
15–212: Principles of Programming

Some Notes on Regular Expression Matching

Michael Erdmann∗

Spring 2011

1 Introduction

Regular expression matching is a very useful technique for describing commonly-occurring patterns
in strings. For example, the Unix shell (and most other command processors) provides a mechanism
(called “globbing”) for describing a collection of files by patterns such as *.sml or hw[1-3].sml.
The emacs text editor provides a richer, but substantially similar, pattern language for its “regexp
search” mechanism. In this note we will describe a simple on-line algorithm for regular expression
matching that illustrates a number of important programming concepts. By “on-line” we mean
that the matching algorithm makes no attempt to pre-process the pattern before matching. Sophis-
ticated “off-line” algorithms that perform such pre-processing (and lead to more efficient matchers)
are available, but we shall not discuss these here.

The patterns describable by regular expressions are built up from the following four constructs:

1. Singleton: matching a specific character.

2. Alternation: choice between two patterns.

3. Concatenation: succession of patterns.

4. Iteration: indefinite repetition of patterns.

Notably, regular expressions provide no concept of nesting of one pattern inside another. For this
we require a richer formalism, called a context-free language, which we shall discuss later in the
course.

2 Languages

To make precise the informal ideas outlined above, we introduce the concept of a formal language.
First, we fix an alphabet Σ, which is any countable set of letters. The set Σ∗ is the set of finite-length
strings over the alphabet Σ. The null string is written ε, and string concatenation is indicated by
juxtaposition. A language L is any subset of Σ∗ — that is, any set of finite-length strings over Σ.

In practice Σ is SML type char, and Σ∗ is the SML type string. We will use SML notation
for operations on strings.

∗Modified from a draft by Robert Harper, 1997.

1



3 Regular Expressions

Regular expressions are a notation system for languages. The set of regular expressions over an
alphabet Σ is given by the following inductive definition:

1. If a ∈ Σ, then a is a regular expression.

2. If r1 and r2 are regular expressions, so is r1 r2.

3. 0 is a regular expression.

4. If r1 and r2 are regular expressions, so is r1 + r2.

5. 1 is a regular expression.

6. If r is a regular expression, then so is r∗.

The language L(r) of a regular expression r is defined as follows:

L(a) = { a }
L(r1 r2) = {s1 s2 | s1 ∈ L(r1) and s2 ∈ L(r2)}

L(1) = { ε }
L(r1 + r2) = {s | s ∈ L(r1) or s ∈ L(r2)}

L(0) = { }
L(r∗) = {s1 . . . sn | si ∈ L(r) for 1 ≤ i ≤ n, with n ≥ 0}

By convention, s1 . . . sn stands for the empty string ε if n = 0.
We say that a string s matches a regular expression r iff s ∈ L(r). Thus s never matches 0; s

matches 1 only if s = ε; s matches a iff s = a; s matches r1 + r2 iff it matches either r1 or r2; s
matches r1 r2 iff s = s1 s2, where s1 matches r1 and s2 matches r2; s matches r∗ iff either s = ε,
or s = s1 s2 where s1 matches r and s2 matches r∗. (The following precedence rules apply when
needed: star precedes times precedes plus.)

Some simple examples over the alphabet Σ = {a, b}.
L(aa) = singleton set containing only aa

L((a + b)∗) = set of all strings
L((a + b)∗aa(a + b)∗) = set of strings with two consecutive a’s

L((a + 1)(b + ba)∗) = set of strings without two consecutive a’s

4 A Matching Algorithm

We are to define an SML function accept with type regexp -> string -> bool such that
accept r s evaluates to true iff s matches r, and evaluates to false otherwise.

First we require a representation of regular expressions in SML. This is easily achieved as follows:

datatype regexp = Char of char
| Times of regexp * regexp
| One
| Plus of regexp * regexp
| Zero
| Star of regexp;

2



The correspondence to the definition of regular expressions should be clear.
The matcher is defined using a programming technique called continuation-passing. We will

define an auxiliary function acc of type

val acc : regexp -> char list -> (char list -> bool) -> bool

which takes a regular expression, a character list, and a continuation, and yields a boolean value.
Informally, the continuation determines how to proceed once an initial segment of the given charac-
ter list has been determined to match the given regular expression — the remaining input is passed
to the continuation to determine the final outcome. In order to ensure that the matcher succeeds
(yields true) whenever possible, we must be sure to consider all ways in which an initial segment
of the input character list matches the given regular expression in such a way that the remaining
unmatched input causes the continuation to succeed. Only if there is no way to do so may we yield
false.

