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@ Feed-forward Neural Networks
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Neural Nets: A Modeling Perspective

e The problem: want to learn a function y = f(x)

e The “data” solution:
o Collect data {(X(l),y(l)) , (x(g),y@)) s (X(N),y(N))}
o Come up with a set of hypotheses H = {f1,fa, ..., fj3; }

o Come up with a loss function L.
o Find f* = argmingc,, £(f).
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o Come up with a loss function

o Find f* = argmingc,, £(f).
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Neurons, Layers, Synapses

]

Linear

Input }

@O

Layer 1:
L[1]=a*Ww[1]

RY>M g, is called a feature.

e Input: a €
e Layer 1: (Layer 2 and above are similar)
o W g RMx|La], WE}J) is called a weight, or a synapse, or a parameter.
o LWLy W, Lgl) is called a pre-activation.
o HM d:eff(Ll). Hi(1> is called a neuron, or an activated value.
> f is called an activation function, or a non-linearity.

e The number of layers is called the network’s depth.
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Activation Functions

e Make the network non-linear.

HD — ¢ (H<D—1> .W<D>>
—f ( f ( F(D-2) _W<D—2>) . W(D))
:f(f(...f(a.w(l))...) .W(D>)

—a- WO . WwW®...wD) (without f)
W

=a- W

o Without £, H(firallayer) g just a linear transformation of a.

o Your “neural net” is as weak as a linear model.
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Some Popular Activation Functions

1

T I+exp {—z}
o Old-school. Nobody really cares, except:

e Sigmoid: f(x)

o f(z) € (0,1). Can be used for gating purposes.
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Some Popular Activation Functions

1

T I+exp {—z}
o Old-school. Nobody really cares, except:

e Sigmoid: f(x)

o f(z) € (0,1). Can be used for gating purposes.
exp {z} — exp {—x}

exp{z}+exp{—z}
o Better than Sigmoid, but also quite old, so nobody cares, except:

e Hyperbolic tangent: f(x) = tanh (z) =

o f(x) € [-1,1]. Can be used for clamping purposes.
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Some Popular Activation Functions
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1

T I+exp {—z}
o Old-school. Nobody really cares, except:

e Sigmoid: f(x)

o f(z) € (0,1). Can be used for gating purposes.
exp {z} — exp {—x}
exp{z} +exp{—z}

e Hyperbolic tangent: f(x) = tanh (z) =

o Better than Sigmoid, but also quite old, so nobody cares, except:

o f(x) € [-1,1]. Can be used for clamping purposes.

¢ Rectified Linear Unit (ReLU): f(z) = max (0, z).
o Fashionable. Everyone will love it for while. Just use it, or:
o Many variations: LeakyReLU, PReLU, CReLU, SeLU...
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® Back-propagation
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Carnegie Mellon

Neural Nets So Far

e The problem: want to learn a function y = f(x)

e The “data” solution:
o Collect data {(X(l),y(l)) , (X(Q),y(2)) s ee (X(N),y(N))}
o Come up with a set of hypotheses H = {f1,fa, ..., fj3;}
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o Come up with a loss function L.
> Can be anything, depending on the problem
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o Come up with a loss function L.
> Can be anything, depending on the problem
o Find f* = argming,, L(f)
> How?
> Gradient Descent (or one of its variations)
> Use back-prop to compute gradients
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Neural Nets are Composite Functions

o Recall that the final layer of a neural net is:
HP) = f (HPD . WD)

=1 (f (H#P72 . WD) W)

:f(f (---f(a-W(l))---) .W(D))

e Applying the loss function L:

E(H(D)) :ﬁ(f (f (...f(a.w(l))...> .W<D>)>

oL oL oL

e We need: WD WD " WD)
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Chain Rule and the Back-prop idea

Carnegie Mellon

eIf f: RV SR
o reads: f is a real function of N variables

e and g1, 92,...,9N : R = R, then:

of g
Zf g

81’ 89Z ox
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Chain Rule and the Back-prop idea

If f:RY 5 R

o reads: f is a real function of N variables

e and g1, 92,...,9N : R = R, then:

of g
Zf g

81’ 8gZ ox

This is what happens for each neuron at each layer.

. oL
e You can reverse this process to compute each ———
oW (1)
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Modern Implementation of Back-prop

another known
function

tensor

1

a known function

| input_1 | | input_2 | | input_N |

e Only need to compute local gradients of the functions
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Examples

C (nxp) H(m xn)
A A
tf.matmul tf.nn.relu
/\ X
A (m x n) B (n x p) K(m xn)

e For matrix multiplication:

0L _OL v OL _ 5 OL

0A - oC " 9B "oC
e For ReLU:
oL oL
= . >
3 3 1[K > 0]
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© Regularizations

11-695: Competitive Engineering’ Spring 2018 13 / 20




Carnegie Mellon

¢, Regularization

Change the activation function £ into

D
e =2 453 ku) 2
i=1 P

[ has to be chosen

{1 regularization encourages sparsity

D
£lee) = £ 4+ 3. Z‘W(i)|
i=1

{9 regularization encourages small weights

2

£lee) = £+ 3. ED: Hw(i)
i=1
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Linear

set the shaded neurons to 0

Nonlinear

Linear

e At train time: With probability p
o Randomly set some neurons to 0.
o Multiply the rest by 1 — p.
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DropOut: A Variational Interpretation

setting the O O O O

shaded neurons to 0

equivalent to setting
corresponding rows to 0

Normal: L(® = g® . w)
Dropout: L() = Drop(H®) .- W)
Equivalently: L) = H® . (W)

e g zeros out some rows and scale the other rows of W),
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@ Augmented Connections
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Residual Connections (Kaiming He et al, 2015)

| Linear | | Linear |

|Non|inear| |Non|inear|

1 1

| Linear | | Linear

) 1

Normal Residual
Layer Layer

e Normal layer:
L 6D w® . g0 -1
e Residual layer:
LW 6= . w@ . g ¢ (L(i—l)) + LD
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Highway Connections (Rupesh Srivastava et al, 2016)

|Non|inear| | sigmoid |

Linear Linear
Linear

|l-sigmoid|

Normal
Layer

Highway
Layer

e Highway layer:
L0 e L6 Wi ) Sigmoid (L0671 W)

HO D@ f (L) 4+ (1 - D) g L0
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Shake-Shake (Xavier Gastaldi, 2017) CarnegieMellon

Nonlinear Nonlinear

e Clone the main network

| Linear | | Linear | | Linear |

e Use different
arameters

| Linear | |Non|inear| |Non|inear| p

e Average each layer

Normal
Layer

Shake-Shake
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