(To appear in AAAI-98)

Learning Evaluation Functions for Global Optimization and
Boolean Satisfiability

Justin A. Boyan and Andrew W. Moore
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

{jab,awm }@cs.cmu.edu

Abstract

This paper describes STAGE, a learning approach
to automatically improving search performance
on optimization problems. STAGE learns an eval-
uation function which predicts the outcome of
a local search algorithm, such as hillclimbing or
WALKSAT, as a function of state features along
its search trajectories. The learned evaluation
function is used to bias future search trajecto-
ries toward better optima. We present positive
results on six large-scale optimization domains.

Introduction

VLSI design, engineering design, Boolean formula sat-
isfaction, bin-packing, medical treatment planning and
Bayes net structure finding are all examples of global
optimization—the problem of finding the best possi-
ble configuration from a large space of possible con-
figurations. Formally, a global optimization problem
consists of a state space X and an objective function
Obj : X — R. The goal is to find a state z* € X
which minimizes Obj. If X is large, then finding z*
is generally intractable unless the problem has a very
specialized structure (e.g., a linear program). However,
many general-purpose local search algorithms attempt
to exploit Obj’s structure to locate good approximate
optima; for example, hillclimbing, simulated anneal-
ing, and tabu search. All of these work by imposing
a neighborhood relation on the states of X and then
searching the graph that results, guided by Obj.
Local search has been likened to “trying to find the
top of Mount Everest in a thick fog while suffering
from amnesia” (Russell & Norvig 1995, p.111). The
climber considers each step by consulting an altimeter
and deciding whether to take the step based on the
change in altitude. But suppose the climber has access
to not only an altimeter, but also additional senses and
instruments—for example, the current z and y loca-
tion, the slope of the ground underfoot, and whether or

Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

not the current location is on a trail. These additional
“features” may enable the climber to make a more
informed, more foresightful, evaluation of whether to
take a step.

In real optimization domains, such additional state
features are generally plentiful. Practitioners of lo-
cal search algorithms often append additional terms to
their objective function, and then spend considerable
effort tweaking the coefficients. This excerpt, from a
book on VLSI layout by simulated annealing (Wong,
Leong, & Liu 1988), is typical:

Clearly, the objective function to be minimized
is the channel width w. However, w is too crude a
measure of the quality of intermediate solutions.
Instead, for any valid partition, the following cost
function is used:

C=w?+X -p’+Av-U (1)

U measures the sparsity of the horizontal tracks, while
p measures the longest path length in the current par-
tition. In this application, the authors hand-tuned the
coefficients of the extra state features p? and U, setting
Ap = 0.5 and Ay = 10. (We will show that our algo-
rithm learned to assign, counterintuitively, a negative
value to Ay, and achieved much better performance.)
Similar examples of evaluation functions being manu-
ally configured and tuned for good performance can
be found in, e.g., (Falkenauer & Delchambre 1992;
Szykman & Cagan 1995).

The question we address is the following: can ex-
tra features of an optimization problem be incorpo-
rated automatically into improved evaluation func-
tions, thereby guiding search to better solutions?

The STAGE Algorithm

STAGE analyzes sample trajectories and automatically
constructs predictive evaluation functions. It then
uses these new evaluation functions to guide further
search. A preliminary version of STAGE, described in

(Boyan & Moore 1997), showed promising performance
on VLSI layout. This paper describes an improved ver-
sion of STAGE with superior results on VLSI layout and
thorough results for five other global optimization do-
mains. We also overview the theoretical foundations
of STAGE, one consequence of which is an extension al-
lowing STAGE to accelerate non-monotonic search pro-
cedures such as WALKSAT.

Learning to Predict

The performance of a local search algorithm depends
on the state from which the search starts. We can
express this dependence in a mapping from starting
states x to expected search result:

V™ (x) def expected best Obj value seen on a tra- (2)
jectory that starts from state x and
follows local search method

Here, m represents a local search method such as hill-
climbing or simulated annealing. V7 (z) evaluates 2’s
promise as a starting state for 7.