This informal specification may be made precise as follows.

1. If there exists s1 and s2 such that s = s1 s2, s1 ∈ L(r), and k(s2) evaluates to true, then
acc r s k evaluates to true.

2. If for every s1 and s2 such that s = s1 s2 with s1 ∈ L(r) we have that k(s2) evaluates to
false, then acc r s k evaluates to false

Notice that this specification determines the outcome only for continuations k that always yield
either true or false on any input. This is sufficient for our purposes since the continuations that
arise will always satisfy this requirement. Notice as well that the specification implies that the
result should be false in the case that there is no way to partition the input string s such that an
initial segment matches r.

Before giving the implementation of acc, we can define accept as follows:

fun accept r s = acc r (String.explode s) List.null;

Two remarks. We “explode” the string argument into a list of characters to facilitate sequential
processing of the string. The initial continuation yields true or false according to whether the
remaining input has been exhausted. Assuming that acc satisfies the specification given above, it
is easy to see that accept is indeed the required matching algorithm.

Now for the code for acc:

(* val acc : regexp -> char list -> (char list -> bool) -> bool *)
fun acc (Char(c)) (nil) k = false

| acc (Char(c)) (c1::s) k = (c = c1) andalso (k s)
| acc (Times(r1,r2)) s k = acc r1 s (fn s’ => acc r2 s’ k)
| acc (One) s k = k s
| acc (Plus(r1,r2)) s k = acc r1 s k orelse acc r2 s k
| acc (Zero) s k = false
| acc (Star(r)) s k = k s orelse acc r s (fn s’ => acc (Star(r)) s’ k);

Note that the case of (Star r) could have been written

| acc (Star(r)) s k =
acc (Plus (One, Times (r, (Star r)))) s k

3



but this has the disadvantage of creating a new regular expression during matching.
Does acc satisfy the specification given above? A natural way to approach the proof is to

proceed by induction on the structure of the regular expression. For example, consider the case
r = Times(r1,r2). We have two proof obligations according to whether or not the input may be
partitioned in such a way that an initial segment matches r and the continuation succeeds on the
corresponding final segment.

First, suppose that s = s1 s2 with s1 matching r and k(s2) evaluates to true. We are to show
that acc r s k evaluates to true. Now since s1 matches r, we have that s1 = s1,1 s1,2 with s1,1

matching r1 and s1,2 matching r2. Consequently, by the inductive hypothesis applied to r2, we
have that acc r2 (s1,2 s2) k evaluates to true. Therefore the application (fn s’ => acc r2 s’
k) (s1,2 s2) evaluates to true, and hence by the inductive hypothesis applied to r1, the expression
acc r1 s (fn s’ => acc r2 s’ k) evaluates to true, which is enough for the result.

Second, suppose that no matter how we choose s1 and s2 such that s = s1 s2 with s1 ∈ L(r),
we have that k(s2) evaluates to false. It suffices to show that acc r1 s (fn s’ => acc r2 s’
k) evaluates to false. By the inductive hypothesis (applied to r1) it suffices to show that for every
s1,1 and s′2 such that s = s1,1 s′2 with s1,1 ∈ L(r1), we have that acc r2 s′2 k evaluates to false.
By the inductive hypothesis (applied to r2) it suffices to show that for every s1,2 and s2 such that
s′2 = s1,2 s2 with s1,2 ∈ L(r2), we have that k(s2) evaluates to false. But this follows from our
assumptions, taking s1 = s1,1 s1,2.

This completes the proof for r = r1 r2; you should carry out the proof for 0, 1, a, and r1 + r2.
What about iteration? Let r be Star r1, and suppose that s = s1 s2 with s1 matching r and

k(s2) evaluates to true. By our choice of r, there are two cases to consider: either s1 = ε, or
s1 = s1,1s1,2 with s1,1 matching r1 and s1,2 matching r. In the former case the result is the result
of k(s), which is k(s2), which is true, as required. In the latter case it suffices to show that acc
r1 s (fn s’ => acc r s’ k) evaluates to true. By inductive hypothesis it suffices to show that
acc r s2 k evaluates to true. It is tempting at this stage to appeal to the inductive hypothesis
to complete the proof — but we cannot because the regular expression argument is the original
regular expression r, and not some sub-expression of it!

