Learning Evaluation Functions for Large Acyclic Domains

Justin A. Boyan and Andrew W. Moore
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213 USA

jab@cs.cmu.edu, awm@cs.cmu.edu

Abstract

Some of the most successful recent appli-
cations of reinforcement learning have used
neural networks and the TD(A) algorithm to
learn evaluation functions. In this paper,
we examine the intuition that TD(A) oper-
ates by approximating asynchronous value
iteration. We note that on the important
subclass of acyclic tasks, value iteration is
inefficient compared with another graph al-
gorithm, DAG-SP, which assigns values to
states by working strictly backwards from the
goal. We then present ROUT, an algorithm
analogous to DAG-SP that can be used in
large stochastic state spaces requiring func-
tion approximation. We close by comparing
the behavior of ROUT and TD on a simple
example domain and on two domains with
much larger state spaces.

1 LEARNING CONTROL
BACKWARDS

Computing an accurate value function is the key to
dynamic-programming-based algorithms for optimal
sequential control in Markov Decision Processes. The
optimal value function V*(z) specifies, for each state
in the state space X, the expected cumulative reward
when starting in state # and acting optimally there-
after. It is also the unique solution to the Bellman
equations: (using the notation of [Watkins and Dayan,

1992]) Vo € X,

R(x) if z is a terminal state
V(z) = R(z, Prob(z = y)V
(2) = max | R(z,a)+7)} Proba = y)V(y)

yeX
otherwise.
(1)
The Bellman equation at z also reveals the optimal
control from z: any action which instantiates the max
is an optimal choice [Bellman, 1957].

For small discrete problems, the value function can be
stored in a lookup table and computed by iterative al-
gorithms such as value iteration (V1) [Bellman, 1957].
VI computes V* by repeatedly sweeping over the state
space, applying Equation 1 as an assignment state-
ment (this is called a “one-step backup”) at each state
in parallel. If the lookup table is initialized with all 0’s,
then after ¢ sweeps of VI, the table will represent the
maximum expected return of a path of length ¢ from
each state. For certain goal-oriented domains, this cor-
responds to the intuition that VI works by propagating
correct V* values backwards, by one step per iteration,
from the terminal states.

More precisely, there are two classes of MDPs for which
correct V* values can be assigned by working strictly
backwards from terminal states:

1. deterministic domains with no positive-reward cy-
cles and with every state able to reach at least one
terminal state. This class includes shortest-path
and minimum cost-to-go problems.

2. (possibly stochastic) acyclic domains: domains
where no legal trajectory can pass through the
same state twice. Many problems naturally have
this property (e.g. games like tic-tac-toe and
Connect-Four; one formulation of the job-shop

scheduling domain [Zhang and Dietterich, 1995];
any finite-horizon problem for which time is a
component of the state).

Using VI to solve MDPs belonging to either of these
special classes can be quite inefficient, since VI per-
forms backups over the entire space, whereas the
only backups useful for improving V* are those on
the “frontier” between already-correct and not-yet-
correct V* values. In fact, there are classical algo-
rithms for both problem classes which compute V*
more efficiently by explicitly working backwards: for
the deterministic class, Dijkstra’s shortest-path algo-
rithm; and for the acyclic class, DIRECTED-ACYCLIC-
GRAPH-SHORTEST-PATHS (DAG-SP) [Cormen et al.,
1990].) DAG-SP first topologically sorts the MDP,
producing a linear ordering of the states in which ev-
ery state x precedes all states reachable from x. Then,
it runs through that list in reverse, performing one
backup per state. Worst-case bounds for VI, Dijkstra,
and DAG-SP in deterministic domains with X states
and A actions/state are O(AX?), O(AX log X), and
O(AX), respectively.

Another difference between VI and working backwards
is that VI repeatedly re-estimates the values at every
state, using old predictions to generate new training
values. By contrast, Dijkstra and DAG-SP are always
explicitly aware of which states have their V* values
already known, and can hold those values fixed. This
will be important when we introduce generalization
and the possibility of approximation error.