For example, consider minimizing the one-
dimensional function Obj(xz) = (|#|—10) cos(2mz) over
the domain X = [-10,10], as depicted in Figure 1.
Assuming a neighborhood structure on this domain
where tiny moves to the left or right are allowed,
hillclimbing (greedy descent) search clearly leads to
a suboptimal local minimum for all but the luckiest
of starting points. However, the quality of the local
minimum reached does correlate strongly with the
starting position: V™ (z) = |z| — 10. Gathering data
from only a few suboptimal trajectories, a function
approximator can easily learn to predict that starting
near z = 0 will lead to good performance.

Figure 1: Left: Obj(z) for a one-dimensional minimiza-
tion domain. Right: the value function V™ () which
predicts hillclimbing’s performance on that domain.

We approximate V™ using a function approximation
model such as polynomial regression, where states z
are encoded as real-valued feature vectors. As dis-
cussed above, these input features may encode any
relevant properties of the state, including the original
objective function Obj(z) itself. We denote the map-
ping from states to features by /' : X — %, and our
approximation of V7™ (z) by ‘N/”(F(r))

Training data for supervised learning of VT may be
readily obtained by running 7 from different start-
ing points. Moreover, if the algorithm 7 behaves as
a Markov chain—i.e.; the probability of moving from
state z to z’ is the same no matter when z is visited
and what states were visited previously—then interme-
diate states of each simulated trajectory may also be
considered alternate “starting points” for that search,
and thus used as training data for V™ as well. This in-
sight enables us to get not one but perhaps hundreds of
pieces of training data from each trajectory sampled.
For the remainder of this paper, except in the section
on WALKSAT, we will set 7 to be stochastic hillclimb-
ing, rejecting equi-cost moves, terminating as soon as
a fixed number (patience) of consecutive moves pro-
duces no improvement. This choice of 7 satisfies the
Markov property. We will also always use simple linear
or quadratic regression to fit V™, since training these
models incrementally is extremely efficient in time and
memory (Boyan 1998).

Using the Predictions

The learned evaluation function V™ (F(z)) evaluates
how promising z is as a starting point for algorithm 7.
To find the best starting point, we must optimize &
over X. We do this by applying stochastic hillclimbing
with V™ instead of Obj as the evaluation function.®

produces new tr‘aining}data

Run 1t to (
optimize Obj for VT retrain the fitter*.z
1
Hillclimb to
produces good new optimize V™

starting state for Tt ..

Figure 2: A diagram of the main loop of STAGE

The STAGE algorithm provides a framework for
learning and exploiting V™ on a single optimization
instance. As illustrated in Figure 2, STAGE repeatedly
alternates between two different stages of local search:
running the original method 7 on Obj, and running
hillclimbing on V7™ to find a promising new starting
state for m. Thus, STAGE can be viewed as a smart
multi-restart approach to local search.

'Note that even if V™ is smooth with respect to the
feature space—as it surely will be if we represent V™ with a
simple model like quadratic regression—it may still give rise
to a complex cost surface with respect to the neighborhood
structure on X. The existence of a state with a set of
features similar to the current state’s does not imply there
is a step in state-space that will take us to that state.

STAGE effectively plots a single long trajectory
through the state space, periodically switching be-
tween the original objective function Obj(z) and the
newly-learned evaluation function V™ (z). The trajec-
tory is only broken if the V™ search phase accepts no
moves, indicating that z is a local minimum of both
evaluation functions. When this occurs, STAGE resets
the search to a random starting state.

Illustrative Example

We will now work through a detailed illustrative exam-
ple of STAGE in operation. Then we will provide results
on six large, difficult, global optimization problems.

Our example comes from the practical, NP-complete
domain of bin-packing (Coffman, Garey, & Johnson
1996). In bin-packing, we are given a bin capacity C
and a list L = (aq, ag, ...a,) of n items, each having a
size s(a;) > 0. The goal is to pack the items into as
few bins as possible. Figure 3 depicts an example bin-
packing instance with thirty items. Packed optimally,
these items fill 9 bins exactly to capacity.

