11-695: Competitive Engineering Supervised Learning

Spring 2018

11-695: Competitive Engineering Spring 2018 1 / 40

Outline

1 The Learning Problem

- **2** Data and Label
- **3** Modeling
- **4** Error and Loss Function
- **5** Learning
- **6** Overfitting and Regularization

Image Classification

- Find a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
 - \circ **x**: an image
 - $\circ~{\bf y}:$ dog, cat, bird, car, etc.

Machine Translation

- Find a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
 - $\circ~\mathbf{x}:$ an English sentence
 - $\circ~$ y: an French sentence

How to Find the Function f?

How to Find the Function f?

Learn from data

11-695: Competitive Engineering Spring 2018 5 / 40

Outline

1 The Learning Problem

2 Data and Label

3 Modeling

- **4** Error and Loss Function
- **5** Learning
- **6** Overfitting and Regularization

Data and Label

- Pairs of (\mathbf{x}, \mathbf{y}) : $\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$
- Each $\mathbf{x}^{(i)}$ is called a *data point*
- Each $\mathbf{y}^{(i)}$ is called a *label*
- $\mathbf{x}^{(i)}$ and $\mathbf{y}^{(i)}$ can be anything

Carnegie Mellon

• Computers don't "see" things like we do

Carnegie Mellon

• Computers don't "see" things like we do

• ... so it's hard to make them think like we do

- Label **y** is in a finite set $C = \{1, 2, ..., |C|\}$
 - *Classification* problems

- Label **y** is in a finite set $C = \{1, 2, ..., |C|\}$
 - \circ Classification problems
- Label $\mathbf y$ is in a "continuous" set, e.g. $\mathbf y \in [0,1]$
 - *Regression* problems

- Label \mathbf{y} is in a finite set $\mathcal{C} = \{1, 2, ..., |\mathcal{C}|\}$
 - \circ Classification problems
- Label $\mathbf y$ is in a "continuous" set, e.g. $\mathbf y \in [0,1]$
 - *Regression* problems
- Label \mathbf{y} is has some self-dependencies, e.g. a sentence in French
 - Structured prediction problems

- Label \mathbf{y} is in a finite set $\mathcal{C} = \{1, 2, ..., |\mathcal{C}|\}$
 - \circ Classification problems
- Label $\mathbf y$ is in a "continuous" set, e.g. $\mathbf y \in [0,1]$
 - *Regression* problems
- Label ${\bf y}$ is has some self-dependencies, e.g. a sentence in French
 - Structured prediction problems
- Why learn these?
 - The types of problems you tackle (loosely) tell you how to design the learning models.

Outline

1 The Learning Problem

2 Data and Label

3 Modeling

- **4** Error and Loss Function
- **5** Learning
- **6** Overfitting and Regularization

An Example

- Modeling is the process of coming up with *class of candidates*
 - $\circ~$ Each value of w gives us an ${\bf f}$

11-695: Competitive Engineering Spring 2018 11 / 40

Carnegie Mellon

An Example

• It's okay to come up with very bad classes of ${\bf f}$

Carnegie Mellon

Some Maths

- Class of hypotheses $\mathcal{H} = {\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_N}$
 - $\circ\,$ singular: hypothesis

Some Maths

- Class of hypotheses $\mathcal{H} = {\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_N}$
 - $\circ\,$ singular: hypothesis
- It is possible that $|\mathcal{H}| = \infty$
 - $\mathcal{H} = \{\mathbf{f}(\mathbf{x}; \mathbf{w}) = \sum_{i} w_i x_i | \text{ for all } \mathbf{w}\}$
 - Each **w** gives an **f**, so we write $\mathbf{y} = f(\mathbf{x}; \mathbf{w})$
 - $\circ~$ People also write $\mathbf{y}=\mathbf{f}_{\mathbf{w}}(\mathbf{x})~ \mathrm{or}~ \mathbf{y}=\mathbf{f}^{\mathbf{w}}(\mathbf{x})$