VALUE FUNCTION APPROXIMATION

The VI, Dijkstra and DAG-SP algorithms all apply
exclusively to MDPs for which the state space can be
exhaustively enumerated and the value function rep-
resented as a lookup table. For the high-dimensional
state spaces characteristic of real-world control tasks,
such enumeration is intractable. Computing V* re-
quires generalization: a natural technique is to encode
the states as real-valued feature vectors and to use a
function approximator to fit V* over this feature space.

Perhaps the most successful application of VI-based
algorithms with function approximation has been in
the domain of backgammon [Tesauro, 1992]. Tesauro
modified Sutton’s TD(A) algorithm [Sutton, 1988],

which is normally thought of as a model-free algorithm

! Although [Cormen et al., 1990] presents DAG-SP only
for deterministic acyclic problems, it applies straightfor-
wardly to the stochastic case.

for learning to predict, into a model-based algorithm
for learning to control. Table 1 shows a variant of
Tesauro’s algorithm adapted for the acyclic MDP case.
When A = 0, this algorithm becomes the RTDP al-
gorithm [Barto et al., 1995], which is closely related
to VI; the key difference is that its backups are done
along sample trajectories through the process, rather
than along sweeps of the entire state space.

Tesauro’s combination of TD(A) and neural networks
has been applied successfully to other domains, in-
cluding combinatorial optimization [Zhang and Diet-
terich, 1995] and elevator control [Crites and Barto,
1996]. Nevertheless, it is important to note that
when function approximators are used, TD(A) pro-
vides no guarantees of optimality. In the case of un-
controlled Markov chains and linear function approx-
imators, online TD(A) does converge [Dayan, 1992,
Tsitsiklis and Van Roy, 1996]—but even then, if A # 1,
convergence is not necessarily to a good approxima-
tion of V* [Bertsekas, 1995]. Moreover, in the gen-
eral case of arbitrary function approximators and con-
trolled Markov processes, repeatedly applying one-step
backups may propagate and enlarge approximation er-
rors, leading to instability [Boyan and Moore, 1995,
Gordon, 1995].

Thus, we have presented two reasons why work-
ing strictly backwards may be desirable: efficiency,
because updates need only be done on the “fron-
tier” rather than all over state space; and robust-
ness, because correct V* values, once assigned, need
never again be changed. We have therefore investi-
gated generalizations of the Dijkstra and DAG-SP al-
gorithms specifically modified to accommodate huge
state spaces and value function approximation. Our
variant of Dijkstra’s algorithm, called Grow-Support,
was presented in [Boyan and Moore, 1995] and will not
be discussed further here. Our variant of DAG-SP is
a very different algorithm we call ROUT, introduced
below. Table 2 summarizes the relationships among
these algorithms.

2 THE “ROUT” ALGORITHM

In the huge domains for which ROUT is designed,
DAG-SP’s key preprocessing step—topologically sort-
ing the entire state space—is no longer tractable. In-
stead, ROUT must expend some extra effort to iden-
tify states on the current frontier. Once identified (as
described below), a frontier state is assigned its opti-
mal V* value by a simple one-step backup, and this
{state—value} pair is added to a training set for a

TD(A, start states X, fitter Fy:

/* Assumes known world model MDP; F is parametrized by weight vector w. */

repeat steps 1 and 2 forever:

1. Using the model and the current evaluation function F', generate a mostly-greedy
trajectory from a start state to a terminal state: zg — x1--- — 7.

Also record the rewards rg, rq,...7rp received at each step.
2. Update the fitter from the trajectory as follows:

for i := T downto 0, do:

¢ | 7rr (the terminal reward)
arg; - — i+ A-targ; 4+ (1 — A F(zi41)

ifi=T
otherwise

update F’s weights by delta rule: Aw := a(targ; — F(2;))Vy F(2i) ;

end

Table 1: TD(A) for learning V* from an acyclic MDP

| Alg. for lookup-table V*

Applicable MDPs

Alg. for fun.approx. V* |

Value Iteration arbitrary TD(A)
Dijkstra deterministic Grow-Support
DAG-SP acyclic ROUT

Table 2: Algorithms for generating optimal value functions

function approximator. Thus, ROUT’s main loop con-
sists of identifying a frontier state; determining its V*
value; and retraining the approximator (see Table 3).
The training set, constructed adaptively, grows back-
wards from the goal.