Figure 3: A small example bin-packing instance

To apply local search, we define a neighborhood op-
erator which moves a single random item to a ran-
dom new bin having sufficient spare capacity. STAGE
predicts the outcome of stochastic hillclimbing using
quadratic regression over two features of the state z:

1. The actual objective function, Obj = # of bins used.

2. Var = the variance in fullness of the non-empty bins.
This feature is similar to a cost function term intro-

duced in (Falkenauer & Delchambre 1992).

Figure 4 depicts the first three iterations of a STAGE
run on the example instance. On the first itera-
tion (4a), STAGE hillclimbs from the starting state
(Obj = 30, Var = 0.011) to a local optimum (Obj =
13, Var = 0.019). Training each of the 18 states of that
trajectory to predict the outcome 13 results in the flat
V™ function shown in 4b. Hillclimbing on this flat V™
accepts no moves, so STAGE resets to the initial state.

HC on Obj —-—

variance of bin fullness

0.06
(4a) 2
g
S 004r
&
2 o002t
T
&
oL .
30 25 20 15 10
Feature #1: Obj(x) = number of bins used
Vpi_0 (firstiteration) ——
0.12 T T
@ HC on Obj ——
2 HC on Obj —
ER
£
3
S 008 f
5]
e
8
©
> 0.06
(4c) ;
g
S oo04p
=
I*
2 o002}t
s
L7
w
oL~ .
30 25 20 15 10
Feature #1: Obj(x) = number of bins used
Vpi_1 (second iteration) ——
8 v
9 -
20 10
15 11 -
12 -
10 13 -
5 14 ~
(4d) 0
-5
0:10
-15 - - . SN
0.05 BN
Var(x) g - S 10
0.12 T T
@ HC on Obj ——
2 HC on Obj —
= [HC on Vpi_1 -&-
2 % Hcon'ob — i
3]
S 008 f I
g g
8 i
©
> 0.06
(4e) ;
g
S oo04p
=
I*
2 o002}
s
L7
w

. .
30 25 20 15 10
Feature #1: Obj(x) = number of bins used

Figure 4: STAGE working on the bin-packing example

On the second iteration of STAGE (4c), the new
stochastic hillclimbing trajectory happens to do bet-
ter than the first, finishing at a local optimum (Obj =
11, Var = 0.022). Our training set is augmented with
target values of 11 for all states on the new trajec-
tory. The resulting quadratic v already has signif-
icant structure (4d). Note how the contour lines of
V™, shown on the base of the surface plot, correspond
to smoothed versions of the trajectories in our train-
ing set. Extrapolating, v predicts that the the best
starting points for hillclimbing are on arcs with higher
Var(x).

STAGE hillclimbs on the learned V™ to try to find a
good starting point. The trajectory, shown as a dashed
line in 4e, goes from (Obj = 11, Var = 0.022) up to
(Obj = 12,Var = 0.105). Note that the search was
willing to accept some harm to the true objective func-
tion during this stage. From the new starting state,
hillclimbing on Obj does indeed lead to a yet better
local optimum at (Obj = 10, Var = 0.053).

During further iterations, the approximation of v
is further refined. Continuing to alternate between hill-
climbing on Obj and hillclimbing on V™, STAGE man-
ages to discover the global optimum at (Obj = 9, Var =
0) on iteration seven.

Results

Extensive experimental results are given in Table 1.
For six problems with widely varying characteristics,
we contrast the performance of STAGE with that of
multi-start stochastic hillclimbing, simulated anneal-
ing, and domain-specific algorithms where applicable.
The hillclimbing runs accepted equi-cost moves and
restarted whenever patience consecutive moves pro-
duced no improvement. The simulated annealing runs
made use of the successful “modified Lam” adaptive
annealing schedule (Ochotta 1994, §4.5); its parame-
ters were hand-tuned to perform well across the whole
range of problems but not exhaustively optimized for
each individual problem instance. On each instance,
all algorithms were held to the same number M of to-
tal search moves considered, and run N times.

Bin-packing

The first set of results is from a 250-item benchmark
bin-packing instance (u250_13, from (Falkenauer &
Delchambre 1992)). Table 1 compares STAGE’s perfor-
mance with that of hillclimbing, simulated annealing,
and best-fit-randomized (Coffman, Garey, & Johnson
1996), a bin-packing algorithm with good worst-case
performance guarantees. STAGE significantly outper-
forms all of these. We obtained similar results for all
20 instances in the u250 suite (Boyan 1998).

