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Abstract

A significant challenge in developing automated problem-diagnosis tools for distributed systems is the ability of
these tools to differentiate between changes in system behavior due to workload changes from those due to faults.
To address this challenge, current, typically white-box, techniques extract semantically-rich knowledge about the
target application through fairly invasive, high-overhead instrumentation. We propose and explore two scalable,
low-overhead, non-invasive techniques to infer semanticsabout target distributed systems, in a black-box manner,
to facilitate problem diagnosis. RAMS applies statisticalanalysis on hardware performance counters to predict
whether a given node in a distributed system is faulty, whileBlackSheep corroborates multiple system metrics with
application-level logs to determine whether a given node isfaulty. In addition, we have developed and demonstrated
a novel technique to extract, from existing application-level logs, semantically-rich behavior that is immediately
amenable to analysis and synthesis with other numerical, black-box metrics. We have evaluated the efficacy of
RAMS and BlackSheep in diagnosing real-world problems in the Hadoop distributed parallel programming system.
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1 Introduction
Finding the location and root cause of a failure in a distributed system is an inherently difficult problem. Execution
paths span multiple machines and can be arbitrarily complex. As a result, a fault may manifest itself as an error many
execution modules down the execution path, before the errormanifests itself as a failure, making the fault difficult to
trace. Fault localization—tracing a system failure to the site of its initial manifestation as an error—requires either
a characterization of externally observable correct system states, so that system states outside of this set are marked
as erroneous, or a direct characterization of erroneous states. On the other hand, root-cause analysis—tracing a
system error to its fault—requires detecting when softwarebehavior deviates from the programmers’ intentions.
This requires knowledge of the semantics of the program, which is not present in the program.

We propose two new techniques for identifying the location and inferring the root-cause of a failure in a dis-
tributed system. These techniques attempt to infer semantically-rich white-box software behavior using black-box
techniques. These techniques are designed to work in an online, scalable fashion that is amenable to use on produc-
tion systems. They aim to address problem diagnosis on distributed systems with long-lived jobs, few user-initiated
requests, and complex execution paths. While we do not immediately implement an online solution in this work, our
approach has been carefully designed to ensure that the algorithms used are amenable to being run online with rea-
sonable computation cost. We achieve this by usinga priori knowledge of both distributed systems in general, and
the deployed software, to build two classes of inference models. These models allow for white-box information of
varying granularity about the phase of execution of software to be inferred from black-box information. In addition,
our techniques require only intra-node information withina given node, so that these techniques are immediately
scalable to distributed systems containing arbitrarily many nodes.

We designed and investigated the efficacy of two black-box techniques. RAMS(Regression Autocorrelation
for detecting Malfunctioning nodeS) attempts to perform fault localization for Hadoop [25] by inferring coarse-
grained white-box information about application behavior(i.e. whether the target system is malfunctioning) from
black-box hardware performance counters.BlackSheepuses black-box techniques to corroborate black-box operat-
ing system-reported metrics and white-box application-level logs, for problem diagnosis in a candidate distributed
system, Hadoop, with fine-grained white-box root-cause analysis.

We demonstrate the efficacy of our root-cause diagnosis technique on Hadoop, the open-source implementation
of the Map/Reduce distributed parallel programming runtime environment and distributed filesystem [25], and fur-
ther demonstrate the applicability of our technique where current problem diagnosis techniques are not immediately
applicable, on Hadoop.

2 Background
There are two broad classes of techniques for analyzing systems and software. Black-box techniques treat the soft-
ware system as an enclosed, unobservable entity that cannotbe modified. We classify information sources that do not
reveal the execution path inside software components as black-box, while we classify techniques that neither require
source code nor machine code modification as black-box techniques. White-box information sources provide views
into the internals and execution path of the software system. We classify information sources that provide knowledge
of the original source code or execution path structure of the software, such as knowledge of the order of function
calls, as white-box, while we classify techniques that require any form of source code modification as white-box
techniques. While white-box information is a much wealthier source of information than black-box sources, there is
typically an inherent trade-off between the richness of information that can be extracted from software, and the cost
of gathering that information in terms of runtime overheadsand ease of deployment. Black-box techniques are easy
to use at existing software installations and typically involve setting up external software monitors that record gen-
eral system state, but provide limited information. White-box techniques may involve significant initial programmer
effort to insert source code such as assertions (which are only as good as the correctness of the assertions, creating a
dual problem), and providing a fine granularity of information about control flow may have involve high overheads
as large numbers of probe-and-record instructions will be needed.