Some Maths

- Class of hypotheses $\mathcal{H} = {\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_N}$
 - $\circ~$ singular: hypothesis
- It is possible that $|\mathcal{H}| = \infty$
 - $\mathcal{H} = \{\mathbf{f}(\mathbf{x}; \mathbf{w}) = \sum_{i} w_i x_i | \text{ for all } \mathbf{w}\}$
 - Each **w** gives an **f**, so we write $\mathbf{y} = f(\mathbf{x}; \mathbf{w})$
 - $\circ~$ People also write $\mathbf{y}=\mathbf{f_w}(\mathbf{x})~ \mathrm{or}~ \mathbf{y}=\mathbf{f^w}(\mathbf{x})$
- Some times you have more than one w. For example:
 - $\mathbf{x} \in \mathbb{R}^{1 \times 100}$
 - $\mathbf{y}_1 = (\mathbf{x} \cdot \mathbf{w}_1)^2$ where $\mathbf{w}_1 \in \mathbb{R}^{100 \times 200}$
 - $\mathbf{y}_2 = 1/(\mathbf{y}_1 \cdot \mathbf{w}_2)$ where $\mathbf{w}_2 \in \mathbb{R}^{100 \times 1}$
 - We use θ to denote all w's. $\mathbf{y} = \mathbf{f}(\mathbf{x}; \mathbf{w}_1, \mathbf{w}_2) = \mathbf{f}(\mathbf{x}; \theta)$. θ is called *parameters*.

The Bias-Variance Tradeoff

- Intuitions to design a good class of hypotheses \mathcal{H}
 - $\circ~$ Bias: small ${\cal H}$ may leave out the correct model
 - $\circ~$ Variance: large ${\cal H}$ is hard to navigate and find the correct model

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car $\mathbf{x},$ namely $\mathbf{y} \in \mathbb{R}$

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car $\mathbf{x},$ namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

 $\circ \mathbf{y} = \mathbf{x}_1 \cdot \mathbf{w}$

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car $\mathbf{x},$ namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

 $\circ \mathbf{y} = \mathbf{x}_1 \cdot \mathbf{w}$

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car $\mathbf{x},$ namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

 $\circ \mathbf{y} = \mathbf{x}_1 \cdot \mathbf{w}$

• $\mathbf{y} = \mathbf{x} \cdot \mathbf{w}$ is called a *linear* transformation.

Carnegie Mellon

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

Carnegie Mellon

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

• Softmax classification:

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$
 - $\mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$
 - $\circ \mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$
 - $\circ \ \ell = \mathbf{x}_1 \cdot \mathbf{w}$

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$
 - $\circ \mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$
 - $\circ \ \ell = \mathbf{x}_1 \cdot \mathbf{w}$
 - What is ℓ 's dimension?

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

•
$$\mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

$$\circ \ \ell = \mathbf{x}_1 \cdot \mathbf{w}$$

• What is ℓ 's dimension?

• **Prob**
$$[\mathbf{y} = i] = \frac{\exp{\{\ell_i\}}}{\sum_{j=1}^{5} \exp{\{\ell_j\}}}$$

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

•
$$\mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

$$\circ \ \ell = \mathbf{x}_1 \cdot \mathbf{w}$$

• What is ℓ 's dimension?

• **Prob**
$$[\mathbf{y} = i] = \frac{\exp{\{\ell_i\}}}{\sum_{j=1}^{5} \exp{\{\ell_j\}}}$$

Case Study 2: Image classification

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

•
$$\mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

$$\circ \ \ell = \mathbf{x}_1 \cdot \mathbf{w}$$

• What is ℓ 's dimension?

• **Prob**
$$[\mathbf{y} = i] = \frac{\exp{\{\ell_i\}}}{\sum_{j=1}^{5} \exp{\{\ell_j\}}}$$

Carnegie Mellon

• The function $s(\ell) = \exp \{\ell_i\} / \sum_j \exp \{\ell_j\}$ is called the *Softmax function*.

Outline

1 The Learning Problem

- **2** Data and Label
- **3** Modeling
- **4** Error and Loss Function
- **5** Learning
- **6** Overfitting and Regularization

• Supposed you have designed the class of hypotheses $\circ \ \mathcal{H} = \{\mathbf{f}(\cdot; \theta) | \theta \in \mathbb{R}^D\}$

- Supposed you have designed the class of hypotheses $\circ \ \mathcal{H} = \{\mathbf{f}(\cdot; \theta) | \theta \in \mathbb{R}^D\}$
- How do you tell if $\mathbf{f}(\cdot; \theta_1)$ is better than $\mathbf{f}(\cdot; \theta_2)$?

