
11-695: Competitive Engineering
Python, NumPy and Introduction to TensorFlow

Spring 2018

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 1 / 43

Roadmap

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 2 / 43

Outline

1 Python: a Quick Review

2 NumPy: Working with High-Dimensional Data

3 TensorFlow: A Computational Framework

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 3 / 43

Python: The Hello World program

hello world.py
1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4
5 def main ():
6 print (" Hello World ")
7
8 if __name__ == " __main__ ":
9 main ()

In your Terminal
1 > python hello_world .py
2 Hello World

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 4 / 43

Python: The Hello World program

hello world.py
1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function

• Clear the nuances between Python2 and Python3

◦ print("Hello World") instead of print "Hello World"
◦ 5 // 3 instead of 5 / 3 for integer divisions
◦ and much more

• Please always have these lines! They are the future.

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 5 / 43

Python: The Hello World program

hello world.py
1 def main ():
2 print (" Hello World ")
3
4 if __name__ == " __main__ ":
5 main ()

• Indent with 2 spaces or 1 tab
◦ Never mix them! You will get hurt.

• It’s not the only way to write a Python program
◦ but it’s the standard. Please always use this.
◦ You’re more than welcomed to come up with your standards,

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 6 / 43

Python: Arguments via TensorFlow

hello world with args.py
1 import tensorflow as tf
2
3 flags = tf.app. flags
4 FLAGS = flags . FLAGS
5
6 flags . DEFINE_string (
7 " user_name ", # argument name
8 None , # default value
9 "We will greet this person " # help message

10)
11
12 def main(_args):
13 print ("Hello , {}!". format (FLAGS . user_name))
14
15 if __name__ == " __main__ ":
16 tf.app.run ()

In your Terminal
1 > python hello_world_with_args .py --user_name ="John"
2 Hello , John!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 7 / 43

Python: Arguments via TensorFlow

hello world with more args.py
1 # ... imports and others
2 flags . DEFINE_string (" user_name ", None , "We will greet this person ")
3 flags . DEFINE_integer (" num_prints ", 5, " Number of times to print the message ")
4
5 def main(_args):
6 for i in range (FLAGS . num_prints):
7 print ("{}. Hello , {}!". format (i, FLAGS . user_name))
8
9 if __name__ == " __main__ ":

10 tf.app.run ()

In your Terminal
1 > python hello_world_with_more_args .py --user_name ="John" --num_prints =3
2 1. Hello , John!
3 2. Hello , John!
4 3. Hello , John!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 8 / 43

Python: Basic Types: int, float, bool

• No need to specify types on declaration
• Operations are as normal. Boolean operations are in English.

basic types.py
1 def main(_args):
2 x = 5 # integer
3 print (type (x)) # output : <type ’int ’>
4 print (x + 1, x - 2, x * 3, x ** 4) # output : 6 3 15 625
5 x += 6 # now x = 11
6
7 y = 2.5 # float
8 print (type (y)) # output : <type ’float ’>
9 print (x + y, type (x + y)) # output : 13.5 <type ’float ’>

10
11 z = 25 # another integer
12 print (z / x, type (z / x)) # float division . output : 2.27273 <type ’float ’>
13 print (z // x, type (z // x)) # integer division . output : 2 <type ’int ’>
14
15 t = True # boolean : True , False
16 print (t, type (t)) # output : True <type ’bool ’>
17 u = (5 > 3) # Comparisons return True or False
18 v = (2 == 7) # There are: >, <, >=, <=, ==, !=
19 print (u and v, u or v, not u, u and not v) # False True False True

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 9 / 43

Python: String

string examples.py
1 def main(_args):
2 s = " Tensor " # this is a string
3 print (type (s)) # output : <type ’str ’>
4 print (s[1]) # output : e
5
6 t = ’Flow ’ # ’...’ and "..." are both ok , but do NOT mix them!
7 print (len(t)) # output : 4
8 w = s + t # + means concatenation . w is " TensorFlow "
9 print (w) # output : TensorFlow