It would appear that white-box techniques are necessary to trace a software error to the fault that is its root-
cause. Faults occur when the software behavior deviates from the intentions of its programmers, and programmer
intentions are reflected in the execution path at the granularity of control flow through functions. Current techniques
have danced this tightrope of the inherent tension between instrumentation overheads and the amount of information
that can be extracted, to try to find a good leverage on the smallest possible information source from which they can
extract maximum diagnostic value .

Major black-box techniques have included Pinpoint, which instrumented the J2EE middleware platform to trace
message flows between software components, to associate particular groups of components with erroneous trans-
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actions, and to find anomalous control flow paths [5]. Cohen et. al.’s work has focused on using clustering on
black-box system metrics, and building informative summaries of metrics to reduce the amount of information that
must be exchanged among the nodes of a distributed system to minimize bandwidth use [6], but can only detect the
location but not the root-cause of anomalous behavior. Magpie correlated resource usage information from operat-
ing system-provided resource accounting facilities with output from application event logs to build causal paths of
applications on a single node using clustering (that is extensible to multiple nodes, albeit at possibly high cost when
tracing execution flows across large distributed systems) [2].

Major white-box techniques have included Pip, which reliedon programmer-written expectations of correct
behavior, and recorded alarms of anomalous behavior raisedfrom within the software itself [16], but Pip is only
as good as the programmer-written expectations it uses. Triage works on stand-alone (non-distributed) software to
uncover the faulty source code behavior or system environment feature which caused a crash by using a re-execution
framework combined with a trial-and-error automation of the intuitive human troubleshooting process [18], but this
method is an after-the-fact technique that relies on the system being down to allow such root-cause discovery (rather
than online diagnosis).

Current techniques which allow for root-cause analysis, such as Pip and Triage, require too much programmer
input, which precludes the discovery of bugs that programmers are unaware of. Both Pip and Triage do not allow
for runtime prognostics to be made for detecting errors before they have resulted in failures. Both Pip and Triage
also require access to program source code, which may not always be feasible, especially at commercial production
sites. Even black-box techniques such as Pinpoint are not necessarily suited to production sites, because Pinpoint
requires a modified middleware, which production sites may not allow due to various concerns such as security, while
techniques such as Cohen et al.’s work do not allow for root-cause analysis although it is amenable to deployment at
production sites.

The goal of this work is to develop techniques for problem diagnosis on distributed software systems deployed in
production environments. Production environments typically deploy commercial or otherwise third-party software
packages for which source code is often not available. Production environments also typically have strict require-
ments on availability and quality of service—production systems strive to achieve maximum throughput and mini-
mum latencies on servicing requests at a minimum cost. Production environments will generally prohibit modifying
even program binaries for security and privacy concerns. Hence, intrusive and high-overhead white-box techniques
are not amenable to our goal. Instead, we infer and extract white-box information using black-box techniques, to
perform root-cause analysis in addition to fault localization.

2.1 Scalable Problem Diagnosis

The difficulty of finding the location and root cause of failures in distributed systems is further complicated by the
fact that execution can take place on arbitrarily many systems, leading to an explosion in the volume of trace data
gathered. Again, there is a trade-off between gleaning moreinformation by combining trace data across systems to
obtain a system-wide view, and incurring higher bandwidth and processing costs of transmitting large amounts of
data across a network and processing it. This work studies one extreme of this trade-off, and uses only node-local
information for problem diagnosis in a distributed system.We restrict ourselves to using only information available
on a single node for diagnosis on the node, to push the boundaries of the efficacy of using only local information.