- Supposed you have designed the class of hypotheses $\circ \ \mathcal{H} = \{\mathbf{f}(\cdot; \theta) | \theta \in \mathbb{R}^D\}$
- How do you tell if $\mathbf{f}(\cdot; \theta_1)$ is better than $\mathbf{f}(\cdot; \theta_2)$?
 - Idea 1: take a pair (\mathbf{x}, \mathbf{y}) , look how different is \mathbf{y} from $\mathbf{f}(\mathbf{x}; \theta)$

- Supposed you have designed the class of hypotheses $\circ \ \mathcal{H} = \{\mathbf{f}(\cdot; \theta) | \theta \in \mathbb{R}^D\}$
- How do you tell if $\mathbf{f}(\cdot; \theta_1)$ is better than $\mathbf{f}(\cdot; \theta_2)$?
 - Idea 1: take a pair (\mathbf{x}, \mathbf{y}) , look how different is \mathbf{y} from $\mathbf{f}(\mathbf{x}; \theta)$
 - \triangleright sample size is too small
 - ▷ may just get lucky (or unlucky)

- Supposed you have designed the class of hypotheses $\circ \ \mathcal{H} = \{\mathbf{f}(\cdot; \theta) | \theta \in \mathbb{R}^D\}$
- How do you tell if $\mathbf{f}(\cdot; \theta_1)$ is better than $\mathbf{f}(\cdot; \theta_2)$?
 - Idea 1: take a pair (\mathbf{x}, \mathbf{y}) , look how different is \mathbf{y} from $\mathbf{f}(\mathbf{x}; \theta)$
 - \triangleright sample size is too small
 - ▷ may just get lucky (or unlucky)
 - Idea 2: take many pairs (\mathbf{x}, \mathbf{y}) , look how different is \mathbf{y} from $\mathbf{f}(\mathbf{x}; \theta)$ on average

- Supposed you have designed the class of hypotheses $\circ \ \mathcal{H} = \{\mathbf{f}(\cdot; \theta) | \theta \in \mathbb{R}^D\}$
- How do you tell if $\mathbf{f}(\cdot; \theta_1)$ is better than $\mathbf{f}(\cdot; \theta_2)$?
 - Idea 1: take a pair (\mathbf{x}, \mathbf{y}) , look how different is \mathbf{y} from $\mathbf{f}(\mathbf{x}; \theta)$
 - \triangleright sample size is too small
 - ▷ may just get lucky (or unlucky)
 - Idea 2: take many pairs (\mathbf{x}, \mathbf{y}) , look how different is \mathbf{y} from $\mathbf{f}(\mathbf{x}; \theta)$ on average

Carnegie Mellon

18 / 40

 $\triangleright~$ How about this case? Which is worse?

Loss Function

Carnegie Mellon

• Notations:

- **x** is your data; **y** is your label;
- **f** is your model; θ is your parameter;
- $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$ is your *empirical prediction*.

Loss Function

• Notations:

- $\circ~{\bf x}$ is your data; ${\bf y}$ is your label;
- **f** is your model; θ is your parameter;
- $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$ is your *empirical prediction*.
- Loss function: $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \mathcal{L}(\mathbf{y}, \mathbf{f}(\mathbf{x}, \theta))$

Loss Function

• Notations:

- $\circ~{\bf x}$ is your data; ${\bf y}$ is your label;
- **f** is your model; θ is your parameter;
- $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$ is your *empirical prediction*.
- Loss function: $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = \mathcal{L}(\mathbf{y}, \mathbf{f}(\mathbf{x}, \theta))$
 - How "off" is **y** from $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{x}; \theta)$

11-695: Competitive Engineering Spring 2018 19 / 40

Case Study 1: Car prize prediction

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

Case Study 1: Car prize prediction

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

• $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = (\hat{\mathbf{y}} - \mathbf{y})^2$ is called the ℓ_2 -loss

Case Study 1: Car prize prediction

- Data: image of a car $\mathbf{x} \in \mathbb{R}^{3 \times 512 \times 512}$
- Label: cost of the car \mathbf{x} , namely $\mathbf{y} \in \mathbb{R}$
- Linear regression:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{786432 \times 1} \}$, where $786432 = 3 \times 512 \times 512$.