What to do? In general there are two possibilities: fix the proof or find a counterexample to
the theorem. Let’s try to fix the proof — it will help us to find the counterexample (the theorem
as stated is false). A natural attempt is to proceed by an “outer” induction on the structure of the
regular expression (as we’ve done so far), together with an “inner” induction on the length of the
string, the idea being that in the case of iteration we appeal to the inner inductive hypothesis to
complete the proof — provided that the string s1,2 s2 can be shown to be shorter than the string
s. This is equivalent to showing that s1,1 is non-empty — which is false! For example, r might be
1∗, in which case our matcher loops forever.

What to do? Change the specification. The proof goes through provided that the regular
expression is in standard form, by which we mean that if r∗ occurs within the regular expression,
then r does not accept the null string. Given this condition, the proof goes through as outlined.
You should carry out the proof for the case of iteration to check this claim. Remember that there
are two parts to the proof: complete the proof for the case that there is a partitioning that leads to
the continuation yielding true (sketched above), and for the case that there is no such partitioning.
Consult the proof for the concatenation of regular expressions as a guide.

In the next section we see how to convert any regular expression into standard form so we can
apply the algorithm as given above.

Another solution is to rule out matches of r against the empty string when matching r∗ against
any string. This never rules out a valid solution, but we can use the idea to force termination

4



(which is the only the problem with the algorithm above). All cases remain the same, except for
the case of Star(r).

| acc (r as Star(r1)) s k =
k s orelse
acc r1 s (fn s’ => not (s = s’) andalso acc r s’ k);

We fail if s = s′, which means that the initial segment of s matched by r must have been empty.
The correctness proof now works by two nested structural inductions: one on the structure of

the regular expression r and one on structure of the string we match against. This means that
either (a) the regular expression has to get smaller (which it does in all cases except the last), or
(b) if the regular expression stays the same, then the string has to get smaller. One can see that
this is guaranteed in the modified program above since the continuation will always be called on a
substring of the original string.

5 Standardization

If we do not want to change the program, we can restrict the input to be in standard form. But
have we lost something by making this restriction? Are there non-standard regular expressions of
interest? What have we left out? The answer is nothing, because any regular expression can be
brought into standard form! The idea is that before matching commences we rewrite the regular
expression into another regular expression that accepts the same language and which is in standard
form.

Here is how it is done. We rely on the equation r = δ(r) + r−, where δ(r) is either 1 or 0
according to whether or not r accepts the null string, and where L(r−) = L(r) \ { ε }. Check for
yourself that L(r) = L(δ(r) + r−), as required.

The functions δ(r) and r− are defined as follows.

δ(0) = 0
δ(1) = 1
δ(a) = 0

δ(r1 + r2) = δ(r1) ⊕ δ(r2)
δ(r1 r2) = δ(r1) ⊗ δ(r2)

δ(r∗) = 1

We define r1 ⊕ r2 to be 1 if either r1 or r2 is 1, and 0 otherwise. We define r1 ⊗ r2 to be 0 if either
r1 or r2 is 0, and 1 otherwise.

Finally, we define r− as follows:

0− = 0
1− = 0
a− = a

(r1 + r2)− = r−1 + r−2
(r1 r2)− = δ(r1) r−2 + r−1 δ(r2) + r−1 r−2

(r∗)− = r−(r−)∗

The last two deserve comment. The non-empty strings matching r1 r2 are (1) the non-empty strings
in r2, in the case that r1 contains the empty string, (2) the non-empty strings in r1, in the case
that r2 contains the empty string, and (3) the concatenation of a non-empty string in r1 followed

5



by a non-empty string in r2. Check that the given equation expresses these three conditions as a
regular expression! The clause for iteration is motivated by the observation that the non-empty
strings in the iteration r∗ are simple the non-zero iterations of the non-empty strings in r.

As an exercise, prove that δ(r) and r− have the required properties (stated above) and that r−

is in standard form.

6 Conclusion

The example of regular expression matching illustrates a number of important programming con-
cepts:

1. Continuation-passing : the use of higher-order functions as continuations.

2. Proof-directed debugging : the use of a breakdown in a proof attempt to discover an error in
the code.

3. Change of specification: once we isolated the error, we had the choice of changing the code
or changing the specification. Moral: debugging isn’t always a matter of hacking!

4. Pre-processing : to satisfy the more stringent specification we pre-processed the regular ex-
pression so that it satisfies the additional assumption required for correctness, without losing
the generality of the matcher.

6