2.2 Problem Diagnosis using Multiple Data Sources

Our key to pushing the boundaries of using only node-local information for problem diagnosis is in the synthesizing
of multiple data sources on the same node in a meaningful manner to gain additional information for problem diag-
nosis. To this end, we have examined various local information sources available at various levels of each node , such
as hardware performance counters, operating system-reported metrics such as processor, memory, disk and network
bandwidth utilization, and application-reported information such as logs. We make initial efforts at synthesizing this
information for further analysis. This meaningful use of many data sources (as opposed to mathematically collapsing
all the data for analysis using machine learning algorithms[6]), distinguishes our approach from current work which
mostly use few (one or two) information sources [16] [5]. By preserving the meaning in the information sources,
we are able to assist human operators by highlighting possible root-causes of the failure, in addition to localizing the
fault.

2.3 Application Logs as a White-box Data Source

In addition, this work presents what is (to the best of the author’s knowledge) a novel use of application activity logs,
using application activity logs from the Hadoop distributed parallel programming platform as a case study. Since
application-level log entries are programmer-reportedstatements of application behavior, they can be seen as a source
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of white-box information that provdes semantically-rich details about the activity of the application. Most current
work on the use of application logs focuses on text-mining web access logs to analyze traffic patterns [21], and
on text-mining error and access logs to discover pertinent features [17] [12]. However, the data mined from these
logs using text-mining techniques is typically in an unstructured, multinomial (but not ordinal) form that cannot
be immediately combined with operating system-reported metrics and performance counters, which are typically
numerical, ordinal values, for analysis. The closest relative to our approach of interpreting event logs as a time-
series of ordinal values is [10], although the author examined error logs rather than activity logs, and examined
logs from a hardware source. The distinguishing features ofour approach to application-level logs, as demonstrated
through application activity logs from Hadoop, are: (i) ouruse of simple parsing instead of text-mining, (ii) inferring
high-level white-box states of application execution, and(iii) generating structured data with a fixed number of
descriptive numerical variables, each with ordinal values(counts of states), and that (iv) the structured, ordinal data
we generate is immediately amenable to a larger range of analysis and machine learning algorithms.

We have built an online parser library for the application activity logs of the various components of the Hadoop
platform that reports (i) significant white-box application events in the lifecycle of Hadoop, and (ii) the instantaneous
workload/behavior state of Hadoop. The ability of our parsing algorithm to extract semantically-rich information
about application behavior useful for problem diagnosis can also provide insight into how application logging can
be designed to aid problem diagnosis of the application.

2.4 Problem Diagnosis for Hadoop

Distributed systems, such as Hadoop, and other Map/Reduce-type distributed parallel processing systems, are de-
signed for batch processing of large datasets [25] [7], and are not amenable to problem diagnosis using most existing
techniques.

These distributed systems see much fewer user-initiated requests, so that there are much fewer runs on which
techniques such as Cohen’s work, Magpie, and Pinpoint can perform clustering for learning the correct behavior of
the system. Cohen et al.’s work, Magpie, Pinpoint, and Pip all assume the availability of large numbers of short-
lived user-initiated requests, so that each of these requests can be used as a sample for clustering to determine
which requests are anomalous. This model is well-suited to the vast majority of traditional multi-tier web-based
applications, with common tiers being a web-server front-end, an application server tier, and a database back-end,
but not to Hadoop.

Also, Hadoop has uninteresting execution paths through itscomponents, as it implements a node-based process-
ing model in which every node performs the same computation,rather than a path-based processing model in which
each node along the processing path performs specialized processing. Thus, there is only one type of execution com-
ponent (the TaskTracker), such that path-based techniquessuch as Pinpoint’s Probabilistic Context-Free Grammars
and Pip will have limited leverage from analyzing paths of execution flows for problem diagnosis.

Hence another key objective of our work is to use node-local,path-agnostic techniques for problem diagnosis
on Map/Reduce-type distributed parallel processing systems for which current problem diagnosis techniques are not
effective.

