11-695: Competitive Engineering Deep Learning Algorithms with TensorFlow

Spring 2018

11-695: Competitive Engineering Spring 2018 1 / 16

• Course staffs:

Logistics

Instructors

\mathbf{TAs}

John D. Vu Hieu

Hieu Pham

Hai Pham

Zhuo Li

Yijia Jin

- Class website:
 - Lectures slides; notes; announcements
 - Coming soon
- Piazza: https://piazza.com/class/jcc5x8zf60sz1

11-695: Competitive Engineering Sp

Because you want to learn Deep Learning.

11-695: Competitive Engineering Spring 2018 3 / 16

Image Classification

ImageNet classification task:

- The Holy Grail of computer vision
- 1,000,000 large images; 1,000 labels

11-695: Competitive Engineering

Virtually all popular automatic translation software

• Google, Facebook, Bing, Baidu

If you use one of these

Then you're using deep learning

Carnegie Mellon

Replicate Van Gogh

Li, Wang, Liu, Hou. Demystifying Neural Style Transfer. IJCAI 2017.

Defeat the World Champion in Go

Source: https://www.cnet.com/

Carnegie Mellon

11-695: Competitive Engineering Spring 2018 8 / 16

Healthcare

ImageNet classification task:

Guan, Gulshan, Dai, Hinton. Who Said What: Modeling Individual Labelers Improves Classification. AAAI 2018.

11-695: Competitive Engineering Spring 2018 9 / 16

How about other Deep Learning Classes? Carnegie Mellon

- Focus on implementation and software engineering
 - You will learn TensorFlow and its subtleties
- Boost your understanding of **deep learning algorithms**
 - Nothing redundant.

Why TensorFlow?

- A good deep learning platform
 - Strong GPU support, seamless distributed computing, etc.
 - $\circ~$ Active online community, from a cademia to industry
- Teaches important insights
 - Modular designs, computational graphs, static vs dynamics, etc.

Roadmap

11-695: Competitive Engineering Spring 2018 12 / 16

Weekly Quizzes

• Tests the knowledge from the last week

- Multiple choice; Fill in the blank; Short answers, etc.
- 10-15 minutes, at the end of Thursday lectures
- Sample quizz:
 - 1. Does regularization increase or decrease bias? How about variance?
 - 2. In a feedforward neural network, layer 5 has 128 units, and layer 6 has 256 units. What is the size of $\mathbf{W}^{5,6}$?

3. Find f'(x) where $f(x) = x \cdot \text{sigmoid}(\beta x)$.

- Python: NumPy and TensorFlow
- Download starter code and submit assignment via git
 - Please create your account on https://bitbucket.org/
 - then email us or request access to the assignment repo.
 - More on this next time.
- Assignments are hard, but:
 - You will have enough time if you start early
 - $\circ~$ You won't need GPUs :-)

Carnegie Mellon

Policy on Cheating

- We will mostly stay outside of the classroom during your quizzes
 - so please keep yourselves honored.
 - If you get caught, you're escalated to higher levels.
- Plagiarism check is run for each assignment
 - $\circ~$ First time caught: all involved parties get 0.
 - Second time: all involved parties get worse than 0.

