Cognitive Adaptation for Teams in ADROIT

Gregory D. Troxel, Armando Caro, Isidro Castineyra, Nick Goffee, Karen Zita Haigh,
Talib Hussain, Vikas Kawadia, Paul G. Rubel, David Wiggins

BBN Technologies, Cambridge, MA 02138 USA Email: gdt@bbn.com

Abstract— We have created a sensor-sharing protocol that
uses cognition to increase performance by choosing protocol
parameters based on the current environment and the past
relationships between environment and performance. We have
constructed a prototype of the protocol, and experimented with
it in a four-node outdoor testbed. Our testbed is part of a
larger effort, ADROIT, which seeks to create cognitive teams
of software-defined radios [1].'

I. INTRODUCTION

The Adaptive Dynamic Radio Open-source Intelligent Team
(ADROIT) project [1] is a large effort building teams of cog-
nitive, open-source, software-defined radios (SDRs). ADROIT
has built the initial parts of a software-defined data radio that
is intended, from the start, to be controlled cognitively.

The ADROIT definition of a cognitive radio differs from the
classic definition of Mitola and Maguire [2]. In their definition,
cognition is internal to the radio. In ADROIT, both programs
using the radio and cognitive controllers are cognitive, but the
radio itself is not necessarily cognitive. This difference implies
that the radio must expose its internal workings so that external
entities can manage the radio’s behavior.

As part of ADROIT, we developed a sensor-sharing protocol
capable of being controlled cognitively, and a learning-based
method using neural nets to optimize the performance of
the team. After briefly summarizing the past literature, we
explain our cognitive approach, our implementation, and our
experimentation results.

II. PRIOR WORK

There have been suggestions to embed cognition into net-
work management [3], as well as efforts to allow cognitive en-
tities to mediate between applications and a balky network [4].

There has also been a recognition that cognition is extremely
well-suited to network management of SDRs. DARPA’s Next
Generation (XG) project found that cognitive tools were
essential to allowing the radio to decide which frequencies
were free and how to best exploit them. (Part of the issue for
XG was that the availability of a frequency was determined
not just by what traffic could be found at that frequency,
but also by a complex set of FCC rules dictating how the
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frequency could be used.) In a prior experiment at BBN, we
found that a cognitive tool using genetic algorithms was far
better at configuring a software radio with over a thousand
configuration options than the best-trained radio engineers.

Distributed Al techniques (e.g., [5], [6]) require massive
communications with non-neighbors, and universally do not
support mobility (changing connections or constraints between
the nodes). Control-theoretic approaches are inappropriate for
nonlinear systems such as MANET [7].

Neural nets have been used to configure parameters of a
MANET to improve throughput in simulation [8]. Our work
follows the approach of Haigh, Varadarajan, and Tang, but
differs by optimizing application-layer performance. Further,
it was done in a testbed rather than via simulation.

III. PROBLEM FORMULATION

We describe the problem that our system was asked to solve,
and briefly describe our testbed. The problem is representative
of actual problems, and the formulation seeks to place the
system in a stressed regime in order to evaluate learning.

A. Communication

The system consists of four mobile nodes and one stationary
node. The mobile nodes communicate locally; our system used
IEEE 802.11 Independent Basic Service Set (IBSS) mode. Two
mobile nodes also have a wide-area connection to send data to
the stationary node; our system used EVDO service from two
carriers. While our stationary node was at the same location,
the network path went from Cambridge, Massachusetts, to
New York City and back. The motivation was to emulate a
low-capacity connection from the team to a remote node.

B. Mobility Patterns

The four mobile nodes roam in a 100 m by 100 m area,
which is logically divided into 1 m by 1 m grid squares.” The
nodes follow preplanned paths which are mostly disjoint, so
that about 20% of the grid squares are visited by each node,
and about 80% are visited in total, with minimal overlap.3
The paths avoid grid squares with obstructions that make it
impossible or difficult to visit. While the paths are preplanned,
the measurement and communication software is unaware of
the paths. Each 30-minute traversal of paths is called a run.

2Qur test area was 135 m by 80 m due to site limitations.
30ur paths were between 1910 and 2450 m, resulting in average speeds
near 1.2 m/s. The sum of lengths was 8713 m, with 8327 total squares visited.



Fig. 1.

