1, hidden_size]
hidden_states = tf.transpose(hidden_states, [1, 0, 2]) # [1, F, hidden_size]

return hidden_states
def build_tf_graph():
calling read_data, calling encoder, etc.

decoder_states = decoder (encoder_states, fr_sent[1, :-1])

matmul and softmax

with tf.variable_scope("softmax"):

w_soft = tf.get_variable("w_soft", [hidden_size, vocab_sizel)
decoder_states = tf.reshape(decoder_states, [-1, hidden_size])
logits = tf.matmul (decoder_states, w_soft) # [1 * F, vocab_size]

logits = tf.reshape(logits, [1, tf.shape(sent)[1], vocab_size])
labels = tf.reshape(fr_sentl[:, 1:1, [-11)

loss = tf.nn‘sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)

11-695: Competitive Engineering Spring 2018 18 / 21

Attention?

Carnegie Mellon

comment allez

<
o
c
®
A

/s

Vv

embeddings:

"‘,comment"-_ allez
LA LA

e Attention: how is a(f,e,...x|) computed?

T
. BT
a5 DE}G: .

u
it

x|

a; = g(f,e;); a; = Softmax(ay..|x|); a(f,e.x) = Zaiei (3)

o Luong attention: g(f,e;) = f -e;. Quite easy to implement.

11-695: Competitive Engineering

Spring 2018 19 / 21

Attent ion? Carnegie Mellon

tf_seq2seq_decoder.py

def build_tf_graph():
encoder_states = encoder (en_sent)
decoder_states = decoder (encoder_states, fr_sent([1, :-1])
attn_states = attention(encoder_states, decoder_states)

e Attention: how is a(f, e;....|) computed?
x|

a; = g(f, e;); a; = Softmax(ay..x|); a(f, e |x) = Zaiei (4)
i=1

o Luong attention: g(f,e;) = f -e; . Quite easy to implement.

o Bahdanau attention: g(f,e;) = tanh (f - wy +e; - w) - v, where

Wi, W € RA*H and v € RE*! are trainable parameters

11-695: Competitive Engineering Spring 2018 20 / 21

i i CarnegieMell
COdlng Attentlon arnegie Mellon

tf_seq2seq_decoder.py

def attention(enc_states, dec_states):

enc_states, dec_states: [N, E, hidden_size], [N, F, hidden_size]
enc_len = tf.shape(enc_states) [1]

dec_len = tf.shape(dec_states)[1]

hidden_size = tf.shape(enc_states)[-1]

auto batch matmul. attn_logits: [N, F, E]

attn_logits = tf.matmul (dec_states, enc_states, transpose_b=True)
attn_logits = tf.reshape(attn_logits, [-1, EI)

attn_weights = tf.nn.softmax(attn_logits)

weighted sum

attn_weights = tf.reshape(attn_weights, [-1, dec_len, enc_len]) # [N, F, E]
attn_outputs = tf.matmul (attn_weights, enc_states)

return attn_outputs

def build_tf_graph():

encoder_states = encoder (en_sent)
decoder_states = decoder (encoder_states, fr_sent[1, :-1])
attn_states = attention(encoder_states, decoder_states)

11-695: Competitive Engineering Spring 2018 21 / 21

	Regularization in Recurrent Neural Networks
	Coding an RNN with TF Dynamic Graph

