11-695: Competitive Engineering

Supervised Learning

Spring 2018

11-695: Competitive Engineering; Spring 2018 1/ 40



O u t line Carnegie Mellon

@ The Learning Problem
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Image Classification

Carnegie Mellon

e Find a function y = f(x)
o X: an image
o y: dog, cat, bird, car, etc.

— | classifier
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Carnegie Mellon

Machine Translation

e Find a function y = f(x)
o x: an English sentence

o y: an French sentence

comment allez D vous

comment
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Learn from data
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® Data and Label
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Data and Label Carnegie Mellon

Pairs of (x,y): {(xV),y), (x@,y@)), .., (xN), y M)}
Each x(@ is called a data point
Each y( is called a label

x(® and y® can be anything
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Carnegie Mellon

Data Representation

e Computers don’t “see” things like we do
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Carnegie Mellon

Data Representation

e Computers don’t “see” things like we do

e ... so it’s hard to make them think like we do
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Carnegie Mellon

Some Types of Labels

e Label y is in a finite set C = {1,2,...,|C|}

o Classification problems
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Carnegie Mellon

Some Types of Labels

Label y is in a finite set C = {1,2,...,|C|}

o Classification problems

Label y is in a “continuous” set, e.g. y € [0, 1]

o Regression problems

Label y is has some self-dependencies, e.g. a sentence in French
o Structured prediction problems

Why learn these?
o The types of problems you tackle (loosely) tell you how to design

the learning models.
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© Modeling
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Carnegie Mellon

An Example

e Modeling is the process of coming up with class of candidates

o Each value of w gives us an f

x=(][2] [ ] (LT T T T T BT T
have w=/t /[ [ [/ [T ] T BT T LT 7 2T
|

y = np.sum(w * x)
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Carnegie Mellon

An Example

e It’s okay to come up with very bad classes of f

x=(][2] [ ] (T LT T T T BT T
have w=/t /[ ][] [ [T ] T BT T LT 72T
|

y = np.sum(w * x)
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e Class of hypotheses H = {f1,f5,....fx}

o singular: hypothesis
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Carnegie Mellon

Some Maths

e Class of hypotheses H = {f1,fs,....,fx}
o singular: hypothesis
e It is possible that |H| = oo
o H={f(x;w)=>, wx;| for all w}
o Each w gives an f, so we write y = f(x;w)

o People also write y = fy,(x) or y = f%(x)
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S ome Mat hS Carnegie Mellon

e Class of hypotheses H = {f1,fs,....,fx}
o singular: hypothesis
e It is possible that |H| = oo
o H={f(x;w)=>, wx;| for all w}
o Each w gives an f, so we write y = f(x;w)
o People also write y = fy,(x) or y = f%(x)
e Some times you have more than one w. For example:
o x € R1X100

o y; = (x-wi)? where w; € R100%200

o

y2 = 1/(y1 - w2) where wy € R100%1

[¢]

We use 6 to denote all w’s. y = f(x; wyi, wa) = f(x;60). 0 is called

parameters.
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e Intuitions to design a good class of hypotheses H
o Bias: small H may leave out the correct model

o Variance: large H is hard to navigate and find the correct model

correct model

bias . variance
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Carnegie Mellon

Case Study 1: Car prize prediction

e Data: image of a car x c R3><512)<512

e Label: cost of the car x, namely y € R
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Case Study 1: Car prize prediction

e Data: image of a car x c R3><512)<512

e Label: cost of the car x, namely y € R
e Linear regression:

R786432 x1 }
)

o Parameters: § = {w € where

786432 = 3 x 512 x 512.
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Carnegie Mellon

Case Study 1: Car prize prediction

e Data: image of a car x c R3><512)<512

e Label: cost of the car x, namely y € R
e Linear regression:

R786432 x1 }
)

o Parameters: § = {w € where

786432 = 3 x 512 x 512.
o x3 = reshape(x, [1, 786432])

O y=X1'W
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Carnegie Mellon

Case Study 1: Car prize prediction

e Data: image of a car x c R3><512)<512

e Label: cost of the car x, namely y € R

e Linear regression:

o Parameters: § = {w € R786432X11 wwhere
786432 = 3 x 512 x 512. |
Multiply w
o x3 = reshape(x, [1, 786432]) ¢
cy=x1-w $51,821
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Carnegie Mellon

