
11-695: Competitive Engineering
TensorFlow: Graphs, Execution, and Variables

Spring 2018

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 1 / 31

TensorFlow: Getting Started

• Install: https://www.tensorflow.org/install/

• Usage:

tf basic program.py
1 import tensorflow as tf
2
3 def main(_args):
4 # your programs
5
6 if __name__ == " __main__ ":
7 tf.app.run ()

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 2 / 31

Structure of a tf program

• A program in tf always consists of:
◦ Building a computational graph
◦ Execute the relevant parts in the built graph

tf basic program.py
1 import tensorflow as tf
2
3 def main(_args):
4 g = tf. Graph () # create a computational graph
5 with g. as_default (): # everything you do with TF happens in the graph g
6 build_tf_graph () # define the operations in g
7
8 with tf. Session () as sess: # TF boiler - plate code
9 sess.run(tf. global_variables_initializer ()) # TF boiler - plate code

10
11 # execute the TF graph , e.g.:
12 sess.run ([train_op , compute_loss])
13
14 if __name__ == " __main__ ":
15 tf.app.run ()

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 3 / 31

Outline

1 Computational Graph

2 Execution Order

3 Variable

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 4 / 31

Computational Graph

tf graph demonstration 1.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 x = tf. constant ([[0 , -2, 3], [-1, -31, -7]], dtype =tf. int32)
5 y = tf. constant ([[1 , 1, 1, 3], [7, -1, 9, 4], [-9, 3, 8, 5]] , dtype =tf. int32)
6 z = tf. matmul (x, y)
7 return x, y, z
8
9 def main(_args):

10 # other code ...
11 build_tf_graph ()
12 with tf. Session () as sess:
13 output = sess.run ([z]) # execute the operation z
14 print (output)

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 5 / 31

Another Computational Graph

tf graph demonstration 2.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 x = tf. random_uniform ([2 , 3], minval =-5, maxval =5, dtype =tf. int32)
5 y = tf. constant ([[1 , 1, 1, 3], [7, -1, 9, 4], [-9, 3, 8, 5]] , dtype =tf. int32)
6 z = tf. matmul (x, y)
7 return x, y, z
8
9 def main(_args):

10 # other code ...
11 x, y, z = build_tf_graph ()
12 with tf. Session () as sess:
13 output = sess.run ([z]) # execute the operation z
14 print (output)

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 6 / 31

Formal Definition

• Formally speaking
◦ tf computational graph is a directed acycic graph (DAG)
◦ Nodes are called operations, or ops
◦ Ops produce tensors
◦ Tensors flow around through edges

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 7 / 31

Building TF Graphs

• Usually, tf.some thing() creates a new ops and adds it to the
computational graph.

• How does Python / TF know which graph are you referring to?

◦ g.as default()

tf graph building.py
1 def build_tf_graph ():
2 # create ops
3
4 def main(_args):
5 g = tf. Graph ()
6 with g. as_default ():
7 build_tf_graph ()

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 8 / 31

Building TF Graphs

• Usually, tf.some thing() creates a new ops and adds it to the
computational graph.

• How does Python / TF know which graph are you referring to?

◦ g.as default()

tf graph building.py
1 def build_tf_graph ():
2 # create ops
3
4 def main(_args):
5 g = tf. Graph ()
6 with g. as_default ():
7 build_tf_graph ()

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 8 / 31

Building TF Graphs

• Usually, tf.some thing() creates a new ops and adds it to the
computational graph.

• How does Python / TF know which graph are you referring to?
◦ g.as default()

tf graph building.py
1 def build_tf_graph ():
2 # create ops
3
4 def main(_args):
5 g = tf. Graph ()
6 with g. as_default ():
7 build_tf_graph ()

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 8 / 31

Example TF Graphs

tf graph replication.py
1 def build_tf_graph ():
2 x_values = np. random . uniform (-1.0 , 1.0 , [1000 , 1000] , dtype =np. float32)
3 x = tf. constant (x_values , dtype =tf. float32)
4
5 y = x ** 2 # creates an ops that takes x, returns x ** 2
6 y = y + 1 # creates an ops that takes y, returns y + 1
7 z = tf.nn.relu(y) # creates an ops that takes y, returns max(y, 0)

• The variable names you see in Python has no meaning to TF.
• You can use them as handles, but TF doesn’t care!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 9 / 31

How to Build Complex Graphs?