Channel Routing

The problem of “Manhattan channel routing” is an
important subtask of VLSI circuit design. Given two
rows of labelled pins across a rectangular channel, we
must connect like-labelled pins to one another by plac-
ing wire segments into vertical and horizontal tracks.
Segments may cross but not otherwise overlap. The
objective is to minimize the area of the channel’s rect-
angular bounding box—or equivalently, to minimize
the number of different horizontal tracks needed.

8 1 42 1 4 3 9576 5

L ||

9 2 6 435 4089 77

Figure 5: A small channel routing instance

We use the clever local search operators defined by
Wong for this problem (Wong, Leong, & Liu 1988),
but replace their contrived objective function C' (see
Equation 1 above) with the natural objective function
Obj(z) = the channel width w. Wong’s additional ob-
jective function terms, p and U, along with w itself,
were given as the three input features to STAGE’s func-
tion approximator.

Results on YK4, an instance with 140 vertical tracks,
are given in Table 1. All methods were allowed to con-
sider 500,000 moves per run. Experiment (A) shows
that multi-restart hillclimbing finds quite poor solu-
tions. Experiment (B) shows that simulated anneal-
ing, as used with the objective function of (Wong,
Leong, & Liu 1988), does considerably better. Sur-
prisingly, the annealer of Experiment (C) does better
still. It seems that the “crude” evaluation function
Obj(z) = w allows a long simulated annealing run to
effectively random-walk along the ridge of all solutions
of equal cost w, and given enough time it will fortu-
itously find a hole in the ridge. In fact, increasing hill-
climbing’s patience to oo (disabling restarts) worked
nearly as well (D).

STAGE used simple linear and quadratic regression
models for learning. The results (E,F) show that
STAGE learned to optimize superbly, not only improv-
ing on the performance of hillclimbing as it was trained
to do, but also finding better solutions on average than
the best simulated annealing runs. This seems too

good to be true; did STAGE really work according to
its design?
We considered and eliminated two hypotheses:

1. Since STAGE alternates between simple hillclimbing
and another policy, perhaps it simply benefits from
having more random ezploration? This is not the
case: we tried the search policy of alternating hill-
climbing with 50 steps of random walk, and its per-
formance (G) was much worse than STAGE’s.

2. The function approrimator may simply be smooth-
ing Obj(z), which helps eliminate local minima and
plateaus? No: we tried a variant of STAGE which
learned to smooth Obj(z) directly instead of learning
v (H); this also produced much less improvement
than STAGE.

Bayes Network Structure-Finding

Given a data set, an important data mining task is
to identify the Bayes net structure that best matches
the data. We search the space of acyclic graph struc-
tures on A nodes, where A is the number of attributes
in each data record. Following (Friedman & Yakhini
1996), we evaluate a network structure by a minimum
description length score which trades off between fit
accuracy and low model complexity. STAGE was given
the following 7 features:

e mean & standard deviation of the conditional entropy
score at each node

e mean & std. dev. of the number of parameters in each
node’s probability table

e mean & std. dev. of the number of parents of each node

e the number of “orphan nodes”

Results for a large dataset (ADULT2, 30162 records,
15 attributes) are shown in Table 1. All methods found
comparably good solutions, although STAGE’s perfor-
mance was slightly better on average.

Radiotherapy Treatment Planning

Radiation therapy is a method of treating tumors. A
linear accelerator which produces a radioactive beam is
mounted on a rotating gantry, and the patient is placed
so that the tumor is at the center of the beam’s rota-
tion. Depending on the exact equipment being used,
the beam’s intensity can be modulated in various ways
as it rotates around the patient. A radiotherapy treat-
ment plan specifies the beam’s intensity at a fixed num-
ber of source angles.