•
$$\mathbf{x}_1 = \text{reshape}(\mathbf{x}, [1, 786432])$$

$$\circ \ \hat{\mathbf{y}} = \mathbf{x}_1 \cdot \mathbf{w}$$

- $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = (\hat{\mathbf{y}} \mathbf{y})^2$ is called the ℓ_2 -loss
- $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = |\hat{\mathbf{y}} \mathbf{y}|$ is called the ℓ_1 -loss

Case Study 2: Image classification

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

$$\circ \mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

•
$$\ell = \mathbf{x}_1 \cdot \mathbf{w}$$

• $\hat{p} = \mathbf{Prob} \left[\mathbf{y} = i \right] = \frac{\exp \left\{ \ell_i \right\}}{\sum_{j=1}^5 \exp \left\{ \ell_j \right\}}$

Carnegie Mellon

11-695: Competitive Engineering Spring 2018 21 / 40

Case Study 2: Image classification

- Data: $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$
- Label: $\mathbf{y} \in \{ \text{dog}, \text{cat}, \text{house}, \text{car}, \text{flower} \}$

• For ease: $\mathbf{y} \in \{1, 2, 3, 4, 5\}$

- Softmax classification:
 - Parameters: $\theta = \{ \mathbf{w} \in \mathbb{R}^{3072 \times 10} \}.$

$$\circ \mathbf{x}_1 = \operatorname{reshape}(\mathbf{x}, [1, 3072])$$

$$\circ \ \ell = \mathbf{x}_1 \cdot \mathbf{w}$$

•
$$\hat{p} = \operatorname{Prob}[\mathbf{y} = i] = \frac{\exp\{\ell_i\}}{\sum_{j=1}^{5} \exp\{\ell_j\}}$$

Carnegie Mellon

• Cross-entropy loss: $\mathcal{L}(\hat{p}, \mathbf{y}) = -\log \hat{p}_{\mathbf{y}}$.

•
$$\mathcal{L}(\hat{p}, \mathbf{y}) = -\log \hat{p}_{\mathbf{y}}$$

• One of the most important loss functions of deep learning.

- $\mathcal{L}(\hat{p}, \mathbf{y}) = -\log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident

- $\mathcal{L}(\hat{p}, \mathbf{y}) = -\log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
 - \circ But \mathcal{L} is always positive

- $\mathcal{L}(\hat{p}, \mathbf{y}) = -\log \hat{p}_{\mathbf{y}}$
 - One of the most important loss functions of deep learning.
 - \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
 - \circ But \mathcal{L} is always positive
 - When $\hat{p}_{\mathbf{y}}$ is large, $\hat{p}_{\neq \mathbf{y}}$ are small

•
$$\mathcal{L}(\hat{p}, \mathbf{y}) = -\log \hat{p}_{\mathbf{y}}$$

- One of the most important loss functions of deep learning.
- \mathcal{L} is mall when $\hat{p}_{\mathbf{y}}$ is large, i.e. model is more confident
- \circ But \mathcal{L} is always positive
- When $\hat{p}_{\mathbf{y}}$ is large, $\hat{p}_{\neq \mathbf{y}}$ are small
- Differentiable. Recall $\hat{p}_i = \exp{\{\ell_i\}} / \sum_i \exp{\{\ell_j\}}$
 - ▷ Important for learning.

Outline

1 The Learning Problem

- **2** Data and Label
- **3** Modeling
- **4** Error and Loss Function
- **5** Learning
- **6** Overfitting and Regularization

The Story So Far

• The problem: want to learn a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$

The Story So Far

- The problem: want to learn a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
- The "data" solution:

The Story So Far

- The problem: want to learn a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
- The "data" solution:
 - Collect data $\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$

The Story So Far

- The problem: want to learn a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
- The "data" solution:
 - Collect data $\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$
 - Come up with a set of hypotheses $\mathcal{H} = \{\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_{|\mathcal{H}|}\}$

The Story So Far

- The problem: want to learn a function $\mathbf{y} = \mathbf{f}(\mathbf{x})$
- The "data" solution:
 - Collect data $\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$
 - Come up with a set of hypotheses $\mathcal{H} = \{\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_{|\mathcal{H}|}\}$

• Come up with a loss function $\mathcal{L} : \mathbf{f} \in \mathcal{H} \to \mathbb{R}$, which tells you how bad is a hypothesis \mathbf{f} .

Learning

• Learning is the process of finding $\mathbf{f} \in \mathcal{H}$ that minimizes $\mathcal{L}(\mathbf{f})$

Learning

• Learning is the process of finding $\mathbf{f} \in \mathcal{H}$ that minimizes $\mathcal{L}(\mathbf{f})$

• In math: $\mathbf{f}^* = \operatorname{argmin}_{\mathbf{f} \in \mathcal{H}} \mathcal{L}(\mathbf{f})$

Case Study: Linear Regression

• Data: $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$

• For simplicity: $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}$.

