
11-695: Competitive Engineering
Implementing Recurrent Neural Networks

Spring 2018

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 1 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 2 / 33

Recurrent Neural Networks

• Processes a sequence of signals
◦ x1,x2, ...,xT ∈ RD

• ... in a qequential order
◦ h0 = 0H

◦ ht = f(xt,ht−1)

• Designing an RNN means designing f : RD × RH → RH .

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 3 / 33

Example 1: A Dummy RNN

• With the function f(x,h) = x + h
◦ h0 = 0H

◦ ht = ht−1 + xt

• This network requires D = H, and is really dumb...

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 4 / 33

Example 2: Vanilla RNN

• With the function f(x,h) = g(x ·Wx + h ·Wh)
◦ g is an activation function, e.g. tanh, ReLU, etc.
◦ Wx ∈ RD×H , Wx ∈ RH×H are the shared parameters.

• Much less dumb. Invented in 1990. Drove people crazy in 2011...

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 5 / 33

Example 3: Long Short-Term Memory (LSTM)

• The function f goes wild
i
f
o
g


>

=


sigmoid

tanh
sigmoid
sigmoid

 WH×(D+H) ·
[
x>t
h>t

]

ct = i⊗ g + f · ct−1

ht = o⊗ tanh ct−1

(1)

• Finally looks smart. Invented in 1997. Drove people crazy in
2014...

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 6 / 33

Example 4: Gated Recurrent Units (GRU)

• Someone doesn’t like LSTM and wants to be creative with f

z = sigmoid(xt ·Wxz + ht−1 ·Whz)

r = sigmoid(xt ·Wxr + ht−1 ·Whr)

h̃ = sigmoid(xt · W̃x + (r · ht−1) · W̃h)

ht = (1− z)⊗ ht−1 + z⊗ h̃

(2)

• Sure. We’re so tired with different formulas for f

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 7 / 33

Example 5: Neural Architecture Search

• You can also use a computer to generate good formulas for f

• My advisor’s work :D

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 8 / 33

Example 6: Efficient Neural Architecture Search

• Yet another one, also generated by a computer
• My work :D

◦ looks significantly like a pokemon

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 9 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 10 / 33

Back to the big picture

• You can be very creative about RNNs:
◦ How to choose the input sequence x1,x2, ...,xT

◦ What to do with the “hidden” sequence h1,h2, ...,hT

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 11 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 12 / 33

Word embeddings

• To process a sequence of words
◦ Store a dictionary that maps words to vectors in RD

◦ Use these RD vectors as inputs to an RNN.

• Work by: Yoshua Bengio et al (2003). Drove people crazy in 2013.

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 13 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 14 / 33

Adding a Softmax head

• You can sum over the ht and hook up a softmax head to make a
prediction about your sequence
◦ This example: sentiment analysis

• My undergraduate advisor’s work...
11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 15 / 33

Multiple softmax heads

• You can use the ht as to predict the next word in your sequence
◦ It’s called language model
◦ Because it can model p(wt|w<t)

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 16 / 33

Sequence to Sequence models

• Only use the softmax heads where you want to generate a
translated word
◦ It’s called neural machine translation
◦ Because it can model p(tt|t<t, s)

• Another of my advisor’s work...

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 17 / 33

Attention

• Yet another way to manipulate your ht states.
• ei, fj are your blue and red states

αj,i = g(fj , ei)

aj,i = Softmax(αj,1, αj,2, ..., αj,|s|)

cj =
|s|∑

i=1
aj,iei

(3)

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 18 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 19 / 33

The Picture So Far

• We have a sequence of hidden vectors
◦ In general: hi ∈ RH for any input sequences
◦ In this case: ei, fj ∈ RH are the blue and red states

• Can hook up softmax heads to these hi, ei, fj to make predictions.
• How can we train the RNN to make such predictions?

