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Neural Nets: A Modeling Perspective

• The problem: want to learn a function y = f(x)
• The “data” solution:

◦ Collect data
{(

x(1),y(1)) , (x(2),y(2)) , ..., (x(N),y(N))}
◦ Come up with a set of hypotheses H = {f1, f2, ..., f|H|}

◦ Come up with a loss function L.
◦ Find f∗ = argminf∈H L(f).
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Neurons, Layers, Synapses

• Input: a ∈ R1×M . ai is called a feature.
• Layer 1: (Layer 2 and above are similar)

◦ W(1) ∈ RM×|L1|. W(1)
i,j is called a weight, or a synapse, or a parameter.

◦ L(1) def= a ·W(1). L(1)
i is called a pre-activation.

◦ H(1) def= f(L1). H(1)
i is called a neuron, or an activated value.

. f is called an activation function, or a non-linearity.

• The number of layers is called the network’s depth.
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Activation Functions

• Make the network non-linear.

H(D) = f
(
H(D−1) ·W(D)

)
= f

(
f
(
H(D−2) ·W(D−2)

)
·W(D)

)
= f

(
f
(
· · · f(a ·W(1)) · · ·

)
·W(D)

)
= a ·W(1) ·W(2) · · ·W(D)︸ ︷︷ ︸

W

(without f)

= a ·W

◦ Without f , H(final layer) is just a linear transformation of a.
◦ Your “neural net” is as weak as a linear model.
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Some Popular Activation Functions

• Sigmoid: f(x) = 1
1 + exp {−x}

◦ Old-school. Nobody really cares, except:
◦ f(x) ∈ (0, 1). Can be used for gating purposes.

• Hyperbolic tangent: f(x) = tanh (x) = exp {x} − exp {−x}
exp {x}+ exp {−x}

◦ Better than Sigmoid, but also quite old, so nobody cares, except:
◦ f(x) ∈ [−1, 1]. Can be used for clamping purposes.

• Rectified Linear Unit (ReLU): f(x) = max (0, x).
◦ Fashionable. Everyone will love it for while. Just use it, or:
◦ Many variations: LeakyReLU, PReLU, CReLU, SeLU...
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Neural Nets So Far

• The problem: want to learn a function y = f(x)
• The “data” solution:

◦ Collect data
{(

x(1),y(1)) , (x(2),y(2)) , ..., (x(N),y(N))}
◦ Come up with a set of hypotheses H = {f1, f2, ..., f|H|}

◦ Come up with a loss function L.
. Can be anything, depending on the problem

◦ Find f∗ = argminf∈H L(f)
. How?
. Gradient Descent (or one of its variations)
. Use back-prop to compute gradients
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Neural Nets are Composite Functions

• Recall that the final layer of a neural net is:

H(D) = f
(
H(D−1) ·W(D)

)
= f

(
f
(
H(D−2) ·W(D−2)

)
·W(D)

)
= f

(
f
(
· · · f(a ·W(1)) · · ·

)
·W(D)

)
• Applying the loss function L:

L
(
H(D)

)
= L

(
f
(
f
(
· · · f(a ·W(1)) · · ·

)
·W(D)

))
• We need: ∂L

∂W(1) , ∂L
∂W(2) , ..., ∂L

∂W(D)
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Chain Rule and the Back-prop idea

• If f : RN → R
◦ reads: f is a real function of N variables

• and g1, g2, ..., gN : R→ R, then:

∂f

∂x
=

N∑
i=1

∂f

∂gi
· ∂gi

∂x

• This is what happens for each neuron at each layer.

• You can reverse this process to compute each ∂L
∂W(i)

11-695: Competitive EngineeringFeed-forward Neural NetworksSpring 2018 10 / 20



Chain Rule and the Back-prop idea

• If f : RN → R
◦ reads: f is a real function of N variables

• and g1, g2, ..., gN : R→ R, then:

∂f

∂x
=

N∑
i=1

∂f

∂gi
· ∂gi

∂x

• This is what happens for each neuron at each layer.

• You can reverse this process to compute each ∂L
∂W(i)

11-695: Competitive EngineeringFeed-forward Neural NetworksSpring 2018 10 / 20



Modern Implementation of Back-prop

• Only need to compute local gradients of the functions
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Examples

• For matrix multiplication:
∂L
∂A

= ∂L
∂C
·B> ; ∂L

∂B
= A> · ∂L

∂C

• For ReLU:
∂L
∂K

= ∂L
∂H
· 1[K ≥ 0]
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`p Regularization

• Change the activation function L into

L(reg) = L+ β ·
D∑

i=1

∥∥∥W(i)
∥∥∥2

p

• β has to be chosen
• `1 regularization encourages sparsity

L(reg) = L+ β ·
D∑

i=1
|W(i)|

• `2 regularization encourages small weights

L(reg) = L+ β ·
D∑

i=1

∥∥∥W(i)
∥∥∥2
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DropOut

• At train time: With probability p
◦ Randomly set some neurons to 0.
◦ Multiply the rest by 1− p.
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DropOut: A Variational Interpretation

• Normal: L(i) = H(i) ·W(i)

• Dropout: L(i) = Drop(H(i)) ·W(i)

• Equivalently: L(i) = H(i) · g(W(i))
• g zeros out some rows and scale the other rows of W(i).
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Residual Connections (Kaiming He et al, 2015)

• Normal layer:

L(i) ← L(i−1) ·W(i) ; H(i) ← f(L(i−1))

• Residual layer:

L(i) ← L(i−1) ·W(i) ; H(i) ← f
(
L(i−1)

)
+ L(i−1)
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Highway Connections (Rupesh Srivastava et al, 2016)

• Highway layer:

L(i) ← L(i−1) ·W(i) ; c(i) ← Sigmoid
(
L(i−1) ·W(i)

c

)
H(i) ← c(i) ⊗ f

(
L(i−1)

)
+ (1− c(i))⊗ L(i−1)
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Shake-Shake (Xavier Gastaldi, 2017)

• Clone the main network
• Use different

parameters
• Average each layer
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