Case Study 1: Car prize prediction

e Data: image of a car x c R3><512)<512

e Label: cost of the car x, namely y € R

e Linear regression:

o Parameters: § = {w € R786432X11 wwhere
786432 = 3 x 512 x 512. |
Multiply w
o x3 = reshape(x, [1, 786432]) ¢
cy=x1-w $51,821

oy =x-wis called a linear

transformation.
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Carnegie Mellon

Case Study 2: Image classification

e Data: x € R3x32x32

e Label: y € {dog, cat, house, car, flower}

o For ease: y € {1,2,3,4,5}
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Carnegie Mellon

Case Study 2: Image classification

e Data: x € R3x32x32

e Label: y € {dog, cat, house, car, flower}
o For ease: y € {1,2,3,4,5}
e Softmax classification:
o Parameters: § = {w € R3072x10}
o x3 = reshape(x,[1,3072])
o l=x1-W

o What is £’s dimension?
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Carnegie Mellon

Case Study 2: Image classification

e Data: x € R3*32x32
e Label: y € {dog, cat, house, car, flower}
o For ease: y € {1,2,3,4,5}
e Softmax classification:
o Parameters: § = {w € R3072x10}
o x3 = reshape(x,[1,3072])
o l=x1-W

o What is £’s dimension?
exp {¢; }

Probly =i = ——— 1
P Probly == s )
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Carnegie Mellon

Case Study 2: Image classification

e Data: x € R3x32x32

e Label: y € {dog, cat, house, car, flower}
o For ease: y € {1,2,3,4,5}
e Softmax classification:

o Parameters: § = {w € R3072x10},
Multiply w

¥

o x3 = reshape(x,[1,3072])

ol=x1-wW DDDDD

o What is £’s dimension?

i
e} ro y=1 = 5
Zj:l exXp {EJ} p(dog) = 0.89
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Case Study 2: Image classification

Carnegie Mellon

e Data: x € R3x32x32

e Label: y € {dog, cat, house, car, flower}

o

For ease: y € {1,2,3,4,5}

e Softmax classification:

o

o

Parameters: 6 = {w € R3072x10},

x; = reshape(x, [1,3072])

Multiply w

¥

f=x1 W

LT

o What is £’s dimension?
exp {¢; }
>0y exp {£;}
The function s(¢) = exp {¢;}/ >, exp {(;}

is called the Softmaz function.

Prob[y =] =

11-695: Competitive Engineering;

Softmax

L]

p(dog) = 0.89
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@ Error and Loss Function
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How to Tell Good f from Bad f? ComegieMellon

e Supposed you have designed the class of hypotheses
o H=1{f(-;0)|0 € RP}

11-695: Competitive Engineering! Spring 2018 18 / 40



How to Tell Good f from Bad f? ComegieMellon

e Supposed you have designed the class of hypotheses
o H=1{f(-;0)|0 € RP}
e How do you tell if f(+;6;) is better than f(-;602)?

11-695: Competitive Engineering; Spring 2018 18 / 40



How to Tell Good f from Bad f? ComegieMellon

e Supposed you have designed the class of hypotheses
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e Supposed you have designed the class of hypotheses
o H=1{f(-;0)|0 € RP}
e How do you tell if f(+;60;) is better than f(-;602)7
o Idea 1: take a pair (x,y), look how different is y from f(x;6)
> sample size is too small
> may just get lucky (or unlucky)
o Idea 2: take many pairs (x,y), look how different is y from f(x;6)
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How to Tell Good f from Bad {?

Carnegie Mellon

e Supposed you have designed the class of hypotheses
o H=1{f(-;0)|0 € RP}
e How do you tell if f(+;60;) is better than f(-;602)7
o Idea 1: take a pair (x,y), look how different is y from f(x;6)

> sample size is too small

> may just get lucky (or unlucky)

o Idea 2: take many pairs (x,y), look how different is y from f(x;6)

on average

> How about this case? Which is worse?