• Same pattern as normal programming:
◦ Use multiple files (and organize them appropriately)
◦ Use functions, classes, inheritance, etc.

tf graph replication.py
1 from my_other_file import scary_network # I made up all the the names
2
3 def complicated_neural_network (images):
4 outputs = tf. convolution (images , ...)
5 return outputs
6
7 def crazy_lstm_recurrent_convolution (inputs):
8 outputs = tf.lstm(inputs , ...)
9 outputs *= 100

10 return outputs
11
12 def build_tf_graph ():
13 x = tf. input_images () # I made this name up
14 x = complicated_neural_network (x)
15 x = crazy_lstm_recurrent_convolution (x)
16 x = scary_network (x)

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 10 / 31

An Epic Failure

tf graph replication.py
1 def build_tf_graph ():
2 x_values = np. random . uniform (-1.0 , 1.0 , [1000 , 1000] , dtype =np. float32)
3 x = tf. constant (x_values , dtype =tf. float32)
4
5 # this fails
6 for step in range (1000000000):
7 x += 1.0
8
9 # this works (but is very slow)

10 for step in range (1000000000):
11 x_values += 1.0
12
13 def main(_args):
14 g = tf. Graph ()
15 with g. as_default ():
16 build_tf_graph ()

• Each x += 1 creates a new ops and does not override the old ops.
• Out of memory (TF graphs need memory to store too).

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 11 / 31

An Epic Failure

tf graph replication.py
1 def build_tf_graph ():
2 x_values = np. random . uniform (-1.0 , 1.0 , [1000 , 1000] , dtype =np. float32)
3 x = tf. constant (x_values , dtype =tf. float32)
4
5 # this fails
6 for step in range (1000000000):
7 x += 1.0
8
9 # this works (but is very slow)

10 for step in range (1000000000):
11 x_values += 1.0
12
13 def main(_args):
14 g = tf. Graph ()
15 with g. as_default ():
16 build_tf_graph ()

• Each x += 1 creates a new ops and does not override the old ops.

• Out of memory (TF graphs need memory to store too).

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 11 / 31

An Epic Failure

tf graph replication.py
1 def build_tf_graph ():
2 x_values = np. random . uniform (-1.0 , 1.0 , [1000 , 1000] , dtype =np. float32)
3 x = tf. constant (x_values , dtype =tf. float32)
4
5 # this fails
6 for step in range (1000000000):
7 x += 1.0
8
9 # this works (but is very slow)

10 for step in range (1000000000):
11 x_values += 1.0
12
13 def main(_args):
14 g = tf. Graph ()
15 with g. as_default ():
16 build_tf_graph ()

• Each x += 1 creates a new ops and does not override the old ops.
• Out of memory (TF graphs need memory to store too).

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 11 / 31

A Final Note on TF Graph Building

• Many functions that you use seems to take inputs and and return outputs
• But they actually just add more ops to your computational graphs
• and return the ops’ handles so that you can make more ops
• Lesson: always check for type when you program with TensorFlow and

numpy!!!

tf graph replication.py
1 def softmax (images):
2 batch_size = tf. shape (images)[0]
3 images = tf. reshape (images , [batch_size , -1])
4
5 # don ’t care about these . we ’ll discuss them later
6 images_dim = images . get_shape ()[-1]
7 w = tf. get_variable ("w", [images_dim , 10])
8
9 logits = tf. matmul (images , w)

10 probs = tf.nn. softmax (logits)
11 return probs

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 12 / 31

Outline

1 Computational Graph

2 Execution Order

3 Variable

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 13 / 31

Yet Another Computational Graph

tf execution order.py
1 import tensorflow as tf
2
3 def build_tf_graph ():
4 x = tf. constant (1, dtype =tf. int32)
5 y = tf. constant (8, dtype =tf. int32)
6 z = x + y
7 return x, y, z
8
9 def main(_args):

10 # other code ...
11 x, y, z = build_tf_graph ()
12 with tf. Session () as sess:
13 output = sess.run ([x, y, z]) # execute all 3 operations
14 print (output) # output : [1, 8, 9]