ROUT’s key subroutine, HUNTFRONTIERSTATE, is re-
sponsible for identifying a good state z to add to the
training set. In particular:

1. All states reachable from 2 should already have
their V* values correctly approximated by the
function approximator. This ensures that the pol-
icy from @ onward is optimal, and that a correct
target value for V*(z) can be assigned.

2. x itself should not already have its V* value cor-
rectly approximated. This condition aims to keep
the training set as small as possible, by excluding
states whose values are correct anyway thanks to
good generalization.

3. z should be a state that we care to learn about.
For that reason, ROUT considers only states
which occur on trajectories emanating from one
of a set of problem-specific “start states.”

The HUNTFRONTIERSTATE operation returns a state
which with high probability satisfies these properties.

It works by generating a number of trajectories from z,
each time checking to see whether all states along the
trajectory are self-consistent (i.e., satisfy Equation 1
to some tolerance €). If all states after « on all sam-
ple trajectories are self-consistent, then z is deemed
ready, and ROUT will add z to its training set. If; on
the other hand, a trajectory from z reveals any incon-
sistencies in the approximated value function, then we
flag that trajectory’s last such inconsistent state, and
restart HUNTFRONTIERSTATE from there. Figure 1
illustrates how the routine works.

The parameters of the ROUT algorithm are H, the
number of trajectories generated to certify a state’s
readiness, and ¢, the tolerated Bellman residual.
ROUT’s convergence to the optimal V*, assuming the
function approximator can fit the V* training set per-
fectly, can be guaranteed in the limiting case where
H — oo (assuring exploration of all states reachable
from z) and ¢ = 0. In practice, of course, we want
to be tolerant of some approximation error. Typical
settings we used were H = 20 and ¢ = 0.1 (or roughly
5% of the range of V*).

3 RESULTS

We present here results with ROUT on three domains:
a prediction task, a two-player dice game, and a k-

ROUT (start states X, fitter F'):

/* Assumes that the world model MDP is known and acyclic. */

initialize training set S := (), and F' := an arbitrary fit;

repeat:
for each start state z € X not yet marked “done”, do:

s := HUNTFRONTIERSTATE(z, F');
add {s — one-step-backup(s)} to training set S and re-train fitter 7" on S;
if (s = x), then mark start state « as “done”.

until all start states in X are marked “done”.

HUNTFRONTIERSTATE (state z, fit F):

/* If the value function is self-consistent on all trajectories from x, return x. (That is
determined probabilistically by Monte Carlo trials.) Otherwise, return a state on a
trajectory from x for which the self-consistency property is true. */

for each legal action a € A(z), do:
repeat up to H times:

generate a trajectory T from z to termination, starting with action «;
let y be the last state on T with Bellman residual > €;
if (y #0) and (y # «), then break out of loops, and
restart procedure with HUNTFRONTIERSTATE (y, F').
/* reaching this point, a’s subtree is deemed all self-consistent and correct! */
return z.

Table 3: The ROUT main loop and HUNTFRONTIERSTATE subroutine

Figure 1: A schematic of ROUT working on
an acyclic two-dimensional navigation domain,
where the allowable actions are only —, 7, and
1. Suppose that ROUT has thus far established
training values for V* at the triangles, and that
the function approximator has successfully gen-
eralized V* throughout the shaded region. Now,
when HUNTFRONTIERSTATE generates a trajec-
tory from the start state to termination (solid
line), it finds that several states along that tra-
jectory are inconsistent (marked by crosses). The
last such cross becomes the new starting point
for HUNTFRONTIERSTATE. From there, all tra-
jectories generated (dashed lines) are fully self-
consistent, so that state gets added to ROUT’s
training set. When the function approximator is
re-trained, the shaded region of validity should
grow, backwards from the goal.

START

armed bandit problem. For all problems, we compare
ROUT’s performance with that of TD(A) given the
equivalent function approximator. We measure the
time to reach best performance (in terms of total num-
ber of state evaluations performed) and the quality of
the learned value function (in terms of Bellman resid-
ual, closeness to the true V*, and performance of the
greedy control policy).