Classifier 1

s /= N
G

i

car

11-695:

Classifier 2

P /=

Classifier 3

el I 'E f'?,e- Q

l

dog

Competitive Engineering

l

house

Spring 2018 18 / 40



Carnegie Mellon

Loss Function

Classifier 1 Classifier 2 Classifier 3

house

e Notations:
o x is your data; y is your label;
o f is your model; 6 is your parameter;

o y =1f(x;0) is your empirical prediction.
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Carnegie Mellon

Loss Function

Classifier 1 Classifier 2 Classifier 3

P v/ P /= S P /=
7 oA .
car dog house

e Notations:

o x is your data; y is your label;

o f is your model; 6 is your parameter;

o ¥ =f(x;0) is your empirical prediction.
e Loss function: L(y,y) = L(y,f(x,0))
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Loss Function

Carnegie Mellon

Classifier 1 Classifier 2 Classifier 3

P v/ P /= S P /=
7 - =g
car dog house

e Notations:

o x is your data; y is your label;

o f is your model; 6 is your parameter;

o ¥ =f(x;0) is your empirical prediction.
e Loss function: L(y,y) = L(y,f(x,0))

o How “off” is y from y = f(x;60)
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Carnegie Mellon

Case Study 1: Car prize prediction

e Data: image of a car x c R3><512><512

e Label: cost of the car x, namely y € R

e Linear regression:

o Parameters: § = {w € R786432X11 wwhere

786432 = 3 x 512 x 512. |

o x3 = reshape(x, [1, 786432]) Multfly w
Sy $51,821
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Case Study 1: Car prize prediction

e Data: image of a car x c R3><512><512

e Label: cost of the car x, namely y € R

e Linear regression:

o Parameters: § = {w € R786432X11 wwhere

786432 = 3 x 512 x 512. |

o x3 = reshape(x, [1, 786432]) Multfly w
Sy $51,821

~

o L(y,y) = (y —y)” is called the l-loss
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Carnegie Mellon

Case Study 1: Car prize prediction

e Data: image of a car x c R3><512><512

e Label: cost of the car x, namely y € R

e Linear regression: e~/
S A

o Parameters: § = {w € R786432X11 wwhere W=

786432 = 3 x 512 x 512. |

o x3 = reshape(x, [1, 786432]) Multiply w

: v

cY=xiw $51,821

o L(y,y) = (y —y)” is called the l-loss

Y,
o L(y,y) = 1|y — y| is called the ¢;-loss
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Carnegie Mellon

Case Study 2: Image classification

e Data: x € R3X32x32

e Label: y € {dog, cat, house, car, flower}
o For ease: y € {1,2,3,4,5}

e Softmax classification:

Multiply w
o Parameters: § = {w € R3072x10},

o x; = reshape(x, [1,3072]) LI ]

o l=x1 W

N (s
K

e
o p=Pr Y=t{=—F—" "7
Z?:1 exp {{;} p(dog) = 0.89

11-695: Competitive Engineering; Spring 2018 21 / 40



Carnegie Mellon

Case Study 2: Image classification

e Data: x € R3x32x32

e Label: y € {dog, cat, house, car, flower}
o For ease: y € {1,2,3,4,5}

e Softmax classification:
Multiply w

N (s
K

o Parameters: § = {w € R3072x10},

o x; = reshape(x, [1,3072]) LI ]

o l=x1 W

e
o p=Pr Y=t{=—F—" "7
Z?:1 exp {{;} p(dog) = 0.89

Cross-entropy loss: L(p,y) = — log py.

o
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Carnegie Mellon

Cross-Entropy Loss

® E(ﬁ»Y):_IOgﬁy ‘S
o One of the most important loss “

functions of deep learning. ‘.

L

Softmax

i

p(dog) = 0.89
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Carnegie Mellon

Cross-Entropy Loss

o L(p,y) = —logpy
o One of the most important loss
functions of deep learning.
o L is mall when py is large, i.e.

. Multiply w
model is more confident

Softmax

[ ]

] -
B
dy

[ ]

p(dog) = 0.89
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Softmax
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B
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Carnegie Mellon

Cross-Entropy Loss

o L(p,y) = —logpy )
o One of the most important loss
functions of deep learning.
o L is mall when py is large, i.e.