Case Study: Linear Regression

• Data: $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$

• For simplicity: $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}$.

• Hypotheses:
$$\mathcal{H} = {\mathbf{f}(\mathbf{x}; a, b) = a \cdot \mathbf{x} + b}$$

Case Study: Linear Regression

- Data: $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$ • For simplicity: $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}$.
- Hypotheses: $\mathcal{H} = {\mathbf{f}(\mathbf{x}; a, b) = a \cdot \mathbf{x} + b}$
- Loss function:

$$\mathcal{L}(\mathbf{f}) = \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

Case Study: Linear Regression

- Data: $\{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$ • For simplicity: $\mathbf{x}_i, \mathbf{y}_i \in \mathbb{R}$.
- Hypotheses: $\mathcal{H} = \{\mathbf{f}(\mathbf{x}; a, b) = a \cdot \mathbf{x} + b\}$
- Loss function:

$$\mathcal{L}(\mathbf{f}) = \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

• Learning: try to find

$$a^*, b^* = \operatorname*{argmin}_{a,b} \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

Case Study: Linear Regression

• Learning: try to find

$$a^*, b^* = \operatorname{argmin}_{a,b} \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$

Case Study: Linear Regression

• Learning: try to find

$$a^*, b^* = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$
$$= \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$

Case Study: Linear Regression

• Learning: try to find

$$a^*, b^* = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$
$$= \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$

• Approach: Find *gradients* and set to 0

$$\ell(a,b) = \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$
Case Study: Linear Regression

• Learning: try to find

$$a^*, b^* = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$
$$= \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$

• Approach: Find *gradients* and set to 0

$$\ell(a,b) = \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$
$$\frac{\partial \ell}{\partial a} = \sum_{i=1}^{N} 2\mathbf{x}_i (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$

Case Study: Linear Regression

• Learning: try to find

$$a^*, b^* = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{f}(\mathbf{x}_i) - \mathbf{y}_i)^2$$
$$= \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)^2$$

• Approach: Find *gradients* and set to 0

$$\begin{split} \ell(a,b) &= \sum_{i=1}^{N} (a\mathbf{x}_{i} + b - \mathbf{y}_{i})^{2} \\ \frac{\partial \ell}{\partial a} &= \sum_{i=1}^{N} 2\mathbf{x}_{i} (a\mathbf{x}_{i} + b - \mathbf{y}_{i}) \\ \frac{\partial \ell}{\partial b} &= \sum_{i=1}^{N} 2(a\mathbf{x}_{i} + b - \mathbf{y}_{i}) \\ \mathbf{11-695: \ Competitive \ Engineering: \qquad Spring \ 2018 \qquad 27 \ / \ 40} \end{split}$$

Case Study: Linear Regression

• Approach: Find gradients and set to 0

$$\frac{\partial \ell}{\partial a} = \sum_{i=1}^{N} \mathbf{x}_i (a\mathbf{x}_i + b - \mathbf{y}_i)$$

$$\frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)$$

Case Study: Linear Regression

• Approach: Find gradients and set to 0

$$\frac{\partial \ell}{\partial a} = \sum_{i=1}^{N} \mathbf{x}_i (a\mathbf{x}_i + b - \mathbf{y}_i)$$
$$= a \sum_{i=1}^{N} \mathbf{x}_i^2 + b \sum_{i=1}^{N} \mathbf{x}_i - \sum_{i=1}^{N} \mathbf{x}_i \mathbf{y}_i$$
$$\frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)$$

• This is a linear system in a, b. You can solve it!

11-695: Competitive Engineering Spring 2018 28 / 40

Case Study: Linear Regression

• Approach: Find gradients and set to 0

$$\frac{\partial \ell}{\partial a} = \sum_{i=1}^{N} \mathbf{x}_i (a\mathbf{x}_i + b - \mathbf{y}_i)$$
$$= a \sum_{i=1}^{N} \mathbf{x}_i^2 + b \sum_{i=1}^{N} \mathbf{x}_i - \sum_{i=1}^{N} \mathbf{x}_i \mathbf{y}_i$$
$$\frac{\partial \ell}{\partial b} = \sum_{i=1}^{N} (a\mathbf{x}_i + b - \mathbf{y}_i)$$
$$= a \sum_{i=1}^{N} \mathbf{x}_i + b \cdot N - \sum_{i=1}^{N} \mathbf{y}_i$$

• This is a linear system in a, b. You can solve it!

