11-695: Competitive Engineering Implementing Recurrent Neural Networks

Spring 2018

11-695: Competitive Engineering Spring 2018 1 / 33

Outline

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- 7 Regularization

Recurrent Neural Networks

- Processes a sequence of signals
 - $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T \in \mathbb{R}^D$
- ... in a qequential order
 - $\circ \mathbf{h}_0 = \mathbf{0}_H$ $\circ \mathbf{h}_t = \mathbf{f}(\mathbf{x}_t, \mathbf{h}_{t-1})$
- Designing an RNN means designing $\mathbf{f} : \mathbb{R}^D \times \mathbb{R}^H \to \mathbb{R}^H$.

Example 1: A Dummy RNN

- With the function $\mathbf{f}(\mathbf{x},\mathbf{h})=\mathbf{x}+\mathbf{h}$
 - $\mathbf{h}_0 = \mathbf{0}_H$ • $\mathbf{h}_0 = \mathbf{h}_0$
 - $\circ \mathbf{h}_t = \mathbf{h}_{t-1} + \mathbf{x}_t$
- This network requires D = H, and is really dumb...

- With the function $\mathbf{f}(\mathbf{x}, \mathbf{h}) = g(\mathbf{x} \cdot \mathbf{W}_x + \mathbf{h} \cdot \mathbf{W}_h)$
 - $\circ~g$ is an activation function, e.g. tanh, ReLU, etc.
 - $\mathbf{W}_x \in \mathbb{R}^{D \times H}, \, \mathbf{W}_x \in \mathbb{R}^{H \times H}$ are the *shared* parameters.
- Much less dumb. Invented in 1990. Drove people crazy in 2011...

Example 3: Long Short-Term Memory (LSTM)

 $\bullet\,$ The function ${\bf f}$ goes wild

$$\begin{bmatrix} \mathbf{i} \\ \mathbf{f} \\ \mathbf{o} \\ \mathbf{g} \end{bmatrix}^{\top} = \begin{bmatrix} \text{sigmoid} \\ \text{tanh} \\ \text{sigmoid} \\ \text{sigmoid} \end{bmatrix} \mathbf{W}_{H \times (D+H)} \cdot \begin{bmatrix} \mathbf{x}_t^{\top} \\ \mathbf{h}_t^{\top} \end{bmatrix}$$
(1)
$$\mathbf{c}_t = \mathbf{i} \otimes \mathbf{g} + \mathbf{f} \cdot \mathbf{c}_{t-1}$$
$$\mathbf{h}_t = \mathbf{o} \otimes \tanh \mathbf{c}_{t-1}$$

• Finally looks smart. Invented in 1997. Drove people crazy in 2014...

Example 4: Gated Recurrent Units (GRU)

• Someone doesn't like LSTM and wants to be creative with ${f f}$

$$\mathbf{z} = \operatorname{sigmoid}(\mathbf{x}_{t} \cdot \mathbf{W}_{xz} + \mathbf{h}_{t-1} \cdot \mathbf{W}_{hz})$$

$$\mathbf{r} = \operatorname{sigmoid}(\mathbf{x}_{t} \cdot \mathbf{W}_{xr} + \mathbf{h}_{t-1} \cdot \mathbf{W}_{hr})$$

$$\tilde{\mathbf{h}} = \operatorname{sigmoid}(\mathbf{x}_{t} \cdot \tilde{\mathbf{W}}_{x} + (\mathbf{r} \cdot \mathbf{h}_{t-1}) \cdot \tilde{\mathbf{W}}_{h})$$

$$\mathbf{h}_{t} = (1 - \mathbf{z}) \otimes \mathbf{h}_{t-1} + \mathbf{z} \otimes \tilde{\mathbf{h}}$$
(2)

 $\bullet\,$ Sure. We're so tired with different formulas for f

Example 5: Neural Architecture Search

- You can also use a computer to generate good formulas for **f**
- My advisor's work :D

Example 6: Efficient Neural Architecture Search

- Yet another one, also generated by a computer
- My work :D
 - looks significantly like a pokemon

11-695: Competitive Engineering Spring 2018 9 / 33

Carnegie Mellon

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- **7** Regularization

- You can be *very* creative about RNNs:
 - How to choose the input sequence $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T$
 - What to do with the "hidden" sequence $\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_T$

Outline

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- 7 Regularization

Word embeddings

- To process a sequence of words
 - Store a dictionary that maps words to vectors in \mathbf{R}^D
 - $\circ~$ Use these \mathbb{R}^D vectors as inputs to an RNN.
- Work by: Yoshua Bengio et al (2003). Drove people crazy in 2013.