. Multiply w
model is more confident

o But L is always positive

o When py, is large, p, are small

Softmax

[ |

[ |
R

g

[ |

p(dog) = 0.89
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Carnegie Mellon

Cross-Entropy Loss

® E(ﬁ»Y):_IOgﬁy S
o One of the most important loss

-

functions of deep learning.

o L is mall when py is large, i.e.
. Multiply w
model is more confident

o But L is always positive
o When py, is large, p, are small
o Differentiable. Recall

pi = exp {6}/ X, exp {4} Softmax

> Important for learning.

[ |

[ |
R

g

[ |

p(dog) = 0.89
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@ Learning
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Carnegie Mell
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e The problem: want to learn a function y = f(x)
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e The “data” solution:
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e The problem: want to learn a function y = f(x)
e The “data” solution:
o Collect data {(x(l),y(l)) , (X(Q),y@)) e (X(N),y(N))}
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e The problem: want to learn a function y = f(x)

e The “data” solution:
o Collect data {(x(l),y(l)) , (x(2),y(2)) e (X(N),y(N))}
o Come up with a set of hypotheses H = {f1,fa, ..., fl3; }

correct model

bias (@) variance
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Carnegie Mell
The StOI‘y SO Far arnegie Mellon

e The problem: want to learn a function y = f(x)

e The “data” solution:
o Collect data {(X(l),y(l)) , (x(2),y(2)) e (X(N),y(N))}
o Come up with a set of hypotheses H = {f1,fa, ..., fl3; }

correct model

bias (@) variance

o Come up with a loss function L : f € H — R, which tells you how
bad is a hypothesis f.
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Carnegie Mellon

Learning

e Learning is the process of finding f € H that minimizes £(f)
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Carnegie Mellon

Learning

e Learning is the process of finding f € H that minimizes £(f)

e In math: f* = argming 4, £(f)
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Case Study: Linear Regression

e Data: {(X17 Y1)7 (X27 Y2)7 ceey (XN, YN>}
o For simplicity: x;,y; € R.

11-695: Competitive Engineering; Spring 2018 26 / 40



Case Study: Linear Regression

Carnegie Mellon

e Data: {(X17 Y1)7 (X27 Y2)7 ceey (XN, YN)}
o For simplicity: x;,y; € R.

e Hypotheses: H = {f(x;a,b) =a-x+ b}
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Case Study: Linear Regression

Carnegie Mellon

e Data: {(X17 Y1)7 (X27 Y2)7 ceey (XN, YN)}
o For simplicity: x;,y; € R.

e Hypotheses: H = {f(x;a,b) =a-x+ b}

e Loss function:

N
L(f) =) (f(xi) —yi)*
=1
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Case Study: Linear Regression

Carnegie Mellon

e Data: {(X17 Y1)7 (X27 Y2)7 ceey (XN7 YN)}
o For simplicity: x;,y; € R.

e Hypotheses: H = {f(x;a,b) =a-x+ b}

e Loss function:

e Learning: try to find

N
a®,b" = argmin Z(f(xl) —yi)?
ab =1
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Case Study: Linear Regression

e Learning: try to find

N
a®,b* = argmin Z(f(xl) —yi)?
ab =1
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Case Study: Linear Regression

Carnegie Mellon

e Learning: try to find

N
a®,b* = argmin Z(f(xl) —yi)?
ab =1

N
= argmin g (ax; +b— yi)?
ab =1
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Case Study: Linear Regression

Carnegie Mellon

e Learning: try to find

N
a®,b* = argmin Z(f(xl) —yi)?
ab =1

N
= argmin Z(axi +b—y;)?
ab =1

e Approach: Find gradients and set to 0

N
2
l(a,b) = E (ax; +b—1y;)
=1
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Case Study: Linear Regression

Carnegie Mellon

e Learning: try to find

N
a®,b* = argmin Z(f(xl) —yi)?
ab =1

N
= argmin Z(axi +b—y;)?
ab =1

e Approach: Find gradients and set to 0

N
l(a,b) = Z(axi +b—y;)?
=1
-
90— > 2xi(ax; +b—y;)
=1
11-695: Competitive Engineering; Spring 2018