11-695: Competitive Engineering Spring 2018 28 / 40

Learning is not Always Easy!

- Sometimes setting gradients to 0 does not work
 - The system does not have any solution
 - Too complicated to solve
- Neural networks: millions of parameters
 - o or more extreme... (Shazeer et al., 2017)

	Test	Test	#Parameters
	Perplexity	Perplexity	excluding embedding
	10 epochs	100 epochs	and softmax layers
Best Published Results	34.7	30.6	151 million
Low-Budget MoE Model	34.1		4303 million
Medium-Budget MoE Model	31.3		4313 million
High-Budget MoE Model	28.0		4371 million

- You simply *cannot* find $\mathbf{f}^* = \operatorname{argmin}_{\mathbf{f} \in \mathcal{H}} \mathcal{L}(\mathbf{f})$
- Rely on *numerical optimization algorithms*.

11-695: Competitive Engineering Spring 2018 29 / 40

Gradient Descent

• Data:
$$\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$$

- Hypotheses: $\mathcal{H} = \{ \mathbf{f}(\mathbf{x}; \theta) : \theta \in \mathbb{R}^D \}$
- Loss function

$$\ell(heta) = \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; heta), \mathbf{y}_i)$$

Gradient Descent

• Data:
$$\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$$

- Hypotheses: $\mathcal{H} = \{ \mathbf{f}(\mathbf{x}; \theta) : \theta \in \mathbb{R}^D \}$
- Loss function

$$\ell(\theta) = \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

• Gradient Descent (GD) algorithm

Gradient Descent

• Data:
$$\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$$

• Hypotheses:
$$\mathcal{H} = \{\mathbf{f}(\mathbf{x}; \theta) : \theta \in \mathbb{R}^D\}$$

• Loss function

$$\ell(\theta) = \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

- Gradient Descent (GD) algorithm
 - Randomly initialize $\theta_0 \in \mathbb{R}^D$.
 - Repeat until convergence
 - \triangleright Compute the gradient: $\nabla_{\theta} \ell(\theta^{(t)})$
 - $\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} \eta \nabla_{\theta} \ell(\theta^{(t)})$

Problems with Gradient Descent

• We have to compute

$$\nabla_{\theta} \ell(\theta^{(t)}) = \nabla_{\theta} \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

Problems with Gradient Descent

• We have to compute

$$\nabla_{\theta} \ell(\theta^{(t)}) = \nabla_{\theta} \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_{i};\theta), \mathbf{y}_{i}) = \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(\mathbf{f}(\mathbf{x}_{i};\theta), \mathbf{y}_{i})$$

Carnegie Mellon

Problems with Gradient Descent

• We have to compute

$$\nabla_{\theta} \ell(\theta^{(t)}) = \nabla_{\theta} \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_{i};\theta), \mathbf{y}_{i}) = \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(\mathbf{f}(\mathbf{x}_{i};\theta), \mathbf{y}_{i})$$

- It's very slow if N is large.
 - ImageNet: N = 1,200,000
 - English-German translation: N = 4,500,000
 - o Google 1-billion-words data: N = 1,000,000,000
 - Human Genes: N = ???

Solution: Stochastic Gradient Descent

- Data: $\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$
- Hypotheses: $\mathcal{H} = \{ \mathbf{f}(\mathbf{x}; \theta) : \theta \in \mathbb{R}^D \}$
- Loss function

$$\ell(\theta) = \sum_{i=1}^{N} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

- Stochastic Gradient Descent (SGD) algorithm
 - Randomly initialize $\theta_0 \in \mathbb{R}^D$.
 - Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{\nabla}_{\theta} = \sum_{i=1}^{B} \nabla_{\theta} \mathcal{L}(\mathbf{f}(\mathbf{x}_{i};\theta),\mathbf{y}_{i})$$

$$\triangleright$$
 Update: $\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$

Notes on Stochastic Gradient Descent

• Data:
$$\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$$

- Randomly initialize $\theta_0 \in \mathbb{R}^D$.
- Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{
abla}_{m{ heta}} = \sum_{i=1}^B
abla_{m{ heta}} \mathcal{L}(\mathbf{f}(\mathbf{x}_i;m{ heta}),\mathbf{y}_i)$$