A map of the relevant part of the patient’s body,
with the tumor and all important structures labelled, is
available. Also known are good clinical forward models
for calculating, from a treatment plan, the distribution
of radiation that will be delivered to the patient’s tis-
sues. The optimization problem, then, is to produce

a treatment plan which meets target radiation doses
for the tumor while minimizing damage to sensitive
nearby structures. The current practice is to use sim-
ulated annealing for this problem (Webb 1991).

Figure 6 illustrates a planar instance of the radio-
therapy problem. The instance consists of an irregular-
shaped tumor and four sensitive structures (the eyes,
the brainstem, and the rest of the head). Given a treat-
ment plan, the objective function is calculated by sum-
ming ten terms: an overdose penalty and an underdose
penalty for each of the five structures. These ten sub-
components were the features for STAGE’s learning.

Objective function evaluations are computationally
expensive in this domain, so our experiments con-
sidered only 10,000 moves per run. Again, all algo-
rithms performed comparably, but STAGE’s solutions
were best on average.

Figure 6: Left: a radiotherapy instance. Right: a car-
togram in which each state’s area is proportional to its
electoral vote for U.S. President.

Cartogram Design

A “cartogram” is a map whose boundaries have been
deformed so that population density is uniform over
the entire map (Dorling 1994). We considered redraw-
ing the map of the United States such that each state’s
area is proportional to its electoral vote. The goal is
to best meet the new area targets while minimally dis-
torting the states’ shapes and borders.

We represented the map as a collection of 162 points
in 2-space; each state is a polygon over a subset of those
points. The search operator consisted of perturbing a
random point slightly; perturbations that would cause
two edges to cross were disallowed. The objective func-
tion was defined as

Obj(z) = Aarea + Agape + Aorient + Asegfrac

where Aarea penalizes states for missing their new
area targets, and the other three terms penalize states
shaped differently than in the true U.S. map. For
STAGE, we represented each configuration by the four
subcomponents of Obj. Learning a new evaluation

Problem Algorithm Performance over N runs

Instance mean best worst
Bin-packing Hillclimbing, patience=250 109.38+ 0.10 108 110
(u250_13, opt=103) | Simulated annealing 108.19+ 0.09 107 109
M =105, N = 100 Best-Fit Randomized 106.78+ 0.08 106 107
STAGE, quadratic regression 104.77+ 0.09 103 105

Channel routing (A) Hillclimbing, patience=250 22.35+ 0.19 20 24
(YK4, opt=10) (B) Simulated annealing, obj(s) = w? + 0.5p + 10U 16.494 0.16 14 19
M =5-105, N = 100 | (C) Simulated annealing, obj(z) = w 14.324 0.10 13 15
(D) Hillclimbing, patience=co 14.69+ 0.12 13 16

(E) STAGE, linear regression 12.424 0.11 11 14

(F) STAGE, quadratic regression 14.01£ 0.77 11 31

(G) Hillclimbing 4+ random walk 17.26+ 0.14 15 19

(H) Modified STAGE—only smooth Obj 16.88+ 0.22 14 19

Bayes net Hillclimbing, patience=200 440567+ 52 | 439912 | 441171
(ADULT?2) Simulated annealing 440924+ 134 | 439551 | 444094
M =10%,N = 100 STAGE, quadratic regression 440432+ 57 | 439773 | 441052
Radiotherapy Hillclimbing, patience=200 18.82240.030 | 18.003 19.294
(5E) Simulated annealing 18.817+0.043 18.376 19.395
M =10%* N = 200 STAGE, quadratic regression 18.72140.029 18.294 | 19.155
Cartogram Hillclimbing, patience=200 0.17440.002 0.152 0.195
(US49) Simulated annealing 0.037+0.003 0.031 0.170
M =105 N = 100 STAGE, quadratic regression 0.05640.003 0.038 0.132
Satisfiability (J) WALKSAT, noise=0, cutoff=10°, tries=100 15.224+ 0.35 9 19
(par32-1.cnf, opt=0) | (K) WALKSAT + J,, = 0 (hillclimbing) 690.52+ 1.96 661 708
M =108, N =100 (L) WALKSAT + 4, = 10 15.56+ 0.33 11 19
(M) STAGE(WALKSAT), quadratic regression 5.36%+ 0.33 1 9

(N) STAGE(WaLKSAT/Markov), linear regression 4.43+ 0.28 2 8

Table 1: Comparative results on a variety of minimization domains. For each problem, all algorithms were allowed
to consider the same fixed number of moves M. Each line reports the mean, 95% confidence interval of the mean,
best, and worst solutions found by N independent runs of one algorithm on one problem. Best results are boldfaced.

function with quadratic regression over these features,
STAGE produced a significant improvement over hill-
climbing, but did not outperform simulated annealing.