2.5 Hadoop failure scenarios

We studied 9 months of data (October 2006 to July 2007) from the bug database [23] of Hadoop, an open-source
implementation of the MapReduce distributed parallel programming model, which motivated the characteristics
of our target system, to identify common failure manifestations of faults. We found that the majority of faults
manifested as process hangs and resource exhaustions. Out of 23 bugs surveyed from the Hadoop bug database, 11
resulted in process hangs in which no forward progress was made, 3 resulted in excessive CPU usage that slowed
nodes down, 2 resulted in out of memory errors, while 7 resulted in application-level Java exceptions being thrown.
Hence, we focused our fault-injection and problem-diagnosis efforts on detecting process hangs and memory leaks
(in which objects that were allocated but which the system failed to dereference failed to be garbage collected,
leading to out of memory errors).

3 Approach

3.1 Target System

Hadoop, an open-source implementation of Google’s Map/Reduce infrastructure, handles a workload of long-
running jobs that aim to process large datasets. Hadoop’s master-slave architecture has a few (O(1) in the num-
ber of slave nodes) master nodes coordinating many slave nodes which all have the same functionality. Master
nodes provide two types of functionality in two separate daemons: the NameNode serves as the directory service
for the Hadoop Distributed Filesystem (HDFS, a block-replicated filesystem that implements the Google Filesystem
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(GFS) [8]), providing the mapping from named files to the slaves on which the individual fixed-size blocks are stored,
while the JobTracker serves as the coordinator for Map/Reduce jobs. Similarly, slave nodes provide two types of
functionality in two separate daemons: the DataNode servesas a chunk server in GFS terminology, providing actual
storage of blocks, while the TaskTracker shepherds execution of tasks on slave nodes by starting up new Java Virtual
Machines (JVMs) to execute tasks.

Long-running jobs are divided by the JobTracker on the master node into smaller, short-lived (relative to jobs)
subtasks that are processed by the TaskTrackers on slave nodes. A job’s subtasks are likely to be small relative to
the job itself, in order to minimize the amount of re-computation when a node fails. We assume that the number of
slave nodes can be large: any fault-tolerance techniques that warrant the remote inspection of nodes (e.g., through
heartbeats) from a central/master location are likely to becostly in network bandwidth, thus the case for node-local
diagnosis. We make no assumptions about the number of culprit nodes in the system, and do not currently probe
further to discern which of the fingerpointed culprit nodes might be more to blame than the others. We focus our
problem diagnosis efforts on node-local diagnosis on slavenodes, since these can be arbitrarily many while there
are few master nodes; we first attempt to localize the fault toa single node, and make further efforts at localizing the
fault to a phase of execution in the TaskTracker or DataNode on the slave node.

3.2 Manifestation-centric Problem Diagnosis: Goals and Non-goals

The actual root causes of performance problems are often difficult to diagnose without detailed application/domain
knowledge. On the other hand, the manifestations of performance problems are observable errors or anomalous
system activity, ultimately leading to system unavailability or unresponsiveness. Thus, our approach to problem
diagnosis seeks to identify the culprit (node) of a performance problem by tracing any observed problem manifesta-
tions back to their source node. This also allows us to perform black-box problem diagnosis in a production setting,
with neither access to nor modification of application source-code.

The goal of our work is to perform online problem determination: to locate, during the execution of the system,
the node(s) on which a performance problem occurred, and to provide suggestions as to what the root-cause of
the failure might be—these suggestions are in the form of system resource categories that are possible sources of
performance issues, such as processing, memory, disk, and network resources. The eventual aim of this work is to
expedite system recovery from a failure, either by aiding system administrators and operators in isolating faults and
identifying recovery actions, or by providing diagnostic information for automated tools to decide the best course of
action for system recovery.

In the context of the candidate failures identified in Section 2.5, the goal of our work is to flag off nodes exhibiting
failure manifestations to isolate the failure, and to then provide informative metrics as suggestions as to what the
root-cause of the failure might be.