27 / 40



Case Study: Linear Regression

Carnegie Mellon

e Learning: try to find

N
a®,b* = argmin Z(f(xl) —yi)?
ab =1

N
= argmin Z(axi +b—y;)?
ab =1

e Approach: Find gradients and set to 0

N
l(a,b) = Z(axi +b—y;)?
=1
-
90— > 2xi(ax; +b—y;)
=1
o
% = Z2(axi+b—yi)
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Case Study: Linear Regression

Carnegie Mellon

e Approach: Find gradients and set to 0

ot ix (ax; +b—y;)
— = iax; —Yi
da =
o
= Z(axi +b—y:)
9b i=1
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Case Study: Linear Regression

Carnegie Mellon

e Approach: Find gradients and set to 0

o X

90 ;Xi(axi +b—yi)
N N N

= ale2 + bZXZ‘ — inyi

i=1 i=1 i=1

o X

— =) (ax; +b—1y;)

ob ~ 2

e This is a linear system in a, b. You can solve it!
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Case Study: Linear Regression
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e Approach: Find gradients and set to 0

o X

90 ;Xi(axi +b—yi)
N N N

= ale2 + bZXZ‘ — inyi

i=1 i=1 i=1

o X

— =) (ax; +b—1y;)

ob ~ 2

N N
oY xith N Yy
=1 =1

e This is a linear system in a, b. You can solve it!
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Learning is not Always Easy!

Carnegie Mellon

e Sometimes setting gradients to 0 does not work

o The system does not have any solution

o Too complicated to solve

e Neural networks: millions of parameters

o or more extreme... (Shazeer et al., 2017)

Test Test #Parameters
Perplexity | Perplexity | excluding embedding
10 epochs | 100 epochs | and softmax layers
Best Published Results 347 30.6 151 million
Low-Budget MoE Model 34.1 4303 million
Medium-Budget MoE Model 31.3 4313 million
High-Budget MoE Model 28.0 4371 million

e You simply cannot find £* = argmingc4, £(f)

e Rely on numerical optimization algorithms.
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Gradient Descent

e Data: {(x(l),y(l)) , (X(Q)jy@)) i (x(N),y(N))}
e Hypotheses: H = {f(x;0) : 0 € RP}
e Loss function

N

00) = L(F(x;0), y4)

i=1
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Gradient Descent

e Data: {(x,y®), (x@,y@) ., (x™),y™)}
e Hypotheses: H = {f(x;0) : 0 € RP}
e Loss function
N
00) = L(F(x;0), y4)
i=1

Gradient Descent (GD) algorithm
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Gradient Descent

Data: {(x(l),y(l)) , (X(Q)jy@)) i (x(N),y(N))}
Hypotheses: H = {f(x;0) : § € RP}

Loss function

N

00) = L(F(x;0), y4)

i=1

Gradient Descent (GD) algorithm

o Randomly initialize 0y € RP.

o Repeat until convergence
> Compute the gradient: Vol(™")
> Update: 00D « 0 — nv,0(0®)
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Problems with Gradient Descent

e We have to compute

Vol(61) ijz (x4 0),yi)
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Problems with Gradient Descent

e We have to compute

V@f (t) =V Z ﬁ XZ, Z Veﬁ Xfu )

11-695: Competitive Engineering; Spring 2018 31 / 40



i i Carnegie Mell
Problems with Gradient Descent arnegie Mellon

e We have to compute

Vol (01) = Vg Z L(£(xi;0 Z VoL(f(xi;0),yi)

o It’s wery slow if N is large.
o ImageNet: N = 1,200,000
o English-German translation: N = 4,500, 000
o Google 1-billion-words data: N = 1,000,000, 000
o Human Genes: N =777
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Solution: Stochastic Gradient Descent

Carnegie Mellon

Data: {(x(l),y(l)) , (X(Q)jy@)) i (X(N),y(N))}

e Hypotheses: H = {f(x;0) : 6 € RP}
e Loss function
N
00) = L(f(xi;0),y:)
i=1

Stochastic Gradient Descent (SGD) algorithm
o Randomly snitialize 6y € RP.
o Repeat until convergence
> Sample (x1,y1),..., (xB,yB) from your data
> Compute the stochastic gradient:

