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Image Classification

• Find a function y = f(x)
◦ x: an image
◦ y: dog, cat, bird, car, etc.

classifier dog
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Machine Translation

• Find a function y = f(x)
◦ x: an English sentence
◦ y: an French sentence

11-695: Competitive EngineeringSupervised LearningSpring 2018 4 / 40



How to Find the Function f?

Learn from data
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Data and Label

• Pairs of (x,y): {(x(1),y(1)), (x(2),y(2)), ..., (x(N),y(N))}
• Each x(i) is called a data point
• Each y(i) is called a label
• x(i) and y(i) can be anything
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Data Representation

• Computers don’t “see” things like we do

• ... so it’s hard to make them think like we do
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Some Types of Labels

• Label y is in a finite set C = {1, 2, ..., |C|}
◦ Classification problems

• Label y is in a “continuous” set, e.g. y ∈ [0, 1]
◦ Regression problems

• Label y is has some self-dependencies, e.g. a sentence in French
◦ Structured prediction problems

• Why learn these?
◦ The types of problems you tackle (loosely) tell you how to design

the learning models.
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An Example

• Modeling is the process of coming up with class of candidates
◦ Each value of w gives us an f
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An Example

• It’s okay to come up with very bad classes of f
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Some Maths

• Class of hypotheses H = {f1, f2, ..., fN}
◦ singular: hypothesis

• It is possible that |H| =∞
◦ H = {f(x; w) =

∑
i wixi| for all w}

◦ Each w gives an f , so we write y = f(x; w)
◦ People also write y = fw(x) or y = fw(x)

• Some times you have more than one w. For example:
◦ x ∈ R1×100

◦ y1 = (x ·w1)2 where w1 ∈ R100×200

◦ y2 = 1/(y1 ·w2) where w2 ∈ R100×1

◦ We use θ to denote all w’s. y = f(x; w1,w2) = f(x; θ). θ is called
parameters.
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The Bias-Variance Tradeoff

• Intuitions to design a good class of hypotheses H
◦ Bias: small H may leave out the correct model
◦ Variance: large H is hard to navigate and find the correct model
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Case Study 1: Car prize prediction

• Data: image of a car x ∈ R3×512×512

• Label: cost of the car x, namely y ∈ R

• Linear regression:

◦ Parameters: θ = {w ∈ R786432×1}, where
786432 = 3× 512× 512.

◦ x1 = reshape(x, [1, 786432])

◦ y = x1 ·w

◦ y = x ·w is called a linear
transformation.
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Case Study 2: Image classification
• Data: x ∈ R3×32×32

• Label: y ∈ {dog, cat,house, car,flower}

◦ For ease: y ∈ {1, 2, 3, 4, 5}

• Softmax classification:

◦ Parameters: θ = {w ∈ R3072×10}.

◦ x1 = reshape(x, [1, 3072])

◦ ` = x1 ·w

◦ What is `’s dimension?

◦ Prob [y = i] = exp {`i}∑5
j=1 exp {`j}

◦ The function s(`) = exp {`i}/
∑

j exp {`j}
is called the Softmax function.
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How to Tell Good f from Bad f?

• Supposed you have designed the class of hypotheses
◦ H = {f(·; θ)|θ ∈ RD}

• How do you tell if f(·; θ1) is better than f(·; θ2)?

◦ Idea 1: take a pair (x,y), look how different is y from f(x; θ)

. sample size is too small

. may just get lucky (or unlucky)

◦ Idea 2: take many pairs (x,y), look how different is y from f(x; θ)
on average

. How about this case? Which is worse?
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Loss Function

• Notations:
◦ x is your data; y is your label;
◦ f is your model; θ is your parameter;
◦ ŷ = f(x; θ) is your empirical prediction.

• Loss function: L(y, ŷ) = L(y, f(x, θ))

◦ How “off” is y from ŷ = f(x; θ)
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Case Study 2: Image classification

• Data: x ∈ R3×32×32

• Label: y ∈ {dog, cat,house, car,flower}

◦ For ease: y ∈ {1, 2, 3, 4, 5}

• Softmax classification:

◦ Parameters: θ = {w ∈ R3072×10}.

◦ x1 = reshape(x, [1, 3072])

◦ ` = x1 ·w

◦ p̂ = Prob [y = i] = exp {`i}∑5
j=1 exp {`j}

◦ Cross-entropy loss: L(p̂,y) = − log p̂y.
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Cross-Entropy Loss

• L(p̂,y) = − log p̂y

◦ One of the most important loss
functions of deep learning.

◦ L is mall when p̂y is large, i.e.
model is more confident

◦ But L is always positive
◦ When p̂y is large, p̂ 6=y are small
◦ Differentiable. Recall
p̂i = exp {`i}/

∑
j exp {`j}

. Important for learning.
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The Story So Far

• The problem: want to learn a function y = f(x)

• The “data” solution:
◦ Collect data

{(
x(1),y(1)) , (x(2),y(2)) , ..., (x(N),y(N))}

◦ Come up with a set of hypotheses H = {f1, f2, ..., f|H|}

◦ Come up with a loss function L : f ∈ H → R, which tells you how
bad is a hypothesis f .
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Learning

• Learning is the process of finding f ∈ H that minimizes L(f)

• In math: f∗ = argminf∈H L(f)
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Case Study: Linear Regression

• Data: {(x1,y1), (x2,y2), ..., (xN ,yN )}
◦ For simplicity: xi,yi ∈ R.