Outline

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- 7 Regularization

Adding a Softmax head

- You can sum over the \mathbf{h}_t and hook up a softmax head to make a prediction about your sequence
 - This example: sentiment analysis
- My undergraduate advisor's work...

11-695: Competitive Engineering Spring 2018 15 / 33

Multiple softmax heads

• You can use the \mathbf{h}_t as to predict the next word in your sequence

- It's called *language model*
- Because it can model $p(w_t|w_{< t})$

11-695: Competitive Engineering Spring 2018 16 / 33

Sequence to Sequence models

- Only use the softmax heads where you want to generate a translated word
 - $\circ~$ It's called neural machine translation
 - Because it can model $p(\mathbf{t}_t | \mathbf{t}_{< t}, \mathbf{s})$
- Another of my advisor's work...

Attention

- Yet another way to manipulate your \mathbf{h}_t states.
- \mathbf{e}_i , \mathbf{f}_j are your blue and red states

$$\alpha_{j,i} = g(\mathbf{f}_j, \mathbf{e}_i)$$

$$a_{j,i} = \text{Softmax}(\alpha_{j,1}, \alpha_{j,2}, ..., \alpha_{j,|\mathbf{s}|})$$

$$c_j = \sum_{i=1}^{|\mathbf{s}|} a_{j,i} \mathbf{e}_i$$
(3)

11-695: Competitive Engineering Spring 2018 18 / 33

Outline

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- 7 Regularization

The Picture So Far

- We have a sequence of hidden vectors
 - In general: $\mathbf{h}_i \in \mathbf{R}^H$ for any input sequences
 - In this case: $\mathbf{e}_i, \mathbf{f}_j \in \mathbf{R}^H$ are the blue and red states
- Can hook up softmax heads to these \mathbf{h}_i , \mathbf{e}_i , \mathbf{f}_j to make predictions.
- How can we train the RNN to make such predictions?

The Computational Pipeline: Hidden States

• Inputs: the words. You need *both* English and French words.

 \circ how, are, you, ?, $\langle s \rangle,$ comment, allez, -, vous, ?, $\langle s \rangle$

• Word embeddings: look up the words in a saved dictionary

• $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_5, \mathbf{y}_6 \in \mathbb{R}^D$

- **Recurrent Computations:** *f* is your chosen RNN function
 - Encoder: $\mathbf{e}_0 = 0; \mathbf{e}_t = f(\mathbf{x}_t, \mathbf{e}_{t-1})$
 - Decoder: $\mathbf{f}_0 = \mathbf{e}_4$; $\mathbf{f}_t = f(\mathbf{y}_t, \mathbf{f}_{t-1})$

The Computational Pipeline: Loss Function

• Predictions: Let $\mathbf{W}_{\text{soft}} \in \mathbb{R}^{D \times \text{vocab}_\text{size}}$ be trainable parameters

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{f}_{t-1} \cdot \mathbf{W}_{\text{soft}}), \text{ for } t = 2, 3, ..., |\mathbf{y}|$$
(4)
$$p(\mathbf{y}|\mathbf{x}) = \prod_{t=2}^{|\mathbf{y}|} p(y_t|y_{< t}, \mathbf{x})$$
(5)

• Loss function: The canonical cross-entropy loss

$$\mathcal{L} = -\log p(\mathbf{y}|\mathbf{x}) = -\sum_{t=2}^{|\mathbf{y}|} \log p(y_t|y_{< t}, \mathbf{x})$$
(6)

11-695: Competitive Engineering Spring 2018 22 / 33

The Computational Pipeline: Training

- We have defined a computational graph
 - $\circ~$ which is a composite of many functions
- Thus we can use back-propagation to compute the gradients
 - which is just the chain rule
- Model parameters consist of:
 - Relevant word embeddings
 - $\circ \ \mathbf{W}_{\mathrm{soft}}$
 - $\circ~$ Any parameters of the recurrent function f