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 14 / 31

What about now?

tf execution order 2.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 y = tf. constant (8, dtype =tf. int32)
4 z = x + y
5 return x, y, z
6
7 def main(_args):
8 # other code ...
9 with tf. Session () as sess:

10 output = sess.run ([x, y, z]) # execute all 3 operations
11 print (output) # output : [1, 8, 9]

• Unlike tf.constant, tf.Variable can be changed
11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 15 / 31

What about now?

tf execution order 3.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_x = tf. assign (x, 10)
4 y = tf. constant (8, dtype =tf. int32)
5 z = x + y
6 return x, y, z, assign_x
7
8 def main(_args):
9 # other code ...

10 with tf. Session () as sess:
11 output = sess.run ([z, assign_x]) # execute all 3 operations
12 print (output) # output : ?

We don’t know!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 16 / 31

What about now?

tf execution order 3.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_x = tf. assign (x, 10)
4 y = tf. constant (8, dtype =tf. int32)
5 z = x + y
6 return x, y, z, assign_x
7
8 def main(_args):
9 # other code ...

10 with tf. Session () as sess:
11 output = sess.run ([z, assign_x]) # execute all 3 operations
12 print (output) # output : ?

We don’t know!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 16 / 31

What about now?

tf execution order 3.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_x = tf. assign (x, 10)
4 y = tf. constant (8, dtype =tf. int32)
5 z = x + y
6 return x, y, z, assign_x
7
8 def main(_args):
9 # other code ...

10 with tf. Session () as sess:
11 output = sess.run ([z, assign_x]) # execute all 3 operations
12 print (output) # output : ?

We don’t know!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 17 / 31

TF Execution Order

• Execution order follows the computational graph’s topological
order.

• and nothing else!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 18 / 31

TF Execution Order

• Execution order follows the computational graph’s topological
order.

• and nothing else!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 18 / 31

TF Race Conditions

tf execution order 4.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 assign_2 = tf. assign (x, 2)
5
6 def main(_args):
7 with tf. Session () as sess:
8 _, _, x_value = sess.run ([assign_1 , assign_2 , x])
9 print (x_value) # of course we don ’t know the output , but it ’s worse ...

• Do we know the output of print?

◦ No!
• Do we know which value will be stored at x?

◦ No!
• Does the program even run safely?

◦ No! x can become NaN

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 19 / 31

TF Race Conditions

tf execution order 4.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 assign_2 = tf. assign (x, 2)
5
6 def main(_args):
7 with tf. Session () as sess:
8 _, _, x_value = sess.run ([assign_1 , assign_2 , x])
9 print (x_value) # of course we don ’t know the output , but it ’s worse ...

• Do we know the output of print?
◦ No!

• Do we know which value will be stored at x?
◦ No!

• Does the program even run safely?
◦ No! x can become NaN

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 19 / 31

TF Race Conditions

tf execution order 4.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 assign_2 = tf. assign (x, 2)
5
6 def main(_args):
7 with tf. Session () as sess:
8 _, _, x_value = sess.run ([assign_1 , assign_2 , x])
9 print (x_value) # of course we don ’t know the output , but it ’s worse ...

• Do we know the output of print?
◦ No!

• Do we know which value will be stored at x?

◦ No!
• Does the program even run safely?

◦ No! x can become NaN

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 19 / 31

TF Race Conditions

tf execution order 4.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 assign_2 = tf. assign (x, 2)
5
6 def main(_args):
7 with tf. Session () as sess:
8 _, _, x_value = sess.run ([assign_1 , assign_2 , x])
9 print (x_value) # of course we don ’t know the output , but it ’s worse ...

• Do we know the output of print?
◦ No!

• Do we know which value will be stored at x?
◦ No!

• Does the program even run safely?
◦ No! x can become NaN

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 19 / 31

TF Race Conditions

tf execution order 4.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 assign_2 = tf. assign (x, 2)
5
6 def main(_args):
7 with tf. Session () as sess:
8 _, _, x_value = sess.run ([assign_1 , assign_2 , x])
9 print (x_value) # of course we don ’t know the output , but it ’s worse ...