ADROIT wagons before a test run.

C. Sensor Measurements

There are two 802.11 access points (APs) at different
locations near the grid, the sole purpose of which is to provide
beacons for the mobile nodes to measure. The task is to
measure the signal strength of each AP at each grid square,
and to share this information with all four mobile nodes and
the stationary node. Note that the signal strengths of the APs
are not directly related to signal strengths on the inter-node
channel. The experiment takes 30 minutes for data collection,
followed by 10 additional seconds for sharing the results
among the four mobile nodes and the stationary node.

D. Hardware Configuration

Each of the mobile nodes comprises a computer running
NetBSD, two 802.11 interfaces (for internode communications
and for measuring the signal strength of the APs), a GPS
receiver, associated batteries and antennas, and a wagon for
transporting the equipment (Figure 1). The stationary node
is a computer with a normal wired Internet connection. Our
system also includes an additional node whose only role was to
generate local GPS differential corrections, thereby providing
the mobile nodes with submeter position accuracy.

E. The Challenge

The basic goal is for each of the four mobile nodes and
the stationary node to have an observed signal strength value
for as many grid squares as possible. The metric is defined as
MG = min;{s;} where s; is the number of grid squares for
which node 7 has a signal strength measurement.

The second goal is to use cognitition to cause a second
operation run (where signal strength observations from the
first run have been deleted) to have observations for more
grid squares than the fraining run. The metric is MG =
MGo /MGt where MGy and MG are the metric, g, for
the first (training) and second (operation) runs, respectively.

The experiments are not completely repeatable due to GPS
positioning errors, interference from sources outside the exper-
iment, and human error positioning the wagons. Further, the

node/path relationship may be permuted, the start position of
each path different, and some paths traversed in reverse. Thus,
a node may visit locations that it did not visit—or even get
close to—in the first run. The path permutations are done in
order to force nodes to operate in situations not encountered in
training. Thus, nodes must learn from the experience of other
nodes in order for the team to succeed.

Given enough internode capacity, one can easily achieve
100% sharing; our system did. In order to place the system in
a regime where learning could occur, we padded each signal
strength report with random bytes, and always carried the
padding with the report. We found that 2000 bytes of padding
per measurement was necessary to cause only about 5500
out of 8000 observations to be shared during training runs.
Each transmitted measurement was thus two packets due to IP
fragmentation, because we used the common Ethernet 1500-
byte MTU even though the native 802.11 MTU is higher. We
used the same padding during operation runs.

The problem can be solved by state distribution of all
observations, e.g. node n at time ¢ was at (z,y) and heard AP
a with signal strength s, or state distribution of the resulting
map (z,y, a, s) without distributing observations to nodes that
already have an observation for the grid square. We distributed
the observations themselves.

This problem formulation differs from human learning in a
key way. Humans learn at all times and when encountering a
task can draw on much prior learning, even if almost all of it
is not directly locally applicable.

IV. PrROTOCOL

Nodes make observations of the APs’ signal strength and
record them in a local database. We describe our protocol
for distributing observations to all other nodes. The protocol
does not assume full IP connectivity; some nodes can never
communicate directly and only via a third node. In this phase,
our testbed did not attempt to provide multicast routing, and
thus multicast packets from a node arrive at some subset of the
peers, depending on path loss, interference, and congestion.
The EVDO links to the stationary node are via commercial
service and thus unicast only.

The protocol essentially consists of synchronizing observa-
tions with other nodes in range. This is done by periodically
(5 s) multicasting infobeacon messages, which compactly
summarize observations present in the node’s local database.
Nodes receiving an infobeacon multicast infobeacon
replies with observations that they have (which may have
originated on other nodes) and the sender does not, up to
some number of observations (typically 500). A node’s own
information will be sent to neighbors when the neighbors
assert that they do not have it, and information from all nodes
will reach all others. On EVDO links, packets are always sent
unicast, because multicast is not available.

The infobeacon packets also contain the node’s current
position, and signal strengths of the internode links (not the
APs’ signal strength). Position is used for one of the protocol



variations, described below, and the internode signal strengths
are used for the environment model for learning.

As an optimization for good conditions, each node periodi-
cally multicasts a freshinfo packet with new observations.
Note that this would not be sufficient to solve the problem even
if there were no loss, because packets from the nodes without
the EVDO connections would not arrive at the stationary node.