B

Vo= VoL(f(xi;0),y:)

i=1
> Update: U+ gt _ 77@9
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Notes on Stochastic Gradient Descent

e Data: {(x(l),y(l)) , (X(Q)jy@)) i (x(N),y(N))}

o Randomly initialize 6y € RP.
o Repeat until convergence

> Sample (x1,y1), ..., (XxB,yB) from your data

> Compute the stochastic gradient:
B
Vo= VoL(f(xi:0),y:)
i=1

> Update: Ut g _ 77@9

¢ You have to really sample (x1,y1), ..., (Xp,ypB) from your data

11-695: Competitive Engineering; Spring 2018 33 / 40



Carnegie Mellon

Notes on Stochastic Gradient Descent

e Data: {(x(l),y(l)) , (X(Q)jy@)) i (X(N),y(N))}

o Randomly initialize 6y € RP.
o Repeat until convergence

> Sample (x1,y1), ..., (XxB,yB) from your data

> Compute the stochastic gradient:
B
Vo= VoL(f(xi:0),y:)
i=1

> Update: Ut g _ 77@9
¢ You have to really sample (x1,y1), ..., (Xp,ypB) from your data

o otherwise, your gradient is biased.

o References: Lyapunov functions; Leon Bottou’s PhD thesis.
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e SGD so far:
o Randomly initialize 6y € RP.
o Repeat until convergence
> Sample (x1,¥1),..., (x5,y5) from your data

> Compute the stochastic gradient:
B
Vo= VoL(f(xi;0),y:)
=1

> Update: 8¢+ « 9 —pv,
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e SGD so far:
o Randomly initialize 6y € RP.
o Repeat until convergence
> Sample (x1,¥1),..., (x5,y5) from your data

> Compute the stochastic gradient:
B
Vo= Z VoL(f(x:;0),yi)
=1

> Update: 8¢+1) «— 9 — v,

e In TensorFlow: tf.train.GradientDescentOptimizer
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e SGD so far:
o Randomly initialize 6y € RP.
o Repeat until convergence
> Sample (x1,¥1),..., (x5,y5) from your data

> Compute the stochastic gradient:
B
Vo= Z VoL(f(x:;0),yi)
=1

> Update: 8¢+1) «— 9 — v,
e In TensorFlow: tf.train.GradientDescentOptimizer

e Assuming that you have a gradient Vg
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iati Carnegie Mell
Varlat]_ons Of SGD arnegie Mellon

e SGD so far:
o Randomly initialize 6y € RP.
o Repeat until convergence
> Sample (x1,¥1),..., (x5,y5) from your data

> Compute the stochastic gradient:
B
Vo= VoL(f(xi;0),y:)
=1

> Update: 8¢+1) «— 9 — v,
e In TensorFlow: tf.train.GradientDescentOptimizer
e Assuming that you have a gradient Vg

e There are many other ways to update, more than just

9t 9 — v,
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Momentum

e Keeps a running average of Vy

oD (1 —m)o® +m -V,
H(t-‘rl) — e(t) - ,',’,U(H-l)

e You have to choose m,n

e In TensorFlow: tf.train.MomentumOptimizer

11-695: Competitive Engineering; Spring 2018 35 / 40




Carnegie Mellon

Adaptive Stochastic Gradient Descent (AdaGrad)

o Keeps a running average of Vg

o) (1= m)o® +m - V3
Vg

e+ . p(®) Y0
p(E+1)

_n.

e You have to choose m,n

e In TensorFlow: tf.train.AdagradOptimizer
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@ Overfitting and Regularization
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Is

it good to minimize loss function?

Carnegie Mellon

15

10+
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Is

it good to minimize loss function?

Carnegie Mellon

15

10+

e NO!
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Regularization

Suppose your loss function is ¢(0)

Change it into

05(0) = £0) + B0l

You have to choose 3

The term 3 ||0||? is called the (-2 regularization.
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Regularization

There are other choices

£-1 regularization

£5(6) = €(9) + 5|6

{-p regularization

1/p
0r°8(0) = 4(0) + B (Z 9p>

DropOut, DropConnect, Variational Regularization

5(0) = £(9(0)),

where g(#) “corrupts” 0.
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