10
11 m = "{} and {} are {} platforms ". format (w, " PyTorch ", 2) # "{}". format (...)
12 print (m) # output : TensorFlow and PyTorch are 2 platforms .
13
14 # A lot of built -in functions . Some examples :
15 print (m. upper ()) # output : TENSORFLOW AND PYTORCH ARE 2 PLATFORMS
16 print (m. replace ("o", "xx")) # output : Tens?rFl?w and PyT?rch are 2 platf ?rms

• Strings are immutable
◦ s[3] = "h" won’t work!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 10 / 43

Python: List

list examples.py
1 # ... imports and others
2 def main(_args):
3 a = [1, 2, 23, 2, 1, 27, 21] # this is a list
4
5 print (a, type (a)) # [1, 2, 23, 2, 1, 27, 21] <type ’list ’>
6 print (a[0] , a[3]) # index from 0. output : 1 2
7 print (a[-1], a[-2]) # -1 means last element , -2 means next -to -last. output : 21 27
8
9 a[0] = 7 # unlike string , list is mutable

10 print (a) # output : [7, 2, 23, 2, 1, 27, 21]
11
12 a[1] = " hello " # list can also contain different types
13 a[4] = [" tensor ", "flow"] # even another list
14 print (a) # output : [7, ’hello ’, 23, 2, [’ tensor ’, ’flow ’], 27, 21]
15
16 b = [2.5 , 6, 1.7] # this is another list
17 c = a + b # just like for strings , + means contatenation for lists
18 print (c) # output : [7, ’hello ’, 23, 2, [’ tensor ’, ’flow ’], 27, 21, 2.5 , 6, 1.7]

• List are extremely flexible and important in Python.

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 11 / 43

Python: Dict

dict examples.py
1 # ... imports and others
2 def main(_args):
3 d = { # creates a dictionary using {...}
4 " hello ": " world ", # pairs of key: value , separated by a comma
5 1: " TensorFlow ", # key and value can be of any types
6 6.0: [2, 2, 3]
7 }
8
9 print (d, type (d))

10 # output : {1: ’TensorFlow ’, ’hello ’: ’world ’, 6.0: [2, 2, 3]} <type ’dict ’>
11
12 print (d[" hello "], d [6.0])
13 # output : " world " [2, 2, 3]
14
15 d[" PyTorch "] = {" author ": " Facebook ", " version ": 2.0}
16 # add an element , which is itself a dict
17
18 print (d[" PyTorch "])
19 # output : {" author ": " Facebook ", " version ": 2.0}

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 12 / 43

Python: Loops and Iterations

loop examples.py
1 # ... imports and others
2 def main(_args):
3 for i in range (10): # basic for loop
4 print (i)
5
6 my_list = [3, 21, 4, 3.14 , " numpy ", 18, 281 , " tensorflow "]
7 for my_value in my_list : # loop through a list
8 print (my_value)
9 for i in range (len(my_list)): # this also works , but slower !

10 print (my_list [i])
11 for i, my_value in enumerate (my_list): # do this if you want the index
12 print (" Element at {} is {}". format (i, my_value))
13
14 a = [val for val in my_list if isinstance (val , float)] # all floats
15 print (a) # output : [3.14]
16 b = [val for i, val in enumerate (my_list) if i % 2 == 0] # even - indexed
17 print (b) # output : [3, 4, " numpy ", 281]
18
19 # while loop
20 x = 10
21 while x <= 20:
22 print ("Now we have x = {}". format (x))
23 x += 2

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 13 / 43

Outline

1 Python: a Quick Review

2 NumPy: Working with High-Dimensional Data

3 TensorFlow: A Computational Framework

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 14 / 43

NumPy: High-dimensional Arrays

• numpy.ndarray is a type to store and manipulate
high-dimensional data. It’s much faster than list.