Our protocol supports multiple kinds of records. In addition
to observations, we create command records to start/stop the
experiment, status records for observing the experiment in
progress, and performance counters to aid in learning. The
protocol was implemented in python.

To enable learning, our protocol has two binary strategy
variables, with the cross product leading to four strategies.
The strategies affect only the internode network; EVDO per-
formance is too variable to use as the basis for experiments.
We chose these particular variables because we believed that
they would affect performance, but could not predict under
what circumstances which strategies would be better.

The basic protocol uses only multicast packets. The first
strategy choice is whether to use multicast for infobeacon
replies or to send replies unicast to the infobeacon
sender. We call this first strategy choice multicast. In
802.11 IBSS mode, multicast packets are sent at the basic
rate (1 Mb/s) and are not acknowledged. Unicast packets
are sent at a rate chosen by a per-recipient rate-adaptation
algorithm (SampleRate [9] as found in NetBSD’s ath(4),
which chooses rates to minimize channel occupancy time of
the packet, acks, and any necessary retransmissions). Multi-
cast gets data to multiple receivers, but is slow and can be
unreliable. Unicast can be faster and reliable, but data must
be sent to each recipient separately.

The second strategy choice is farthest. If off, the system
behaves as described earlier. If on, infobeacon replies
are suppressed if the information to be sent was not measured
by the replying node and that node is farther from the
requester than the other nodes (as measured using GPS and
communicated by position reports in infobeacons). This
suppression typically results in fewer packets, and thus less
channel contention, but it also could hurt information sharing.

V. LEARNING

The problem formulation specifies experiments comprising
two runs. The first training run has no state information. The
second operation run, may use state information (except signal
strength observations) from the first run.

Our goal is to have the nodes cooperate to improve the
team’s performance, rather than to have each node optimize
local performance. This is dictated by the metrics, which are
determined by the performance of the node with the fewest
measurements (the “worst node”). We require a distributed
algorithm that enables each node to choose strategies inde-
pendently, and reject schemes using central controllers.

A key aspect is choosing behaviors that work well in differ-
ent situations, rather than choosing a single parameter value for
an entire future run. Our approach is to build, during training,

a model relating environment (F) and strategy choices (S) to
outcomes (0O), and then to use that model to make strategy
choices during operation: O = f(FE,S). This decomposition
requires that we address environment representation, outcome
definitions and measurement, and model representation.

A. Basic Operation

The system operates on a short interval (5 s), gathering
metrics and choosing strategies.

During training runs, the strategy is changed once per
minute according to a pre-generated list of strategies with
pseudorandom order and even distribution of the four. The
choice of one minute is the result of a difficult tradeoff.
Faster changes allow observing how well more strategies work
in a larger variety of situations. Slower changes allow more
reliable attribution of behavior to strategies; it may be that after
changing strategy it takes 10s for the behavior to stabilize.

During operation runs, the model is queried each interval
with the current environment and each strategy. The strategy
that is predicted to lead to the best outcome is used for the
next interval. While in theory the same stabilization concerns
are present, we found that strategy choices remained stable
over long enough periods that no practical problems arose.

B. Metrics

Our problem is stated in terms of a global metric MG: the
number of mapped grid squares at the node having fewest
mapped grid squares at the end of the experiment, where
a mapped grid square is defined as one for which at least
one signal strength measurement is available at the node via
local measurement or sharing by other nodes. Clearly we can
observe this metric only at the end. In order to reach that goal,
we define other (global) metrics and then (local) performance
counters, which when shared can be used to compute the
global metrics. We believe (and confirmed) that optimizing the
new metrics will lead to better values of the original metrics.

We define M1 as the fraction of observations present at the
worst node relative to the total observations generated. This
metric measures sharing performance, reaching 1.0 for perfect
operation. Note that multiple observations could be made in
each grid square (by possibly different nodes). We define
MG similarly, but projecting to unique grid squares at each
node before choosing the worst. M2 is the number of packets
transmitted divided by the number of observations present at
the worst node. This metric measures sharing efficiency. Note
that M1, MG, and M2 are metrics for an entire run.