Satisfiability

Finding a variable assignment which satisfies a large
Boolean expression is a fundamental (indeed, the orig-
inal) NP-complete problem. In recent years, surpris-
ingly difficult formulas have been solved by WALKSAT
(Selman, Kautz, & Cohen 1996), a simple local search
method. WALKSAT, given a formula expressed in CNF
(a conjunction of disjunctive clauses), conducts a ran-
dom walk in assignment space which is biased toward
minimizing
Obj(z) = # of clauses unsatisfied by assignment .

When Obj(z) = 0, all clauses are satisfied and the

formula is solved.
WALKSAT searches as follows. On each step, it first
selects an unsatisfied clause at random; it will satisfy

that clause by flipping one variable within it. To decide
which one, it first evaluates how much overall improve-
ment to Obj would result from flipping each variable. If
the best such improvement is positive, it greedily flips
a variable that attains that improvement. Otherwise,
it flips a variable which worsens Obj: with probability
(1-noise), a variable which harms Obj the least, and
with probability noise, a variable at random from the
clause. The best setting of noise is problem-dependent

(McAllester, Kautz, & Selman 1997).

WALKSAT is so effective that it has rendered nearly
obsolete an archive of several hundred benchmark
problems collected for a DIMACS Challenge on satis-
fiability (Selman, Kautz, & Cohen 1996). Within that
archive, only the largest “parity function learning” in-
stances (nefariously constructed by Kearns, Schapire,
Hirsh and Crawford) are known to be solvable in prin-
ciple, yet not solvable by WALKSAT. We report here
results of experiments on the instance par32-1.cnf, a

formula consisting of 10277 clauses on 3176 variables.
Each experiment was run 100 times and allowed to
consider 108 bit flips per run.

Experiment J (see Table 1) shows results with the
best hand-tuned parameter settings for WALKSAT.
The best such run still left 9 clauses unsatisfied. We in-
troduced an additional WALKSAT parameter &, with
the following effect: any flip that would worsen Obj
by more than §,, is rejected. Normal WALKSAT has
dw = oo. At the other extreme, when §, = 0, no
harmful moves are accepted, resulting in an ineffec-
tive form of hillclimbing (K). However, using interme-
diate settings of §,,—thereby prohibiting only the most
destructive of WALKSAT’s moves—seems not to harm
performance (L), and in some cases improves it.

For STAGE’s learning, a variety of potentially useful
additional state features are available, e.g.:

% of clauses currently unsatisfied (= Obj(z))
% of clauses satisfied by exactly 1 variable
% of clauses satisfied by exactly 2 variables

% of variables set to their “naive” setting?

Can STAGE, by observing WALKSAT trajectories, learn
to combine these features usefully, as it did by observ-
ing hillclimbing trajectories in other domains?

Theoretically, STAGE can learn from any procedure
7 that is proper (guaranteed to terminate) and Marko-
vian. WALKSAT’s normal termination mechanism, cut-
ting off after a pre-specified number of steps, is not
Markovian: it depends on an extraneous counter vari-
able, not just the current assignment. Despite this
technicality, STAGE with quadratic regression (M) very
nearly completely solved the problem, satisfying all but
1 or 2 of the 10277 clauses on several runs. With a
properly Markovian cutoff criterion for WALKSAT (ter-
minating with probability 1/10000 after each step) and
linear instead of quadratic regression (N), STAGE’s im-
provement over plain WALKSAT was about the same.
Results on four other 32-bit parity benchmark in-
stances were similar. In these experiments, WALKSAT
was run with noise=25 and d,,=10; full details may be
found in (Boyan 1998).