• Each numpy.ndarray has a dtype. You should think of dtype as
the array’s data type.

numpy intro.py
1 import numpy as np
2
3 def main(_args):
4 x = [1, 2, 4, 2, 56, 21, 12, 421]
5 print (x) # output : [1, 2, 4, 2, 56, 21, 12, 421]
6 print (type (x)) # output : <type ’list ’>
7
8 x_np = np. array (x) # creates a numpy 1- dimensional array
9 print (x_np) # np - looking style : [1 2 4 2 56 21 12 421]

10 print (type (x_np)) # output : <type ’numpy . ndarray ’>
11 print (x_np. dtype) # output : int64
12
13 y_np = x_np. astype (np. int32) # cast the dtype
14 print (type (y_np)) # output : <type ’numpy . ndarray ’>
15 print (y_np. dtype) # output : int32

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 15 / 43

NumPy: rank, shape, and size

• rank: number of dimensions
◦ This is not the matrix rank in linear algebra

• shape: size in each dimension
• size: total number of elements

numpy rank shape size.py
1 def main(_args):
2 x = [[[2, 4, 18, 1],
3 [9, 1, 2, 12]] ,
4 [[12 , 12, 65, 94] ,
5 [92 , -1, 82, -8]],
6 [[93 , -6, 0, 91] ,
7 [78 , 81, 8, -1]]]
8 x_np = np. array (x, dtype =np. int32)
9

10 print (np.ndim(x_np)) # output : 3. It used to be np.rank(x), but was updated .
11 print (np. shape (x_np)) # output : (3, 2, 4)
12 print (np.size(x_np)) # output : 24

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 16 / 43

NumPy: Memory Layout

numpy rank shape size.py
1 def main(_args):
2 x = [[[2, 4, 18, 1],
3 [9, 1, 2, 12]] ,
4 [[12 , 12, 65, 94] ,
5 [92 , -1, 82, -8]],
6 [[93 , -6, 0, 91] ,
7 [78 , 81, 8, -1]]]
8 x_np = np. array (x, dtype =np. int32)
9

10 print (np.ndim(x_np)) # output : 3. It used to be np.rank(x), but was updated .
11 print (np. shape (x_np)) # output : (3, 2, 4)
12 print (np.size(x_np)) # output : 24

• NumPy arrays are row major
• The numbers are stored in your computer’s memory as follows

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 17 / 43

NumPy: Access a Single Element

numpy memory demonstration.py
1 def main(_args):
2 # create x_np as before
3 print (x_np [2, 0, 1]) # output : -6

• NumPy arrays are row major
• An access to an element happens as follows

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 18 / 43

NumPy: Reshape and Memory Layout

numpy reshape.py
1 def main(_args):
2 # create x_np as before
3 y_np = np. reshape (x_np , [3, 4, 2])
4 z_np = np. reshape (y_np , [6, 4])
5 w_np = np. reshape (x_np , [1, 6, 4])

• When you call np.reshape, memory stays the same
• Only the memory layout changes
• y np, z np, and w np points to the same memory with x np

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 19 / 43

NumPy: Reshape with -1 Dimension

numpy reshape.py
1 def main(_args):
2 # create x_np as before
3 print (np. shape (x_np)) # output : (3, 2, 4)
4
5 y_np = np. reshape (x_np , [-1, 4, 2])
6 print (np. shape (y_np)) # output : (3, 4, 2)
7
8 z_np = np. reshape (x_np , [8, -1])
9 print (np. shape (z_np)) # output : (8, 3)

• If you know x np and all but one reshaping dimensions
◦ then you also know the remaining dimension

• numpy allows you not to worry about the misisng dimension
◦ By using -1 at no more than one dimension

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 20 / 43

NumPy: Indexing 1-dim Arrays

numpy indexing.py
1 def main(_args):
2 x = [2, 4, 18, 9, 1, 2, 12, 12, 65, 92, -1, 82, 93, -6, 0, 78, 81, 8]
3 x_np = np. array (x, dtype =np. int32)

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 21 / 43

NumPy: Indexing 1-dim Arrays

• Quick quizz: what do the followings return?

• How do you select everything in x np?

◦ x np[0:]
◦ Here’s a better way: x np[:]

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 22 / 43

NumPy: Indexing 1-dim Arrays

• Quick quizz: what do the followings return?