We define metrics m1(¢) and m2(¢) that can be computed
over an interval. Let s;(t) be the number of observations
present at node ¢ at time ¢, and 0;(¢) be the cumulative number
generated at node 7. Then M1(t) is min;{s;(t)}/ >, 0i(t), or
the minimum shared over the sum generated. As ¢ approaches
the end, this becomes M1 above. Then, let

min;{s;(t)} — min;{s;(t — 1)}

2oi0i(t) = X 0i(t — 1)
This metric represents the progress made at the worst node
relative to the total new observations generated. Note that

ml(t) =




“progress at the worst node” is subtle; this is not the improve-
ment at the node with the fewest observations at the beginning
of the interval, but the difference between the fewest before
and after—the worst node could change. We define m2(t)
similarly, dividing packets sent by all the nodes in the interval
by the numerator of m1(¢).

To compute these metrics, one needs the counts of mea-
surements generated, measurements present, and packets sent
at each interval boundary. To provide access to all counters at
all nodes, each node generates a performance record at the end
of every 5 s interval. These records are then shared reliably
via the infobeacon mechanism.

When a training run ends, metrics are computed for every
interval for which both the beginning and ending performance
records are available for all four nodes. We set the sharing
priority of records as command, performance, status, and
sensor data in order to deliver most performance records.

Because there are two metrics, we must impose a total or-
dering in order to choose a strategy to maximize the outcome.
Therefore we defined a utility function on (m1, m2). Our first
attempt was 0.95m1 + 0.05(10 — m2), intending to weight
ml heavily. Operation runs resulted in better m1 but much
worse m2. We defined an alternate utility function which is as
above if M1(¢) to date is < 0.95 and otherwise seeks solely
to minimize m2. The intent behind this choice is that trying to
maximize M1 when the system is close to achieving its goals
perfectly results in responding to noise. Even with this more
complex function, our system did not improve on M2.

C. Ewnvironment

We believed that the characteristics of the internode data
links would affect which strategies were successful. We would
like to gather and use ETX (estimated transmission count [10])
because it directly relates to packet delivery, but this was
impractical. We used the signal strength of received packets.

We desire a global environment representation, and start
with the matrix of node-node signal strengths. The diagonal is
missing, leaving twelve values. This representation is problem-
atic because it does not recognize that two situations that differ
only in node numbering are the same. We therefore normalize
the environment by sorting the other nodes by received signal
strength, carrying higher-order terms in the list of twelve along
as we sort. Thus we have ry, r,, 71, th, tm, t;, where r, is the
received signal strength from a node and ¢; the strength of
our signal received at that node. Following we have the links
between other nodes, i.€., T"hn, Tmhs This Tih, Tmi and T,

Reliably transferring environment measures would intro-
duce latency. This latency would not harm the training run,
but would result in using old data during operation runs.
Further, the data used in operation runs would have a different
processing path from the data in training runs, and this seems
likely to introduce distortions. Therefore, whenever we need
an environment representation, we use the best one available,
and use the same processing path for training and operation.

D. Neural Net for Model Representation

We use a neural net to represent our model of O = f(F, 5).
The environment representation and strategy choice are twelve
and two inputs, and two outputs represent (incremental) 1
and mo. We produce a training row from every interval in the
training run, consisting of the environment at the beginning
of the interval, the strategy used, and the outcomes. Intervals
for which performance data were not available are omitted.
The neural net is then trained on these data; we typically have
about 360 training rows. Then, it is straightforward to query
the neural net for a given E and all values of .S, and choose
the S resulting in maximal O.

It is far less straightforward to choose neural net structure
and parameters to ensure that useful answers are obtained
without overtraining. We separate the data into 80% training
and 20% validation by randomly selecting rows from the entire
data set, with the constraint that the distribution of strategy
choices is even. Multiple nets are trained with the training data,
and then their predictions on the validation data are compared
with the observed outcomes. The system chooses a net with
the best accuracy on the validation data. We used the Fast
Artificial Neural Network (FANN) library.

Our neural net selection and training is automatic. At the
end of a training run, the nodes train multiple nets and validate
them, and save the net representation in a file to be used by
the operation run. We do send a start command to start the
operation run, but it contains essentially only the start time,
padding level, and that the run should be an operation run.