Future work will pursue this further. We be-
lieve that STAGE shows promise for hard satisfiabil-
ity problems—perhaps for MAXSAT problems where
near-miss solutions are useful.

Transfer

There is a computational cost to training a function
approximator on V™. Learning from a m-trajectory

2Given a CNF formula F', the naive setting of variable
x; 1s defined to be 0 if —z; appears in more clauses of F'
than z;, or 1 if z; appears in more clauses than —z;.

of length L, with least-squares linear regression over
D features, costs STAGE O(D?L + D3?) per iteration;
quadratic regression costs O(D*L + D). In the ex-
periments of the previous section, these costs were
minimal—typically, 0-10% of total execution time.
However, STAGE’s extra overhead would become sig-
nificant if many more features or more sophisticated
function approximators were used.

For some problems such cost is worth it in com-
parison to a non-learning method, because a better
or equally good solution is obtained with overall less
computation. But in those cases where we use more
computation, the STAGE method may nevertheless be
preferable if we are then asked to solve further similar
problems (e.g., a new channel routing problem with
different pin assignments). Then we can hope that the
computation we invested in solving the first problem
will pay off in the second, and future, problems be-
cause we will already have a V™ estimate. We call this
effect transfer; the extent to which it occurs is largely
an empirical question.

To investigate the potential for transfer, we re-ran
STAGE on a suite of eight problems from the channel
routing literature. Table 2 summarizes the results and
gives the coefficients of the linear evaluation function
learned independently for each problem. To make the
similarities easier to see in the table, we have normal-
ized the coefficients so that their squares sum to one;
note that the search behavior of an evaluation function
is invariant under linear transformations.

Problem lower best learned coefficients
instance bound STAGE <w,p,U>
YK4 10 12 < 0.71, 0.05,—0.70 >
HYC1 8 8 < 0.52, 0.83,—0.19 >
HYC2 9 9 < 0.71, 0.21,—0.67 >
HYC3 11 12 < 0.72, 0.30,—0.62 >
HYC4 20 23 < 0.71, 0.03,-0.71 >
HYC5 35 38 < 0.69, 0.14,-0.71 >
HYC6 50 51 < 0.70, 0.05,—0.71 >
HYCT7 39 42 < 0.71, 0.13,—0.69 >
HYCS 21 25 < 0.71, 0.03,—0.70 >

Table 2: STAGE results (M = 105, N = 3) on eight
problems from (Chao & Harper 1996).

The similarities among the learned evaluation func-
tions are striking. Like the hand-tuned cost function
C of (Wong, Leong, & Liu 1988) (Equation 1), all but
one of the STAGE-learned cost functions (HYC1) as-
signed a relatively large positive weight to feature w
and a small positive weight to feature p. Unlike the
hand-tuned C, all the STAGE runs assigned a negative

weight to feature U. The similarity of the learned func-
tions suggests that transfer between problem instances
would indeed be fruitful.

The assignment of a negative coefficient to U is sur-
prising, because U measures the sparsity of the hori-
zontal tracks. U correlates strongly positively with the
objective function to be minimized; a term of —U in
the evaluation function ought to pull the search toward
terrible solutions in which each subnet occupies its own
track. However, the positive coefficient on w cancels
out this bias, and in fact a proper balance between the
two terms can be shown to bias search toward solutions
with an uneven distribution of track sparsity levels.
Although this characteristic is not itself the mark of
a high-quality solution, it does help lead hillclimbing
search to high-quality solutions. STAGE successfully
discovered and exploited this predictive combination
of features.

Discussion

Under what conditions will STAGE work? Intuitively,
STAGE maps out the attracting basins of a domain’s lo-
cal minima. When there is a coherent structure among
these attracting basins, STAGE can exploit it. Identify-
ing such a coherent structure depends crucially on the
user-selected state features, the domain’s move opera-
tors, and the regression models considered. What this
paper has shown is that for a wide variety of large-
scale problems, with very simple choices of features
and models, a useful structure can be identified and
exploited.