• How do you select everything in x np?

◦ x np[0:]
◦ Here’s a better way: x np[:]

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 22 / 43

NumPy: Indexing 1-dim Arrays

• Quick quizz: what do the followings return?

• How do you select everything in x np?
◦ x np[0:]

◦ Here’s a better way: x np[:]

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 22 / 43

NumPy: Indexing 1-dim Arrays

• Quick quizz: what do the followings return?

• How do you select everything in x np?
◦ x np[0:]
◦ Here’s a better way: x np[:]

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 22 / 43

NumPy: Summary on Indexing 1-dim Arrays

• x np[5]: one element
• x np[[7, 5, 2, 9]]: indexing by a list of indices
• x np[3:7]: indexing by range, right-hand side is exclusive
• x np[6:]: indexing from an index (inclusive)
• x np[:8]: indexing to an index (exclusive)
• x np[:-1]: last element is indexed by -1

• x np[-2]: next-to-last element is indexed -2

• x np[:]: take everything

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 23 / 43

NumPy: Indexing 2-dims Arrays

• Think of each dimension is a 1-dim array.

numpy indexing 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 24 / 43

NumPy: Final Notes on Indexing

• For higher-dim arrays, think of each dim as a 1-dim index.
• There are other ways to index numpy arrays

◦ but avoid them if possible. They are extremely confusing.
◦ When confused, try and see!

• Now try the following quizz:

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 25 / 43

NumPy: Transpose

numpy transpose 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)
4 y_np = np. transpose (x_np)

• Transpose of a 2-dim array is just like transpose of a matrix


2 4 18 9 1 2
12 12 65 92 −1 82
93 −6 0 78 81 8

 −→



2 12 93
4 12 −6
18 65 0
9 92 78
1 −1 81
2 82 8



• What happens to the memory of y np?

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 26 / 43

NumPy: Transpose

numpy transpose 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)
4 y_np = np. transpose (x_np)

• Transpose of a 2-dim array is just like transpose of a matrix


2 4 18 9 1 2
12 12 65 92 −1 82
93 −6 0 78 81 8

 −→



2 12 93
4 12 −6
18 65 0
9 92 78
1 −1 81
2 82 8


• What happens to the memory of y np?

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 26 / 43

NumPy: Transpose

numpy transpose 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)
4 y_np = np. transpose (x_np)

 2 4 18 9 1 2
12 12 65 92 −1 82
93 −6 0 78 81 8

 −→


2 12 93
4 12 −6
18 65 0
9 92 78
1 −1 81
2 82 8



11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 27 / 43

NumPy: Transpose

numpy transpose 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)
4 y_np = np. transpose (x_np)

• np.transpose does not change the memory

◦ but you should think that it does
• tf.transpose does ˆ ˆ

◦ More on this later, but
◦ Please try to remember it, so that you don’t get confused

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 28 / 43

NumPy: Transpose

numpy transpose 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)
4 y_np = np. transpose (x_np)

• np.transpose does not change the memory
◦ but you should think that it does

• tf.transpose does ˆ ˆ
◦ More on this later, but
◦ Please try to remember it, so that you don’t get confused

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 28 / 43

NumPy: Transpose

numpy transpose 2 dim.py
1 def main(_args):
2 x = [[2 , 4, 18, 9, 1, 2], [12 , 12, 65, 92, -1, 82] , [93 , -6, 0, 78, 81, 8]]
3 x_np = np. array (x, dtype =np. int32)
4 y_np = np. transpose (x_np)

• np.transpose does not change the memory
◦ but you should think that it does

• tf.transpose does ˆ ˆ
◦ More on this later, but
◦ Please try to remember it, so that you don’t get confused

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 28 / 43

NumPy: Transpose and Indexing

numpy transpose and index.py
1 def main(_args):
2 x = np. random . uniform (-1.0 , 1.0 , [1000 , 1000]) # create a random array
3 y = np. transpose (x)
4 print (x[345 , :]) # fast
5 print (x[:, 345]) # slow

• How about y[345, :] and y[:, 345]?