• Hypotheses: H = {f(x; a, b) = a · x + b}

• Loss function:

L(f) =
N∑
i=1

(f(xi)− yi)2

• Learning: try to find

a∗, b∗ = argmin
a,b

N∑
i=1

(f(xi)− yi)2
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Case Study: Linear Regression

• Learning: try to find

a∗, b∗ = argmin
a,b

N∑
i=1

(f(xi)− yi)2

= argmin
a,b

N∑
i=1

(axi + b− yi)2

• Approach: Find gradients and set to 0

`(a, b) =
N∑
i=1

(axi + b− yi)2

∂`

∂a
=

N∑
i=1

2xi(axi + b− yi)

∂`

∂b
=

N∑
i=1

2(axi + b− yi)
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Case Study: Linear Regression

• Approach: Find gradients and set to 0

∂`

∂a
=

N∑
i=1

xi(axi + b− yi)

= a
N∑
i=1

x2
i + b

N∑
i=1

xi −
N∑
i=1

xiyi

∂`

∂b
=

N∑
i=1

(axi + b− yi)

= a
N∑
i=1

xi + b ·N −
N∑
i=1

yi

• This is a linear system in a, b. You can solve it!
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Learning is not Always Easy!

• Sometimes setting gradients to 0 does not work
◦ The system does not have any solution
◦ Too complicated to solve

• Neural networks: millions of parameters
◦ or more extreme... (Shazeer et al., 2017)

• You simply cannot find f∗ = argminf∈H L(f)
• Rely on numerical optimization algorithms.
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Gradient Descent

• Data:
{(

x(1),y(1)
)
,
(
x(2),y(2)

)
, ...,

(
x(N),y(N)

)}
• Hypotheses: H = {f(x; θ) : θ ∈ RD}

• Loss function

`(θ) =
N∑
i=1
L(f(xi; θ),yi)

• Gradient Descent (GD) algorithm

◦ Randomly initialize θ0 ∈ RD.
◦ Repeat until convergence

. Compute the gradient: ∇θ`(θ(t))

. Update: θ(t+1) ← θ(t) − η∇θ`(θ(t))
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Problems with Gradient Descent

• We have to compute

∇θ`(θ(t)) = ∇θ
N∑
i=1
L(f(xi; θ),yi)

=
N∑
i=1
∇θL(f(xi; θ),yi)

• It’s very slow if N is large.
◦ ImageNet: N = 1, 200, 000
◦ English-German translation: N = 4, 500, 000
◦ Google 1-billion-words data: N = 1, 000, 000, 000
◦ Human Genes: N =???
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Solution: Stochastic Gradient Descent

• Data:
{(

x(1),y(1)
)
,
(
x(2),y(2)

)
, ...,

(
x(N),y(N)

)}
• Hypotheses: H = {f(x; θ) : θ ∈ RD}
• Loss function

`(θ) =
N∑
i=1
L(f(xi; θ),yi)

• Stochastic Gradient Descent (SGD) algorithm
◦ Randomly initialize θ0 ∈ RD.
◦ Repeat until convergence

. Sample (x1,y1), ..., (xB ,yB) from your data

. Compute the stochastic gradient:

∇̂θ=
B∑
i=1

∇θL(f(xi; θ),yi)

. Update: θ(t+1) ← θ(t) − η∇̂θ
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Notes on Stochastic Gradient Descent

• Data:
{(

x(1),y(1)
)
,
(
x(2),y(2)

)
, ...,

(
x(N),y(N)

)}
◦ Randomly initialize θ0 ∈ RD.
◦ Repeat until convergence

. Sample (x1,y1), ..., (xB ,yB) from your data

. Compute the stochastic gradient:

∇̂θ=
B∑
i=1

∇θL(f(xi; θ),yi)

. Update: θ(t+1) ← θ(t) − η∇̂θ

• You have to really sample (x1,y1), ..., (xB,yB) from your data

◦ otherwise, your gradient is biased.
◦ References: Lyapunov functions; Leon Bottou’s PhD thesis.
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Variations of SGD

• SGD so far:
◦ Randomly initialize θ0 ∈ RD.
◦ Repeat until convergence

. Sample (x1,y1), ..., (xB ,yB) from your data

. Compute the stochastic gradient:

∇̂θ=
B∑
i=1

∇θL(f(xi; θ),yi)

. Update: θ(t+1) ← θ(t) − η∇̂θ

• In TensorFlow: tf.train.GradientDescentOptimizer

• Assuming that you have a gradient ∇θ
• There are many other ways to update, more than just

θ(t+1) ← θ(t) − η∇θ
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Momentum

• Keeps a running average of ∇θ

v(t+1) ← (1−m)v(t) +m · ∇θ
θ(t+1) ← θ(t) − ηv(t+1)

• You have to choose m, η
• In TensorFlow: tf.train.MomentumOptimizer
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Adaptive Stochastic Gradient Descent (AdaGrad)

• Keeps a running average of ∇2
θ

v(t+1) ← (1−m)v(t) +m · ∇2
θ

θ(t+1) ← θ(t) − η · ∇θ√
v(t+1)

• You have to choose m, η
• In TensorFlow: tf.train.AdagradOptimizer
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Outline

1 The Learning Problem

2 Data and Label

3 Modeling

4 Error and Loss Function

5 Learning

6 Overfitting and Regularization
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Is it good to minimize loss function?

Image credit: wikipedia

• NO!
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Regularization

• Suppose your loss function is `(θ)
• Change it into

`reg(θ) = `(θ) + β ‖θ‖

• You have to choose β
• The term β ‖θ‖2 is called the `-2 regularization.
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Regularization

• There are other choices
• `-1 regularization

`reg(θ) = `(θ) + β|θ|2

• `-p regularization

`reg(θ) = `(θ) + β

(
D∑
i=1

θpi

)1/p

• DropOut, DropConnect, Variational Regularization

`reg(θ) = `(g(θ)),

where g(θ) “corrupts” θ.
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