• Do we know the output of print?
◦ No!

• Do we know which value will be stored at x?
◦ No!

• Does the program even run safely?

◦ No! x can become NaN

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 19 / 31

TF Race Conditions

tf execution order 4.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 assign_2 = tf. assign (x, 2)
5
6 def main(_args):
7 with tf. Session () as sess:
8 _, _, x_value = sess.run ([assign_1 , assign_2 , x])
9 print (x_value) # of course we don ’t know the output , but it ’s worse ...

• Do we know the output of print?
◦ No!

• Do we know which value will be stored at x?
◦ No!

• Does the program even run safely?
◦ No! x can become NaN

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 19 / 31

Imposing an Execution Order

tf execution dependency.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 with tf. control_dependencies ([assign_1]):
5 assign_5 = tf. assign (x, 5)
6
7 def main(_args):
8 with tf. Session () as sess:
9 sess.run ([assign_1 , assign_5]) # assign_1 is run first , then assign_5

10 print (sess.run(x)) # output : 5

• tf.control dependencies([ops 1, ops 2, ops 3])
◦ ops 1, ops 2, ops 3 are parents of everything in the with block.
◦ sess.run([anything in the block]) will trigger them all

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 20 / 31

Imposing an Execution Order

tf execution dependency.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 with tf. control_dependencies ([assign_1]):
5 assign_5 = tf. assign (x, 5)
6
7 def main(_args):
8 with tf. Session () as sess:
9 sess.run ([assign_1 , assign_5]) # assign_1 is run first , then assign_5

10 print (sess.run(x)) # output : 5

• What if you create a loop?

◦ You cannot!
◦ Only created ops can be passed to

tf.control dependencies([...])

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 21 / 31

Imposing an Execution Order

tf execution dependency.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 assign_1 = tf. assign (x, 1)
4 with tf. control_dependencies ([assign_1]):
5 assign_5 = tf. assign (x, 5)
6
7 def main(_args):
8 with tf. Session () as sess:
9 sess.run ([assign_1 , assign_5]) # assign_1 is run first , then assign_5

10 print (sess.run(x)) # output : 5

• What if you create a loop?
◦ You cannot!
◦ Only created ops can be passed to

tf.control dependencies([...])
11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 21 / 31

Duplications in sess.run()

tf execution double call.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 inc_1 = tf. assign_add (x, 1)
4
5 def main(_args):
6 with tf. Session () as sess:
7 sess.run ([inc_1 , inc_1 , inc_1])

• What happens?

◦ Nothing unusual. x is increased by 1.
◦ No race conditions!

• Why?
◦ TF runs everything in the induced graph exactly once.

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 22 / 31

Duplications in sess.run()

tf execution double call.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 inc_1 = tf. assign_add (x, 1)
4
5 def main(_args):
6 with tf. Session () as sess:
7 sess.run ([inc_1 , inc_1 , inc_1])

• What happens?
◦ Nothing unusual. x is increased by 1.
◦ No race conditions!

• Why?
◦ TF runs everything in the induced graph exactly once.

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 22 / 31

Duplications in sess.run()

tf execution double call.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 inc_1 = tf. assign_add (x, 1)
4
5 def main(_args):
6 with tf. Session () as sess:
7 sess.run ([inc_1 , inc_1 , inc_1])

• What happens?
◦ Nothing unusual. x is increased by 1.
◦ No race conditions!

• Why?

◦ TF runs everything in the induced graph exactly once.

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 22 / 31

Duplications in sess.run()

tf execution double call.py
1 def build_tf_graph ():
2 x = tf. Variable (1, dtype =tf.int32 , name="x")
3 inc_1 = tf. assign_add (x, 1)
4
5 def main(_args):
6 with tf. Session () as sess:
7 sess.run ([inc_1 , inc_1 , inc_1])

• What happens?
◦ Nothing unusual. x is increased by 1.
◦ No race conditions!

• Why?
◦ TF runs everything in the induced graph exactly once.

