
11-695: Competitive Engineering
Let’s Code a Neural Net!

Spring 2018

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 1 / 12

TF Paradigm Recap

tf graph recap.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 # create ops , variables , etc.
5
6 def main(_args):
7 g = tf. Graph ()
8 with g. as_default ():
9 build_tf_graph ()

10 with tf. Session () as sess:
11 output = sess.run ([train_op , ...]) # execute the operation z

• Computational Graphs:
◦ nodes or ops
◦ edges are tensors

• Execution: sess.run([a, a, b, c])
◦ a, b, c and their parents will be run
◦ Two as will be run once

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 2 / 12

Let’s Code a Neural Network!

tf graph dict trick.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 # create ops , variables , etc.
5 ops = {
6 " train ": train_op ,
7 " grad_norm ": gradient_norm ,
8 " preds ": get_predictions ,
9 }

10 return ops
11
12 def main ():
13 g = tf. Graph ()
14 with g. as_default ():
15 ops = build_tf_graph ()

• Graph names are different from Python names
◦ Can be lost when you build large graphs
◦ You should use a Python dict to store these Python handles

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 3 / 12

Step 1: Build a Model in a TF Graph

tf feed forward net.py
1 def feed_forward_net (x, dims =[256 , 512 , 128] , num_classes =10):
2 # x is a tensor of size [N, H, W, C]
3 N, H, W, C = tf. unstack (tf. shape (x))
4
5 def build_tf_graph ():
6 images , labels = get_data_ops ()
7 logits = feed_forward_net (images)
8 # LATER : loss function , train_op , etc.

• What are images and labels?
◦ They are TF ops

• What happens in N, H, W, C = tf.unstack(tf.shape(x))?
◦ tf.shape(x) is a TF ops.
◦ tf.unstack(...) is a TF ops.
◦ So are N, H, W, C

• Get used to them. Everything in TF is an ops.
11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 4 / 12

Step 1: Build a Model in a TF Graph

tf feed forward net.py
1 def feed_forward_net (x, dims =[256 , 512 , 128] , num_classes =10):
2 # x is a tensor of size [N, H, W, C]
3 N, H, W, C = tf. unstack (tf. shape (x))
4 x = tf. reshape (x, [N, H * W * C]) # flatten
5 for layer_id , next_dim in enumerate (dims):
6 curr_dim = x. get_shape ()[-1]. value # get_shape () returns a <list >
7 with tf. variable_scope (" layer_ {}". format (layer_id)):
8 w = tf. get_variable ("w", [curr_dim , next_dim]) # w’s name: " layer_2 /w"
9 x = tf. matmul (x, w)

10 x = tf.nn.relu(x)
11 curr_dim = x. get_shape ()[-1]. value # get_shape () returns a <list >
12 with tf. variable_scope (" logits "):
13 w = tf. get_variable ("w", [curr_dim , num_classes]) # w’s name: " logits /w"
14 logits = tf. matmul (x, w)
15 return logits

• Flatten→ (Linear→ Nonlinear)× 100→ logits
11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 5 / 12

Step 2: Loss Function

tf feed forward net.py
1 def feed_forward_net (x, dims =[256 , 512 , 128] , num_classes =10):
2 # The mess we just discussed
3
4 def build_tf_graph ():
5 images , labels = get_data_ops () # images , labels : [N, H, W, C], [N]
6 logits = feed_forward_net (images)
7 # cross entropy loss function
8 loss = tf.nn. sparse_softmax_cross_entropy_with_logits (
9 logits =logits , labels = labels)

10 loss = tf. reduce_mean (loss)
11 # LATER : train_op , etc.

• tf.nn.sparse softmax cross entropy with logits(logits,
labels) computes all losses.
◦ Divide them by the batch size

• tf.nn.sparse softmax cross entropy with logits(...) is the
correct way to implement cross entropy loss

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 6 / 12

Step 2: Loss Function

tf feed forward net.py
1 def build_tf_graph ():
2 images , labels = get_data_ops () # images , labels : [N, H, W, C], [N]
3 logits = feed_forward_net (images)
4 # cross entropy loss function
5 probs = tf.nn. softmax (logits)
6 label_probs = tf. gather (probs , labels , axis =1)
7 loss = tf.log(label_probs)
8 # LATER : train_op , etc.

• Here is one (out of many) wrong ways!
◦ Correct values, but much slower!

• Why?

◦ log exp {`i}∑
j exp {`j}

is fused into a kernel.