• What if we transpose again at some points?
◦ Don’t hurt yourself
◦ Don’t try to index after you tranpose in numpy

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 29 / 43

NumPy: Transpose and Indexing

numpy transpose and index.py
1 def main(_args):
2 x = np. random . uniform (-1.0 , 1.0 , [1000 , 1000]) # create a random array
3 y = np. transpose (x)
4 print (x[345 , :]) # fast
5 print (x[:, 345]) # slow

• How about y[345, :] and y[:, 345]?
• What if we transpose again at some points?

◦ Don’t hurt yourself
◦ Don’t try to index after you tranpose in numpy

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 29 / 43

NumPy: Transpose and Indexing

numpy transpose and index.py
1 def main(_args):
2 x = np. random . uniform (-1.0 , 1.0 , [1000 , 1000]) # create a random array
3 y = np. transpose (x)
4 print (x[345 , :]) # fast
5 print (x[:, 345]) # slow

• How about y[345, :] and y[:, 345]?
• What if we transpose again at some points?

◦ Don’t hurt yourself
◦ Don’t try to index after you tranpose in numpy

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 29 / 43

NumPy: Maths on Arrays

numpy simple maths.py
1 def main(_args):
2 x = np. random . uniform (-1.0 , 1.0 , [1000 , 1000]) # create a random array
3
4 # for god ’s sake , please don ’t do this !!!
5 for i in range (1000):
6 for j in range (1000):
7 x[i, j] += 1
8
9 # this is the way to go

10 x += 1

• numpy has a lot of built-in maths. Always use them if possible
◦ x + 10.0: add 10.0 to all elements of x
◦ x ** 2: compute x2

i,j for all i, j

◦ 1.0 / (x + np.sqrt(2)): compute 1
xi,j+

√
2 for all i, j

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 30 / 43

NumPy: Maths on Arrays

numpy maths functions.py
1 def main(_args):
2 x = np. random . uniform (-1.0 , 1.0 , [1000 , 1000]) # create a random array
3 y = np. zeros_like (x) # create an array with the same size of x, fille with 0
4
5 # for god ’s sake , please don ’t do this !!!
6 for i in range (1000):
7 for j in range (1000):
8 y[i, j] = np.exp(x[i, j])
9

10 # this is the way to go
11 y = np.exp(x)

• numpy Even the functions
◦ np.exp(x): compute exi,j for all i, j

◦ np.sin(x): compute sin xi,j for all i, j

◦ np.cos(x): ...
◦ np.tanh(x): ...
◦ You can look them up on numpy’s homepage

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 31 / 43

NumPy: Maths on Arrays

numpy maths norm.py
1 def main(_args):
2 x = np. random . uniform (-1.0 , 1.0 , [1000 , 1000]) # create a random array
3
4 # for god ’s sake , please don ’t do this !!!
5 s = 0
6 for i in range (1000):
7 for j in range (1000):
8 s += x[i, j] ** 2
9

10 # this is the way to go
11 s = np.sum(x ** 2)

• numpy and these so-called reducing operations
◦ np.sum(x): compute the sum of all elements in x

◦ np.min(x): compute the minimum of all elements in x

◦ np.max(x): ...
◦ You can look them up on numpy’s homepage

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 32 / 43

NumPy: Summary of Maths on Arrays

• You should hate and avoid for loop
• You should hate and avoid while loop
• You should hate and avoid whatever loops

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 33 / 43

Outline

1 Python: a Quick Review

2 NumPy: Working with High-Dimensional Data

3 TensorFlow: A Computational Framework

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 34 / 43

TensorFlow: Getting Started

• Install: https://www.tensorflow.org/install/

• Usage:

tf basic program.py
1 import tensorflow as tf
2
3 def main(_args):
4 # your programs
5
6 if __name__ == " __main__ ":
7 tf.app.run ()