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 22 / 31

Execution Order: Summary

• When you call sess.run(ops to run):
◦ TF looks for all parents of ops to run
◦ TF marks all these parent nodes (i.e. the induced graph)
◦ TF forgets what you put in ops to run
◦ TF runs all the nodes the induced graph, once
◦ TF preserves the dependencies in the induced graph, if any

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 23 / 31

Outline

1 Computational Graph

2 Execution Order

3 Variable

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 24 / 31

Creating variable with tf.get variable

tf variable.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000]) # create a variable called "w"
3 # with shape [500 , 1000]

• tf.Variable can be “written” to
◦ Unlike other tf ops

• tf.Variable stores trainable parameters of machine learning
models

◦ or whatever you wish :)

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 25 / 31

Variable Name

tf another variable.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000])
3 another_w = tf. get_variable ("w", [500 , 1000])
4 assign_w = tf. assign (w, np.ones ([500 , 1000]))
5 assign_another_w = tf. assign (w, np.ones ([500 , 1000]))

• w and another w are the same tf.Variable

• assign w and assign another w are two different ops

◦ but do the same thing!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 26 / 31

Variable Name

tf another variable.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000])
3 another_w = tf. get_variable ("w", [500 , 1000])
4 assign_w = tf. assign (w, np.ones ([500 , 1000]))
5 assign_another_w = tf. assign (w, np.ones ([500 , 1000]))

• w and another w are the same tf.Variable

• assign w and assign another w are two different ops

◦ but do the same thing!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 26 / 31

Variable Name

tf another variable.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000])
3 another_w = tf. get_variable ("w", [500 , 1000])
4 assign_w = tf. assign (w, np.ones ([500 , 1000]))
5 assign_another_w = tf. assign (w, np.ones ([500 , 1000]))

• w and another w are the same tf.Variable

• assign w and assign another w are two different ops
◦ but do the same thing!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 26 / 31

Variable Name

tf another variable.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000])
3 another_w = tf. get_variable ("w", [500 , 1000])
4 assign_w = tf. assign (w, np.ones ([500 , 1000]))
5 assign_another_w = tf. assign (w, np.ones ([500 , 1000]))

• w and another w are the same tf.Variable

• assign w and assign another w are two different ops
◦ but do the same thing!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 26 / 31

Variable Name

• TF computational graphs store their variables using TF names
• These are different from Python names
• You can use a variable’s TF name to retrieve it

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 27 / 31

Retrieving a Variable by Name

tf get var no shape.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000])
3 the_same_w = tf. get_variable ("w", [500 , 1000])
4 another_same_w = tf. get_variable ("w") # this is also okay!

• TF knows which "w" you are calling, no need to tell the shape again

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 28 / 31

Retrieving a Variable by Name

tf get var with shape.py
1 def build_tf_graph ():
2 w = tf. get_variable ("w", [500 , 1000])
3 the_same_w = tf. get_variable ("w", [500 , 1000]) # the same w as above
4 another_same_w = tf. get_variable ("w") # this is okay
5 yet_another_same_w = tf. get_variable ("w", [501 , 1000]) # this is not!

• TF knows which "w" you are calling, no need to tell the shape again
• TF knows you are trying to trick it!

◦ tf.get variable with an existing name ignores the shape
◦ tf.get variable with an existing name and a different shape will

complain!

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 29 / 31

Variable Scope

tf variable scope.py
1 def build_tf_graph ():
2 with tf. variable_scope (" my_model "):
3 w = tf. get_variable ("w", [500 , 1000])
4 w2 = tf. get_variable ("w2", [50 , 50])

• Pad variables’ TF names with prefixes
• Used when there are many variables to organize

◦ e.g. "mat mul/w" and "convolution/w" are weights for a matrix
multiplication and a convolution.

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 30 / 31

Variable Scope and reuse

tf var scope reuse.py
1 def build_tf_graph ():
2 with tf. variable_scope (" my_model ", reuse =True):
3 w = tf. get_variable ("w") # " my_model /w" must be created before
4 w2 = tf. get_variable ("w2") # " my_model /w2" must be created before

• You can use reuse=True in a variable scope to force all
tf.get variable("var name") to look up created variables.

• Throw errors if the variable with the name is not created before
• Used when building multiple graphs, loading variables, etc.

11-695: Competitive EngineeringTensorFlow: Graphs, Execution, and VariablesSpring 2018 31 / 31

	Computational Graph
	Execution Order
	Variable