Program debugging is a non-goal of our work. Our techniques are not intended to aid programmers in performing
code-level analysis and extremely fine-grained localization of faults. Instead, our techniques bridge the gap between
requiring access to and instrumentation of application source code for extremely fine-grained, code-level analysis,
and using coarse-grained non-invasive black-box information sources by introducing (i) the use of statistical analysis
to gain additional insights and enable inference about application behavior, and (ii) white-box information sources
that can be accessed using black-box techniques.

3.3 Available Data Sources

The following main categories of sources of performance data about systems that can be accessed using black-box
techniques, requiring no access nor modification to application source-code, have been utilized in our approach. A
brief description of the type of information, the means of collection, and the cost of collecting each data source, in
terms of overheads imposed, follows.

3.3.1 Hardware Performance Counters

Modern microprocessors implement performance counters toprovide counts of hardware events, such as the number
of unhalted cycles, or the number of cache hits and misses [22]. Hardware performance counters provide the lowest-
level view of a system from the perspective of software, and provide a most fundamental (to the extent that collecting
performance counter values causes minimal perturbations)view of the system closest to the ground truth of the bare
metal of the system, free of artifacts as introduced by operating system or middleware-induced abstractions. The
RAMStechnique of our approach examines hardware performance counters to make inferences about the (correctness
of the) behavior of the candidate application.

However, hardware performance counters can be potentiallyexpensive to collect, as each data collection re-
quires a context-switch into kernel mode to access the performance counter values. Nonetheless, our work uses
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the oprofile hardware performance counter monitoring package, which has a measured overhead of between
1-8% [29].

3.3.2 Operating System-reported Resource Metrics

The next higher level of abstraction from system hardware atwhich monitoring can be performed is the operat-
ing system. Major operating systems report aggregate statistics about various system resource categories—namely
processing, memory, disk, network, and the virtual memory subsystem. These statistics are typically reported pe-
riodically as part of the service provided by the operating system, regardless of whether they are collected. Hence,
these metrics can typically be collected in a low-overhead fashion. Specifically, Linux and many variants of Unix
implement theproc filesystem, an interface through which a comprehensive array of operating system-provided
information about aggregate system state and per-process state can be accessed.

TheBlackSheeptechnique of our approach leverages on the low overheads of this data source and focuses on
synthesizing the wide array of information available through theproc filesystem on Linux for problem diagnosis.

3.3.3 Application Logs

Many software applications, especially Internet-deployed and distributed software applications, have activity logs
that describe the actions of the software application. Traditionally, application logs have provided a trace of error
messages for system administrators and users to identify problems and for programmers to debug the application;
application logs also sometimes provide a trace of accessesfor audit trails to identify security breaches. These
software applications typically have configurable levels of logging detail, so that they can be set to generate log
messages about the software’s actions with varying levels of verbosity. At the minimum level of verbosity, log
messages are usually generated only in the event of fatal errors which caused the application to fail completely
and crash, while at the maximum level of verbosity, log messages may be generated during the course of normal
application execution as well, to report events.

Applications can be thought of as being in one of a finite number of high-level states, with each state correspond-
ing to a particular mode in which a particular type of task is being executed, giving rise to a signature of that state
which characterizes it. A key insight is that the normal application events as reported by detailed log messages will
typically correspond to the entrance and exit of abstract application states as described above.

Hence, if an application has sufficiently few types of states, these states and the events which demarcate the
entrance into/exit from abstract application states can beenumerated. Then, well-structured logs from the application
can be parsed to process textual event reports to generate numerical counts of the states which the application is in.
These numerical reports are more amenable to synthesis withother metrics, as they are all numerical and hence can
be synthesized and treated with statistical analysis and learning as with typical numerical metrics.

3.4 Analytical Framework

Next, we provide an overview to the key ideas that the two techniques of our approach use for identifying deviant
application behavior.