Task 1: Hopworld

The “Hopworld” is a small domain designed to illus-
trate how ROUT combines working backwards, adap-
tive sampling and function approximation. The do-
main is an acyclic Markov chain of 13 states in which
each state has two equally probable successors: one
step to the right or two steps to the right. The transi-
tion rewards are such that for each state V*(n) = —2n.
Our function approximator F' makes predictions by in-
terpolating between values at every fourth state. This
is equivalent to using a linear approximator over the
four-element feature vector representation depicted in
Figure 2.

In ROUT, we fit the training set using a batch least-
squares fit. In TD, the coefficients are updated using
the delta rule with a hand-tuned learning rate. The
results are shown in Table 4. ROUT’s performance
is efficient and predictable on this contrived problem.
At the start, HUNTFRONTIERSTATE finds F' is incon-
sistent and trains F (1) and F(2) to be -2 and -4, re-
spectively. Linear extrapolation then forces states 3
and 4 to be correct. On the third iteration, F(5) is
spotted as inconsistent and added to the training set,
and beneficial extrapolation continues. By compari-
son, TD also has no trouble learning V*, but requires
many more evaluations. This is because TD trains
blindly on all transitions, not only the useful ones; and
because its updates must be done with a fairly small
learning rate, since the domain is stochastic. TD could
be improved by an adaptive learning rate, but even
the most baroque scheme for adaptation would have
a hard time making the direct least-squares fits that

ROUT 1s able to do.

Task 2: The Game of Pig

“Pig” is a two-player children’s dice game. Each player
starts with a total score of zero, which is increased on
each turn by dice rolling. The first to 100 wins. On
her turn, a player accumulates a subtotal by repeat-
edly rolling a 6-sided die. If at any time she rolls a 1,
however, she loses the subtotal and gets only 1 added

to her total. Thus, before each roll, she must decide
whether to (a) add her currently-accumulated subtotal
to her permanent total and pass the turn to the other
player; or (b) continue rolling, risking an unlucky 1.

Pig belongs to the class of symmetric, alternating,
Markov games. This means that the minimax-optimal
value function can be formulated as the unique solu-
tion to a system of Bellman equations like Equation 1.2
The state space, with two-player symmetry factored
out, has 515,000 positions—Ilarge enough to be inter-
esting, but small enough that computing the exact V*
is tractable.

For input to the function approximator, we represent
states by their natural 3-dimensional feature represen-
tation: X’s total, O’s total, and X’s current subtotal.
The approximator is a standard MLP with two hidden
units. In ROUT, the network is retrained to conver-
gence (at most 1000 epochs) each time the training
set 1s augmented. Note that this extra cost of ROUT
is not reflected in the results table, but for practical
applications, a far faster approximator than backprop

would be used with ROUT.3

The Pig results are charted in Table 4 and graphed
in Figure 3. The graph shows the learning curves
for the best single trial of each of six classes of runs:
TD(0), TD(0.8) and TD(1), with and without explo-
ration. The best TD run, TD(0) with exploration,
required about 30 million evaluations to reach its best
performance of about -0.15. By contrast, ROUT com-
pleted successfully in under 1 million evaluations, and
performed at the significantly higher level of -0.09.
ROUT’s adaptively-generated training set contained
only 133 states.

Task 3: Multi-armed Bandit Problem

Our third test problem is to compute the optimal
policy for a finite-horizon k-armed bandit [Berry and

2The only difference is that some of the “probabilities”

Prob(z R y) will be negative, reflecting the minimax na-
ture of the game. Some MDP-solving methods (e.g. lin-
ear programming) can no longer be used for this class of
problems; however, VI and DAG-SP do still apply, as do
their function-approximation counterparts, TD and ROUT
[Littman and Szepesvéri, 1996).

*Unlike TD, which works only with parametric func-
tion approximators for which V., F(z) can be calculated,
ROUT can work with arbitrary function approximators,
including batch methods such as projection-pursuit and
locally weighted regression. For this paper’s comparative
experiments, however, we used linear or neural net fits for
both algorithms.