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 35 / 43

Structure of a tf program

• A program in tf always consists of:
◦ Building a computational graph
◦ Execute the relevant parts in the built graph

tf basic program.py
1 import tensorflow as tf
2
3 def main(_args):
4 g = tf. Graph () # create a computational graph
5 with g. as_default (): # everything you do with TF happens in the graph g
6 build_tf_graph () # define the operations in g
7
8 with tf. Session () as sess: # TF boiler - plate code
9 sess.run(tf. global_variables_initializer ()) # TF boiler - plate code

10
11 # execute the TF graph , e.g.:
12 sess.run ([train_op , compute_loss])
13
14 if __name__ == " __main__ ":
15 tf.app.run ()

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 36 / 43

Computational Graph

tf graph demonstration 1.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 x = tf. constant ([[0 , -2, 3], [-1, -31, -7]], dtype =tf. int32)
5 y = tf. constant ([[1 , 1, 1, 3], [7, -1, 9, 4], [-9, 3, 8, 5]] , dtype =tf. int32)
6 z = tf. matmul (x, y)
7 return x, y, z
8
9 def main(_args):

10 # other code ...
11 build_tf_graph ()
12 with tf. Session () as sess:
13 output = sess.run ([z]) # execute the operation z
14 print (output)

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 37 / 43

Another Computational Graph

tf graph demonstration 2.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 x = tf. random_uniform ([2 , 3], minval =-5, maxval =5, dtype =tf. int32)
5 y = tf. constant ([[1 , 1, 1, 3], [7, -1, 9, 4], [-9, 3, 8, 5]] , dtype =tf. int32)
6 z = tf. matmul (x, y)
7 return x, y, z
8
9 def main(_args):

10 # other code ...
11 x, y, z = build_tf_graph ()
12 with tf. Session () as sess:
13 output = sess.run ([z]) # execute the operation z
14 print (output)

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 38 / 43

Computational Graph

• Formally speaking
◦ tf computational graph is a directed acycic graph (DAG)
◦ Nodes are called operations, or ops
◦ Ops produce tensors
◦ Tensors flow around through edges

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 39 / 43

Yet Another Computational Graph

tf execution order.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 x = tf. constant (1, dtype =tf. int32)
5 y = tf. constant (8, dtype =tf. int32)
6 z = x + y
7 return x, y, z
8
9 def main(_args):

10 # other code ...
11 x, y, z = build_tf_graph ()
12 with tf. Session () as sess:
13 output = sess.run ([x, y, z]) # execute all 3 operations
14 print (output) # output : [1, 8, 9]

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 40 / 43

What about now?

tf execution order 2.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 y = tf. constant (8, dtype =tf. int32)
4 z = x + y
5 return x, y, z
6
7 def main(_args):
8 # other code ...
9 with tf. Session () as sess:

10 output = sess.run ([x, y, z]) # execute all 3 operations
11 print (output) # output : [1, 8, 9]

• Unlike tf.constant, tf.Variable can be changed
11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 41 / 43

What about now?

tf execution order 3.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_x = tf. assign (x, 10)
4 y = tf. constant (8, dtype =tf. int32)
5 z = x + y
6 return x, y, z, assign_x
7
8 def main(_args):
9 # other code ...

10 with tf. Session () as sess:
11 output = sess.run ([z, assign_x]) # execute all 3 operations
12 print (output) # output : ?

We don’t know!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 42 / 43

What about now?

tf execution order 3.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_x = tf. assign (x, 10)
4 y = tf. constant (8, dtype =tf. int32)
5 z = x + y
6 return x, y, z, assign_x
7
8 def main(_args):
9 # other code ...

10 with tf. Session () as sess:
11 output = sess.run ([z, assign_x]) # execute all 3 operations
12 print (output) # output : ?

We don’t know!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 42 / 43

What about now?

• Execution order follows the computational graph’s topological
order.

• and nothing else!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 43 / 43

What about now?

• Execution order follows the computational graph’s topological
order.

• and nothing else!

11-695: Competitive EngineeringPython, NumPy and Introduction to TensorFlowSpring 2018 43 / 43

	Python: a Quick Review
	NumPy: Working with High-Dimensional Data
	TensorFlow: A Computational Framework