3.4.1 RAMS: an a priori Model of System Activity

TheRAMStechnique is based on the following hypothesized model of the local behavior of nodes in a distributed
system.

The processing on slave nodes is always in one of two modes: (i) communication with the other nodes in the
system, or (ii) actual data processing to compute a subtask.The user-space application (henceforth the application)
invokes system calls to perform its external communication, which is recorded as operating system (OS), or kernel-
space activity. Hence, under communication-intensive operations, a node’s OS activity will dominate that node’s
application activity; conversely, under compute-intensive operations, the node’s application activity will be higher.

The processing of a job’s subtasks will likely involve repeated communication between nodes in the cluster—for
subtasks to be dispatched to nodes, and for the results of subtasks to be returned to the dispatcher.

Consider a sufficiently long observation window on a node that encompasses both the communication phase of
receiving and returning the results of the subtask as well asthe computation phase to execute the subtask locally.
Our hypothesis is that when a node experiences a performanceproblem, its processing is likely to be interrupted or
to take significantly longer (possibly never returning), sothat the node might not be observed (albeit indirectly) to
be communicating as much with the other nodes in the system within the window of observation. Thus, we expect
the system metrics that respectively characterize OS’ and application’s activity to be correlated in the absence of
performance problems. OS activity and application activity will increase together in the same window, reflecting
the external communication and the local computation required to process a subtask. However, when the node
experiences a performance problem, we expect to see significantly less correlation between the node’s OS’ and
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application’s activity, as either no computation nor communication are occurring, or the application is failing to
return—in both cases, application activity moves independently of OS activity. An obvious side-benefit of this
hypothesis (if indeed, it is borne out by experimental evidence) is that a node’s observed local behavior alone ought
to suffice for deciding whether that node is a culprit of a performance problem.

3.4.2 BlackSheep: Corroborating Application Behavior with System Activity

TheBlackSheeptechnique is based on the key hypothesis that during normal,problem-free execution, the abstract
state or mode of execution of the application should be approximately in line with the observed black-box metrics
of the system.

We hypothesize that given normal execution, during a given mode of execution of the application, particular
black-box metrics will exhibit stable patterns, such that changes in the mode of execution of the application will be
followed by, possibly with a time lag, changes in the aggregate behavior of black-box aggregate system metrics.

Conversely, when there is a problem in the application, two scenarios are possible. First, there can be changes in
the mode of execution of the application as reported by the application in its logs, but no changes in the aggregate
behavior of system metrics, due to a failure of the application to transition to the new execution mode. Second, there
can be changes in the aggregate behavior of system metrics although there was no change in the mode of execution
of the application, as the change in system behavior was brought about by the transitioning of the application from
its normal execution mode to a problematic one. By detectingthe phase of execution at which an anomaly occurred
(unexpected change in system activity, or unexpected absence of change in system activity, relative to application
behavior), we can thus isolate the fault to a phase of execution in a particular component (DataNode/TaskTracker)
of our target application.

Hence, the key idea behindBlackSheepis in quantifying changes in both the mode of execution of theapplication,
and in black-box system metrics, and in identifying black-box system metrics whose changes co-occur with changes
in the mode of execution of the application.

4 Application Log Parsing Case Study: Hadoop activity logs
There are four different types of activity logs provided by Hadoop: one for each of the four different types of
daemons (NameNode, JobTracker, DataNode, TaskTracker) that provide services in Hadoop. Our initial efforts focus
on the activity logs from the DataNode and TaskTracker. Hadoop uses the Apache Log4J [24] logging framework,
thus emitting logs that are standardized across many other open-source software which also use this framework,
suggesting that our approach is possibly portable to other applications also using Log4J (to the extent that the
application developers of other applications using Log4J also provide log messages with similar semantic content as
Hadoop does).

4.1 Log Overview

A snippet of log messages from the TaskTracker logs are shownin Figure 1. Log entries are timestamped, and
the level of verbosity and the originating component of the log entry are stated, followed by a descriptive message.
The Log4J framework used by Hadoop allows the destination oflog messages to be configured; we assume that the
default configuration of Log4J in Hadoop is used, so that log messages are written to plain text files.