[1,0,0,0] ‘ [1/2,1/2,0,0] ‘ 0,0, 172, 1/2] ‘ [0,0,0,1]
[3/4, 1/4, 0, 0] [0, 0, 3/4, 1/4] 0,0, 1/4, 3/4]

Figure 2: The Hopworld Markov chain. Each state is represented by a four-element feature vector as shown.
The function approximator is linear.

training total eval- RMS RMS Policy

Problem Method samples uations | Bellman [|[V*—F|| | Quality
HOP Discrete* 12 21 0 0 -24 %
ROUT 4 158 0. 0. -24

TD(0) 5000 10,000 0.03 0.1 -24

TD(1) 5000 10,000 0.03 0.1 -24

PIG Discrete* 515,000 3.6M 0 0 0
ROUT 133 0.8M 0.09 0.14 | -0.093

TD(0) + explore 5 M 30M 0.23 0.29 -0.151

TD(0.8) + explore 9 M 60 M 0.23 0.33 -0.228

TD(1) + explore 6 M 40 M 0.22 0.30 -0.264

TD(0) no explore 8+ M 50+ M 0.12 0.54 -0.717

TD(0.8) no explore 5 M 3B M 0.33 0.44 -0.308

TD(1) no explore 5 M 30 M 0.23 0.32 -0.186

BAND Discrete* 736,281 4 M 0 0] 0.682*
ROUT 30 15,850 0.01 0.05 0.668

TD(0) 150,000 900,000 0.07 0.14 0.666

TD(1) 100,000 600,000 0.02 0.04 0.669

Table 4: Summary of results. For each algorithm on each problem, we list two measurements of time to quiescence
followed by three measurements of the solution quality. The measurements for TD were taken at the time when,
roughly, best performance was first consistently reached. (Key: M=10%; * denotes optimal performance for each

task.)

performance vs. optimal opponent

ALAADLDDALNLLLLLLL N A A

ROUT ¢
TD(0), explor -+--
TD(0.8), explor -8--
TD(1), explor -
TD(0), no explor -4
TD(0.8), no explor -%--
TD(1), no explor -o--

1 1 1 1 1
0 5e+06

le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

number of function evaluations

Figure 3: Performance of Pig policies learned by TD and ROUT.
ROUT’s performance is marked by a single diamond at the top left of the graph.

Fristedt, 1985, Duff, 1995]. While an optimal solution
in the infinite-horizon case can be found efficiently us-
ing Gittins indices, solving the finite-horizon problem
is equivalent to solving a large acyclic, stochastic MDP
in belief space [Berry and Fristedt, 1985]. We show re-
sults for & = 3 arms and a horizon of n = 25 pulls,
where the resulting MDP has 736,281 states. Solving
this MDP by DAG-SP produces the optimal explo-
ration policy, which has an expected reward of 0.6821
per pull.

We encoded each state as a six-dimensional fea-
ture vector of [#succy,,1, F#faily,,i1, FSUCCirma;
#fail,, .0, F#succ,,,5, #fail,,,,3] and attempted to
learn a neural network approximation to V* with
TD(0), TD(1), and ROUT. Again, the parameters for
all algorithms were tuned by hand.

The results are shown in Table 4. All methods do spec-
tacularly well, although the TD methods again require
more trajectories and more evaluations. Careful in-
spection of the problem reveals that a globally linear
value function, extrapolated from the states close to
the end, has low Bellman residual and performs very
nearly optimally. Both ROUT and TD successfully
exploit this linearity.

DISCUSSION

When a function approximator is capable of fitting V*,
ROUT will, in the limit, find it. However, for ROUT
to be efficient, the frontier must grow backward from
the goal quickly; and this depends on good extrapola-
tion from the training set. When good extrapolation
does not occur, ROUT may become stuck, repeatedly
adding points near the goal region and never progress-
ing backwards. One possible solution to this would
be to adapt ROUT’s tolerance level ¢, thereby guar-
anteeing progress at the expense of accuracy. Another
possibility would be to investigate the use of function
approximators especially well-suited to extrapolation
from noiseless training data.

