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Imagine trying to plan a route from home to work
that minimizes expected time. One approach is to use
a tool like “Mapquest”, which annotates maps with
information about estimated driving time, then finds a
shortest route. Even if driving times are stochastic, the
annotations can be expected times, so this presents no
additional challenge. However, consider what happens
if we would like to include public transportation in our
route planning. Buses, trains, and subways vary in
their expected travel time according to the time of day:
buses and subways come more frequently during rush
hour; trains leave on or close to scheduled departure
times. In fact, even highway driving times vary with
time of day, with heavier traffic and longer travel times
during rush hour.

If we consider actions with time-dependent stochas-
tic durations, we can no longer use a straightforward
“shortest-path” approach to route planning. Instead,
we must model the problem in an MDP whose states
include both a discrete location component and a real-
valued time component: (z,t) € X x R. This work
gives an approach to representing and solving such
a time-dependent MDP, which we term a TMDP. We
express the Bellman equations for a TMDP in a func-
tional form that gives, at each location x, the one-step
lookahead value at (z,t) for all times in parallel. With
appropriate restrictions on the form of the stochastic
transition function P(z’,t' | z,t,a), we guarantee that
the optimal value function at each location is a piece-
wise linear function of time, which can be represented
exactly and computed by value iteration. Note that
the TMDP model is more general than semi-Markov
decision processes, which have no notion of absolute
time.

With absolute time in the state space, we can model
a rich set of domain objectives beyond minimizing ex-
pected time, such as maximizing the probability of
making a deadline, or maximizing the dollar reward
of a path subject to a time deadline. In fact, using
the time dimension to represent other one-dimensional
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quantities, our approach supports planning with non-
linear utilities (e.g., risk-aversion), or with a continu-
ous resource such as battery life or money.

Figure 1 illustrates an example TMDP for a com-
mute from San Francisco to NASA Ames. The 14
discrete states model both location and observed traf-
fic conditions: shaded and unshaded circles represent
heavy and light traffic, respectively. Observed tran-
sition times and traffic conditions are stochastic, and
depend on both the time and traffic conditions at the
originating location. At locations 5, 6, 11, and 12,
the “catch-the-train” action induces an arrival distri-
bution, reflecting the train schedules.

The domain objective is to arrive at Ames by 9:00.
We impose a linear penalty for arriving between 9 and
noon, and an infinite penalty for arriving after noon.
There are also linear penalties on the number of min-
utes spent driving in light traffic, driving in heavy traf-
fic, and riding on the train; the coefficients of these
penalties may be adjusted to reflect the commuter’s
tastes.

Figures 2 and 3 present the optimal value func-
tion and policy for location #10, “US101&Bayshore in
heavy traffic”. There are two actions from this state,
corresponding to driving directly to Ames and driving
to the train station to wait for the next train. Driving
to the train station is preferred (has higher value) at
times that are close—but not too closel—to the depar-
ture times of the train.

The Ames commuting example is solved in well un-
der a second by our current implementation, but we
note that it is manipulating around 500 linear seg-
ments in the final iteration. Our current research con-
cerns efficient approaches to propagating upper and
lower bounds to the value function. This would allow
the system to compute an optimal or provably near-
optimal policy without necessarily identifying all the
twists and turns in the optimal value function. This
could allow our approach to scale to much larger prob-
lems, perhaps on the scale of an entire city.
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Figure 1: The San Francisco to Ames commuting example
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Figure 2: Optimal value function and policy at location #10
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