11-695: Competitive Engineering Spring 2018 23 / 33

The Computational Pipeline: Attention

- **Recurrent Computations:** *f* is your chosen RNN function
 - Encoder: $\mathbf{e}_0 = 0$; $\mathbf{e}_t = f(\mathbf{x}_t, \mathbf{e}_{t-1})$; Decoder: $\mathbf{f}_0 = \mathbf{e}_4$; $\mathbf{f}_t = f(\mathbf{y}_t, \mathbf{f}_{t-1})$
- **Predictions:** previously without attention

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{f}_{t-1} \cdot \mathbf{W}_{\text{soft}}), \text{ for } t = 2, 3, ..., |\mathbf{y}|$$
(7)

• **Predictions:** now with attention

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{a}(\mathbf{f}_{t-1}, \mathbf{e}_{1\cdots|\mathbf{x}|}) \cdot \mathbf{W}_{\text{soft}})$$
(8)

11-695: Competitive Engineering Spring 2018 24 / 33

The Computational Pipeline: Attention

• **Predictions:** now with attention

$$p(y_t|y_{< t}, \mathbf{x}) = \text{Softmax}(\mathbf{a}(\mathbf{f}_{t-1}, \mathbf{e}_{1\cdots|\mathbf{x}|}) \cdot \mathbf{W}_{\text{soft}})$$
(9)

• Attention: how is $\mathbf{a}(\mathbf{f}, \mathbf{e}_{1 \dots |\mathbf{x}|})$ computed?

$$\alpha_i = g(\mathbf{f}, \mathbf{e}_i); \ a_i = \text{Softmax}(\alpha_{1 \cdots |\mathbf{x}|}); \ \mathbf{a}(\mathbf{f}, \mathbf{e}_{1 \cdots |\mathbf{x}|}) = \sum_{i=1}^{|\mathbf{x}|} a_i \mathbf{e}_i \quad (10)$$

11-695: Competitive Engineering Spring 2018 25 / 33

The Computational Pipeline: Attention

• Attention: how is $\mathbf{a}(\mathbf{f}, \mathbf{e}_{1 \dots |\mathbf{x}|})$ computed?

$$\alpha_i = g(\mathbf{f}, \mathbf{e}_i); \ a_i = \text{Softmax}(\alpha_{1 \dots |\mathbf{x}|}); \ \mathbf{a}(\mathbf{f}, \mathbf{e}_{1 \dots |\mathbf{x}|}) = \sum_{i=1}^{|\mathbf{x}|} a_i \mathbf{e}_i \quad (11)$$

- Choices of g:
 - Bahdanau attention: $g(\mathbf{f}, \mathbf{e}_i) = \tanh(\mathbf{f} \cdot \mathbf{w}_f + \mathbf{e}_i \cdot \mathbf{w}_e) \cdot \mathbf{v}$, where $\mathbf{w}_f, \mathbf{w}_e \in \mathbf{R}^{H \times H}$ and $\mathbf{v} \in \mathbb{R}^{H \times 1}$ are trainable parameters
 - Luong attention: $g(\mathbf{f}, \mathbf{e}_i) = \mathbf{f} \cdot \mathbf{e}_i^{\top}$

The Computational Pipeline: Attention

- Even with attention, the overall RNN is still a composite of functions
- The training procedure stays the same

Outline

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- 7 Regularization

How to Translate with a Trained RNN?

• Goes step-by-step, based on your own predictions

What If You Are Wrong?

- You live with your mistakes...
- Yes, it is bad. Therefore many people are finding a fix
 - Reinforcement Learning: Data as Demonstrator; MIXER, etc.
 - Reward-Augmented Maximum Likelihood

Outline

- **2** Using Recurrent Neural Networks as Models
- **3** Flexible Inputs
- **4** Flexible Outputs
- **5** Training Recurrent Neural Networks
- 6 Test Time Usage
- **7** Regularization

General Regularization Strategy: Dropout

 $\bullet\,$ Each colored arrowed can be dropped using the same mask.

 $\circ~$ Word embeddings dropout mean to remove the whole word

Other Strategies: ℓ_p

- ℓ_2 norm of all or some parameters
- ℓ_2 norm of all or some hidden states: $\sum_i \|\mathbf{e}_i\|^2$, $\sum_j \|\mathbf{f}_j\|^2$
- ℓ_2 difference of all or some hidden states: $\sum_i \|\mathbf{e}_i \mathbf{e}_{i-1}\|^2$, $\sum_j \|\mathbf{f}_j - \mathbf{f}_{j-1}\|^2$