VI. RESULTS

Our primary metric was the number of grid squares present
at the node having the fewest. We conducted several experi-
ments on different days, and report the valid outcomes. Un-
fortunately, resource limitations prevented us from performing
more tests. Some experiments were considered invalid due to
interference to our GPS receivers; these are characterized by
either excessive observations (due to perceived motion to grid
squares that were not in fact visited) or very few observations
(due to not having valid position data). Each test consisted of a
training and an operation run. The primary metric improved by
about 10% due to learning (Table I). In some experiments, M1
increased, but in some it did not. The interaction between MG
and M1 is complex. Some times the operation run generates
more observations than the training run, and the combination
of available channel occupancy time and padding constrains
the amount of data sent rather than the fraction of available
data. Still, maximizing M1 during a particular run leads to
delivery of more data and thus higher MG.

TABLE I
RESULTS FROM TWO TESTS

Test | Training | Operation | Improvement

MG = Grid squares present at the node having the fewest
Testl 5532 6116 10.55%

Test2 5685 6146 8.10%




Our improvement of roughly 10% is more significant than
it appears. Each of the nodes makes roughly 25% of the
observations, and 10% of the minimum observations present
is more like 15% of the observations sent from one node to
other nodes. The system is stressed, but because the internode
ranges vary greatly, the system’s throughput can be expected to
vary greatly. Progress made during good times will dominate
average progress, and a metric that tries to capture the amount
of incremental sharing achieved during the worst 30 seconds
might well show much greater (or less) improvement.

Another interesting aspect was observing the strategies that
were chosen. We found that farthest was chosen to be on
most of the time. In hindsight, this makes sense, because our
system was operated in a congested regime where essentially
every node always had data to send. Thus even if this strategy
resulted in delayed delivery of information, it would succeed
in improving the main metric if overall throughput increased
due to fewer packets with duplicate data.

The multicast strategy choice was far more interesting.
When the nodes were all very close together (high signal
strengths), unicast was preferred. We believe that this is
because high data rates (up to 54 Mb/s) can be used, achiev-
ing better performance than multicast despite the factor-of-
3 penalty. At medium ranges, multicast was preferred. We
believe that here the gain from muliple recipients per packet
dominated. At long ranges, near the limits of connectivity,
unicast was again preferred. We believe that this is because
multicast data delivery in 802.11 IBSS mode is unreliable and
that MAC-layer retransmissions of unicast packets is helpful.

We found that when the system was operated under un-
stressed conditions it did not improve on the value of the
secondary metric M2 (packets per shared observation), even
though M1 (fraction of observations shared) was essentially
unity for both runs. We believe that the system was chasing
M1 during many intervals, resulting in increased packets that
dominated the final M2 value. Because catching up in M1
was easy, this effort—and associated cost—was unnecessary.
It appears difficult to optimize two such long-period metrics
simultaneously by choices made over short timescales with
short-term performance information. A more complex model
of expected performance is likely needed.

VII. SCALING

It would be easy to pick 10 strategy choices, rather than
two, but our system would then not work, requiring 1024
sets of training intervals rather than four. In continuous use
a system would likely run in training and operation mode
simultaneously, after possibly an initial training-only period.
This would result in more frequent use of previously successful
strategies. Following SampleRate [9], one could occasionally
try a randomly-chosen strategy. Strategies which consistently
perform badly could be eliminated from consideration.

VIII. CONCLUSION

We constructed a system that used learning to choose
protocol parameters based on the past relationship of the

environment and strategy choices to outcomes. Our system
produced significantly improved outcomes.

The choice of short-term metrics the maximization of which
leads to long-term goals is very difficult. The choice of
environment representation is very difficult; the representation
must capture enough about the situation so that knowledge is
applicable, but abstract out unnecessary information so that it
may be applied to similar situations.

In hindsight, we can explain why the system chose strategies
under various circumstances, but were not able to predict the
choices. We believe that the system would adapt to different
behaviors, given enough strategy choices.

There remain two very significant challenges. One is how
to automate more of the learning process. If the system could
generate strategy choices, explore them over a long time, and
prune those that didn’t work, it would likely be more effective
(and more like human learning). The second challenge is
scaling. Absent simulation, it takes a large amount of time
to try many alternatives.

Our work used an actual testbed, rather than a simulator.
Our system was able to improve performance in a complex
RF environment that cannot be easily modeled.
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