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 20 / 33

The Computational Pipeline: Hidden States

• Inputs: the words. You need both English and French words.
◦ how, are, you, ?, 〈s〉, comment, allez, -, vous, ?, 〈s〉

• Word embeddings: look up the words in a saved dictionary
◦ x1, x2, x3, x4, y1, y2, y3, y4, y5, y6 ∈ RD

• Recurrent Computations: f is your chosen RNN function
◦ Encoder: e0 = 0; et = f(xt, et−1)
◦ Decoder: f0 = e4; ft = f(yt, ft−1)

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 21 / 33

The Computational Pipeline: Loss Function

• Predictions: Let Wsoft ∈ RD×vocab size be trainable parameters

p(yt|y<t,x) = Softmax(ft−1 ·Wsoft), for t = 2, 3, ..., |y| (4)

p(y|x) =
|y|∏
t=2

p(yt|y<t,x) (5)

• Loss function: The canonical cross-entropy loss

L = − log p(y|x) = −
|y|∑
t=2

log p(yt|y<t,x) (6)

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 22 / 33

The Computational Pipeline: Training

• We have defined a computational graph
◦ which is a composite of many functions

• Thus we can use back-propagation to compute the gradients
◦ which is just the chain rule

• Model parameters consist of:
◦ Relevant word embeddings
◦ Wsoft

◦ Any parameters of the recurrent function f

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 23 / 33

The Computational Pipeline: Attention

• Recurrent Computations: f is your chosen RNN function
◦ Encoder: e0 = 0; et = f(xt, et−1); Decoder: f0 = e4; ft = f(yt, ft−1)

• Predictions: previously without attention

p(yt|y<t,x) = Softmax(ft−1 ·Wsoft), for t = 2, 3, ..., |y| (7)

• Predictions: now with attention

p(yt|y<t,x) = Softmax(a(ft−1, e1···|x|) ·Wsoft) (8)

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 24 / 33

The Computational Pipeline: Attention

• Predictions: now with attention

p(yt|y<t,x) = Softmax(a(ft−1, e1···|x|) ·Wsoft) (9)

• Attention: how is a(f , e1···|x|) computed?

αi = g(f , ei); ai = Softmax(α1···|x|); a(f , e1···|x|) =
|x|∑
i=1

aiei (10)

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 25 / 33

The Computational Pipeline: Attention

• Attention: how is a(f , e1···|x|) computed?

αi = g(f , ei); ai = Softmax(α1···|x|); a(f , e1···|x|) =
|x|∑
i=1

aiei (11)

• Choices of g:
◦ Bahdanau attention: g(f , ei) = tanh (f ·wf + ei ·we) · v, where

wf ,we ∈ RH×H and v ∈ RH×1 are trainable parameters
◦ Luong attention: g(f , ei) = f · e>i

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 26 / 33

The Computational Pipeline: Attention

• Even with attention, the overall RNN is still a composite of
functions

• The training procedure stays the same

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 27 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 28 / 33

How to Translate with a Trained RNN?

• Goes step-by-step, based on your own predictions

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 29 / 33

What If You Are Wrong?

• You live with your mistakes...
• Yes, it is bad. Therefore many people are finding a fix

◦ Reinforcement Learning: Data as Demonstrator; MIXER, etc.
◦ Reward-Augmented Maximum Likelihood

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 30 / 33

Outline

1 Recurrent Neural Networks as a Composite of Functions

2 Using Recurrent Neural Networks as Models

3 Flexible Inputs

4 Flexible Outputs

5 Training Recurrent Neural Networks

6 Test Time Usage

7 Regularization

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 31 / 33

General Regularization Strategy: Dropout

• Each colored arrowed can be dropped using the same mask.
◦ Word embeddings dropout mean to remove the whole word

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 32 / 33

Other Strategies: `p

• `2 norm of all or some parameters
• `2 norm of all or some hidden states:

∑
i ‖ei‖2,

∑
j ‖fj‖2

• `2 difference of all or some hidden states:
∑

i ‖ei − ei−1‖2,∑
j ‖fj − fj−1‖2

11-695: Competitive EngineeringImplementing Recurrent Neural NetworksSpring 2018 33 / 33

	Recurrent Neural Networks as a Composite of Functions
	Using Recurrent Neural Networks as Models
	Flexible Inputs
	Flexible Outputs
	Training Recurrent Neural Networks
	Test Time Usage
	Regularization