A very relevant investigation by Boese et. al. (Boese,
Kahng, & Muddu 1994) gives further reasons for opti-
mism. They studied the set of local minima reached by
independent runs of hillclimbing on a traveling sales-
man problem and a graph bisection problem. They
found a “big valley” structure to the set of minima:
the better the local minimum, the closer (in terms of
a natural distance metric) it tended to be to other lo-
cal minima. This led them to recommend a two-phase
“adaptive multi-start” hillclimbing technique similar
to STAGE. A similar heuristic, Chained Local Opti-
mization (Martin & Otto 1994), also works by alter-
nating between greedy search and a user-defined “kick”
that moves the search into a nearby but different at-
tracting basin. The main difference is that these au-
thors hand-build a problem-specific routine for finding
good new starting states, whereas STAGE uses machine
learning to do the same.

Zhang and Dietterich have explored another way to
use learning to improve combinatorial optimization:
they learn a search strategy from scratch using on-
line value iteration (Zhang 1996). By contrast, STAGE

begins with an already-given search strategy and uses
prediction to learn to improve on it. Zhang reported
success in transferring learned search control knowl-
edge from simple job-shop scheduling instances to more
complex ones.

STAGE offers many directions for further explo-
ration. Among those currently under investigation are:
reinforcement learning methods for building V™ more
efficiently; algorithms for robust transfer of learned
V™ functions between instances; and direct meta-
optimization methods for feature weighting.

Acknowledgments: The first author acknowledges
the support of a NASA GSRP Fellowship.

References

Boese, K. D.; Kahng, A. B.; and Muddu, S. 1994. A new adap-
tive multi-start technique for combinatorial global optimizations.
Operations Research Letters 16:101-113.

Boyan, J. A., and Moore, A. W. 1997. Using prediction to improve
combinatorial optimization search. In Proceedings of AISTATS-6.

Boyan, J. A. 1998. Learning Evaluation Functions for Global
Optimization. Ph.D. Dissertation, Carnegie Mellon University.

Chao, H.-Y., and Harper, M. P. 1996. An efficient lower bound
algorithm for channel routing. Integration: The VLSI Journal.

Coffman, E. G.; Garey, M. R.; and Johnson, D. S. 1996. Ap-
proximation algorithms for bin packing: a survey. In Hochbaum,
D., ed., Approzimation Algorithms for NP-Hard Problems. PWS
Publishing.

Dorling, D. 1994. Cartograms for visualizing human geography.
In Hearnshaw, H. M., and Unwin, D. J., eds., Visualization in
Geographical Information Systems. Wiley. 85-102.

Falkenauer, E., and Delchambre, A. 1992. A genetic algorithm for
bin packing and line balancing. In Proc. of the IEEE 1992 Inter-
national Conference on Robotics and Automation, 1186-1192.

Friedman, N., and Yakhini, Z. 1996. On the sample complexity of
learning Bayesian networks. In Proc. 12th Conference on Uncer-
tainty in Artificial Intelligence.

Martin, O. C., and Otto, S. W. 1994. Combining simulated an-
nealing with local search heuristics. Technical Report CS/E 94-016,
Oregon Graduate Institute Department of Computer Science and
Engineering.

McAllester, D.; Kautz, H.; and Selman, B. 1997. Evidence for
invariants in local search. In Proceedings of AAAI-97.

Ochotta, E. 1994. Synthesis of High-Performance Analog Cells in
ASTRX/OBLX. Ph.D. Dissertation, Carnegie Mellon University
Department of Electrical and Computer Engineering.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: A Modern
Approach. Prentice Hall.

Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strategies
for satisfiability testing. In Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. American Mathe-
matical Society.

Szykman, S., and Cagan, J. 1995. A simulated annealing-based
approach to three-dimensional component packing. ASME Journal
of Mechanical Design 117.

Webb, S. 1991. Optimization by simulated annealing of three-
dimensional conformal treatment planning for radiation fields de-
fined by a multileaf collimator. Phys. Med. Biol. 36:1201-1226.

Wong, D. F.; Leong, H.; and Liu, C. 1988. Simulated Annealing
for VLSI Design. Kluwer.

Zhang, W. 1996. Reinforcement Learning for Job-Shop Schedul-
ing. Ph.D. Dissertation, Oregon State University.