Still, in some cases the approximator may not even be
adequate for fitting V* at all. In this case, we wish to
find the best evaluation function—a fittable function
that produces a good policy, regardless of the Bellman
equations. At that point all our intuitions about how
to derive the best function break down, and the be-
haviors of ROUT, TD(0) and even TD(1) become ill-
understood. For example, in preliminary experiments
on the game of Connect-4, we found that ROUT was
unable to represent V* near the goal region and be-
came stuck, whereas TD learned to play well despite

the approximator’s inadequacy. Understanding how
TD manages this is an important open question for
reinforcement learning.

4 CONCLUSIONS

Graph-theoretic algorithms which work backwards
from the goal have been important for efficiency in
many areas of computer science (planning, Grass-
fire algorithm, endgame databases), so it is natural
to ask whether they can similarly benefit function-
approximation-based methods for learning control.
The ROUT algorithm addresses this question. A key
consideration was to avoid sampling all states in or-
der to work backwards; the HUNTFRONTIERSTATE
method provides a basis for sampling adaptively. On
our test domains, ROUT learned excellent evaluation
functions using much less data than TD()), and we be-
lieve it indicates many interesting directions for future
research.

Acknowledgments

We would like to thank Michael Littman for many help-
ful discussions, and the anonymous reviewers for excel-
lent feedback. We also acknowledge the support of the
NDSEG/ONR fellowship program and NSF Grant IRI-
9214873.

References

[Barto et al., 1995] A. G. Barto, S. J. Bradtke, and
S. P. Singh. Real-time learning and control using
asynchronous dynamic programming. Al Journal,

1995.

[Bellman, 1957] Richard Bellman. Dynamic Program-
ming. Princeton University Press, 1957.

[Berry and Fristedt, 1985] D. A. Berry and B. Frist-
edt. Bandit Problems: Sequential Allocation of Ez-
periments. Chapman and Hall, 1985.

[Bertsekas, 1995] D. Bertsekas. A counterexample to
temporal differences learning. Neural Computation,

7:270-9, 1995.

[Boyan and Moore, 1995] J. A. Boyan and A. W.
Moore. Generalization in reinforcement learn-
ing: Safely approximating the value function. In
G. Tesauro, D. S. Touretzky, and T. K. Leen, ed-
itors, Advances in Neural Information Processing
Systems 7. MIT Press, 1995.

[Cormen et al., 1990] T. H. Cormen, C. E. Leiserson,
and R. L. Rivest. Introduction to Algorithms. MIT
Press, 1990.

[Crites and Barto, 1996] R. Crites and A. Barto. Im-
proving elevator performance using reinforcement
learning. In D. Touretzky, M. Mozer, and M. Has-
selno, editors, Advances in Neural Information Pro-
cessing Systems 8, 1996.

[Dayan, 1992] P. Dayan. The convergence of TD(})
for general A\. Machine Learning, 8(3/4), May 1992.

[Duff, 1995] M. O. Duff. Q-learning for bandit prob-
lems. Technical Report CMPSCI 95-26, University
of Massachusetts, 1995.

[Gordon, 1995] G. Gordon. Stable function approx-
imation in dynamic programming. In Proceedings
of the 12th International Conference on Machine
Learning. Morgan Kaufmann, 1995.

[Littman and Szepesvari, 1996) M. L. Littman and
C. Szepesvari. A generalized reinforcement-learning
model: Convergence and applications. In L. Saitta,
editor, Machine Learning: Proceedings Of The Thur-
teenth International Conference (this volume). Mor-
gan Kaufmann, 1996.

[Sutton, 1988] R. Sutton. Learning to predict by the
methods of temporal differences. Machine Learning,

3, 1988.

[Tesauro, 1992] G. Tesauro. Practical issues in tem-
poral difference learning. Machine Learning, 8(3/4),
May 1992.

[Tsitsiklis and Van Roy, 1996] J. N. Tsitsiklis and
B. Van Roy. An analysis of temporal-difference
learning with function approximation. Technical Re-

port LIDS-P-2322, MIT, 1996.

[Watkins and Dayan, 1992] C. Watkins and P. Dayan.
Technical note: Q-Learning. Machine Learning,
8(3/4), May 1992.

[Zhang and Dietterich, 1995] W. Zhang and T. G. Di-
etterich. A reinforcement learning approach to job-
shop scheduling. In Proceedings of IJCAI-95, pages
1114-1120, 1995.