 $\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$

• You have to really sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data

Notes on Stochastic Gradient Descent

• Data:
$$\left\{ \left(\mathbf{x}^{(1)}, \mathbf{y}^{(1)} \right), \left(\mathbf{x}^{(2)}, \mathbf{y}^{(2)} \right), ..., \left(\mathbf{x}^{(N)}, \mathbf{y}^{(N)} \right) \right\}$$

- Randomly initialize $\theta_0 \in \mathbb{R}^D$.
- Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{
abla}_{m{ heta}} = \sum_{i=1}^B
abla_{ heta} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; heta), \mathbf{y}_i)$$

 $\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$

- You have to really sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - otherwise, your gradient is *biased*.
 - References: Lyapunov functions; Leon Bottou's PhD thesis.

- SGD so far:
 - Randomly initialize $\theta_0 \in \mathbb{R}^D$.
 - Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{
abla}_{ heta} \!=\! \sum_{i=1}^B
abla_{ heta} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; heta), \mathbf{y}_i)$$

 $\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$

- SGD so far:
 - Randomly initialize $\theta_0 \in \mathbb{R}^D$.
 - Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{\nabla}_{\theta} = \sum_{i=1}^{B} \nabla_{\theta} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

 $\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$

• In TensorFlow: tf.train.GradientDescentOptimizer

- SGD so far:
 - Randomly initialize $\theta_0 \in \mathbb{R}^D$.
 - Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{\nabla}_{\theta} = \sum_{i=1}^{B} \nabla_{\theta} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; \theta), \mathbf{y}_i)$$

$$\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$$

- In TensorFlow: tf.train.GradientDescentOptimizer
- Assuming that you have a gradient ∇_{θ}

- SGD so far:
 - Randomly initialize $\theta_0 \in \mathbb{R}^D$.
 - Repeat until convergence
 - \triangleright Sample $(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_B, \mathbf{y}_B)$ from your data
 - ▷ Compute the stochastic gradient:

$$\hat{\nabla}_{\boldsymbol{ heta}} = \sum_{i=1}^{B}
abla_{ heta} \mathcal{L}(\mathbf{f}(\mathbf{x}_i; heta), \mathbf{y}_i)$$

$$\triangleright \text{ Update: } \theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \hat{\nabla}_{\theta}$$

- In TensorFlow: tf.train.GradientDescentOptimizer
- Assuming that you have a gradient ∇_{θ}
- There are many other ways to update, more than just

$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \nabla_{\theta}$$

• Keeps a running average of ∇_{θ}

$$v^{(t+1)} \leftarrow (1-m)v^{(t)} + m \cdot \nabla_{\theta}$$
$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta v^{(t+1)}$$

- You have to choose m, η
- In TensorFlow: tf.train.MomentumOptimizer

• Keeps a running average of ∇^2_{θ}

$$v^{(t+1)} \leftarrow (1-m)v^{(t)} + m \cdot \nabla_{\theta}^{2}$$
$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \eta \cdot \frac{\nabla_{\theta}}{\sqrt{v^{(t+1)}}}$$

- You have to choose m, η
- In TensorFlow: tf.train.AdagradOptimizer

Outline

1 The Learning Problem

- **2** Data and Label
- **3** Modeling
- **4** Error and Loss Function
- **5** Learning
- **6** Overfitting and Regularization

Is it good to minimize loss function?

Image credit: wikipedia

Is it good to minimize loss function?

Image credit: wikipedia

• NO!

11-695: Competitive Engineering Spring 2018 38 / 40

- Suppose your loss function is $\ell(\theta)$
- Change it into

$$\ell^{\mathrm{reg}}(\theta) = \ell(\theta) + \beta \left\| \theta \right\|$$

- You have to choose β
- The term $\beta \|\theta\|^2$ is called the ℓ -2 regularization.

Regularization

- There are other choices
- ℓ -1 regularization

$$\ell^{\mathrm{reg}}(\theta) = \ell(\theta) + \beta |\theta|^2$$

• ℓ -p regularization

$$\ell^{\mathrm{reg}}(\theta) = \ell(\theta) + \beta \left(\sum_{i=1}^{D} \theta_i^p\right)^{1/p}$$

• DropOut, DropConnect, Variational Regularization

$$\ell^{\rm reg}(\theta) = \ell(g(\theta)),$$

where $g(\theta)$ "corrupts" θ .