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 7 / 12

Step 3: Train op

tf feed forward net.py
1 def build_tf_graph ():
2 images , labels = get_data_ops () # images , labels : [N, H, W, C], [N]
3 logits = feed_forward_net (images)
4 loss = tf.nn. sparse_softmax_cross_entropy_with_logits (logits =logits , labels = labels)
5 # train_op
6 optimizer = tf. train . GradientDescentOptimizer (learning_rate =1.0)
7 train_op = optimizer . minimize (loss)
8 # LATER : predictions and accuracies

• optimizer is not the train op
• optimizer.minimize(loss) is the train op
• If you call sess.run([train op]), it will perform

◦ Forward pass images and labels
◦ Back-propagation
◦ Update all variables using gradient descents.

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 8 / 12

Step 4: Predictions and Accuracies

tf feed forward net.py
1 def build_tf_graph ():
2 images , labels = get_data_ops () # images , labels : [N, H, W, C], [N]
3 logits = feed_forward_net (images)
4 loss = tf.nn. sparse_softmax_cross_entropy_with_logits (logits =logits , labels = labels)
5 optimizer = tf. train . GradientDescentOptimizer (learning_rate =1.0)
6 train_op = optimizer . minimize (loss)
7 # predictions and accuracies
8 preds = tf. argmax (logits , axis =1)
9 accus = tf. equal (preds , labels) # TF boolean tensor

10 accus = tf.cast(accus , dtype =tf. int32)
11 accus = tf. reduce_sum (accus)
12 ops = {
13 "loss": loss ,
14 " train_op ": train_op ,
15 " preds ": preds ,
16 " accus ": accus ,
17 }
18 return ops

• Everything is a TF ops
◦ Get used to this concept / idea / paradigm!
◦ I will repeat this until you are used to it!

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 9 / 12

What have we done?

tf feed forward net.py
1 def build_tf_graph ():
2 # The mess we discussed
3 ops = {
4 "loss": loss , " train_op ": train_op , " preds ": preds , " accus ": accus
5 }
6 return ops
7
8 def main(_args):
9 g = tf. Graph ()

10 with g. as_default ():
11 ops = build_tf_graph ()
12 with tf. Session () as sess:
13 sess.run(tf. global_variables_initializer ()) # this is juts an ops!
14 for train_step in range (10000):
15 output = sess.run ([ops[" train_op "]])

• We built a TF graph with
◦ A feed forward network
◦ Essential ops to train and to use the network

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 10 / 12

Can we build a ConvNet?

tf conv net.py
1 def feed_forward_net (x, dims =[256 , 512 , 128] , num_classes =10):
2 # some mess you have seen
3
4 def conv_net (x, kernel_sizes =[3 , 5, 7], num_channels =[128 , 256 , 512] , num_classes =10):
5 # some mess you will fill in
6
7 def build_tf_graph ():
8 images , labels = get_data_ops ()
9 logits_feed_forward = feed_forward_net (images)

10 logits_conv = conv_net (images)
11 # some more mess
12 return ops
13
14 def main(_args):
15 with tf. Graph (). as_default :
16 ops = build_tf_graph ()
17 # even more mess

• Everything is the same, but
◦ Replace feed forward net with conv net

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 11 / 12

Can we build a ConvNet?

tf conv net.py
1 def conv_net (x, kernel_sizes =[3 , 5, 7], num_channels =[128 , 256 , 512] , num_classes =10):
2 # x: tensor of size [N, H, W, C]
3 N, H, W, C = tf. unstack (tf. shape (x))
4 for layer_id , (k_size , next_c) in enumerate (zip(kernal_sizes , num_channels)):
5 curr_c = x. get_shape ()[-1]. value # get_shape () returns a <list >
6 with tf. variable_scope (" layer_ {}". format (layer_id)):
7 # w’s name: " layer_2 /w"
8 w = tf. get_variable ("w", [k_size , k_size , curr_c , next_c])
9 x = tf.nn. conv2d (x, w, padding ="SAME")

10 x = tf.nn.relu(x)
11 x = tf. reshape (x, [N, -1])
12 curr_c = x. get_shape ()[-1]. value # get_shape () returns a <list >
13 with tf. variable_scope (" logits "):
14 w = tf. get_variable ("w", [curr_c , num_classes]) # w’s name: " logits /w"
15 logits = tf. matmul (x, w)
16 return logits

• No more flatten!
• Just change your tf.matmul into tf.nn.conv2d()

◦ padding="SAME"

11-695: Competitive EngineeringLet’s Code a Neural Net!Spring 2018 12 / 12