Our Hadoop log parser parses each log message into its timestamp, the level of logging verbosity, the reporting
component, and its message, and parses the log message to generate application events, from which application
states are inferred, as described next.

2008-04-22 08:53:10,347 INFO org.apache.hadoop.mapred.TaskRunner:
task 0003 r 000000 0 Copying task 0003 m 004566 0 output from pc69.emulab.net.
2008-04-22 08:53:10,349 INFO org.apache.hadoop.mapred.TaskRunner:
task 0003 r 000000 0 Copying task 0003 m 001577 0 output from pc73.emulab.net.
2008-04-22 08:53:10,358 INFO org.apache.hadoop.mapred.TaskRunner:
task 0003 r 000000 0 done copying task 0003 m 004566 0 output from
pc69.emulab.net.
2008-04-22 08:53:10,436 INFO org.apache.hadoop.mapred.TaskRunner:
task 0003 r 000000 0 done copying task 0003 m 001577 0 output from
pc73.emulab.net.

Figure 1: A snippet from a TaskTracker log showing log entries which triggerStateStartEvents andStateStopEvents for
theReduceCopyTaskLocal andReduceCopyTaskRemote states.
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4.2 Application Views: Events and States

4.2.1 Events and States

In order to interpret the semantic meaning of application logs (in a manner useful for problem diagnosis), we propose
two orthogonal ways of viewing the high-level modes of execution of applications in general: aseventsandstates,
using Hadoop as a case-in-point: Consider each single thread of execution in an application as a deterministic finite
automaton (a transition must be taken at each step, and the machine can be in at most one state) which is in exactly
one DFA state at each time instant. Then, the mode of execution of the application can be viewed asstatesof the
DFA, or asevents, which are related to the transitions in the DFA, as explained next.

We definestatesin the DFA to correspond to high-level tasks (e.g. serving a block read request to a remote client
in a DataNode), andeventsto be the entering and exiting of states, from which we derivetransitions in the DFA
to correspond to a composition of one state-entrance and onestate-exit event. We define the two types of events
as StateStartEvents and StateStopEvents. Then, multi-threaded applications would comprise multiple threads of
execution, with one DFA representing the execution mode of each thread. The mode of execution of the application
at each time instant can then be represented by (i) a vector ofstates in each of the DFAs, with one for each thread of
execution, showing the instantaneous composite workload of the application, or as (ii) a vector of events in each of
the DFAs, showing the changes that have taken place in the system at the time instance.

4.2.2 Events and States in Logs for Hadoop

A key observation about the log messages in Hadoop is that they correspond to notifications about the events as
defined above. At the highest level of logging verbosity, they precisely denote the starting and stopping of each
high-level task (e.g. Maps, various Reduce phases, block reads/writes served) undertaken by the DataNode and
TaskTracker. Hence, our model of high-level application behavior can be directly parsed and extracted from the
activity logs of Hadoop.

There are, however, exceptions: only the occurrence, and not the entrance to and exit from certain states in the
DataNode and TaskTracker are reported, presumably becausethe tasks corresponding to these states are short-lived;
we define a third event type, an InstantStateEvent, for transient states for these types of states. Events of this type,
when composed with an event before it and an event after it, then corresponds to a transition into the state, followed
by an immediate transition out of the state, in the context ofa DFA.

A list of states for the DataNode and the TaskTracker are included in Appendix A, and each state has two
associated events: one for the entrance to the state, and onefor the exit from the state, and an InstantStateEvent is
included for states whose execution is reported only in a transient manner.

4.3 Parsing Algorithm

The log parser implements a discrete window over the activity log. The log entries reported in each window of time
under consideration are processed to return theEventsoccurring in the window. In addition, theEventsoccurring in
the window are processed to return thestatesthat the application is in within the window of consideration.

Log entries are read sequentially in strictly increasing chronological order, and parsed to assign anEventto each
log entry. AnEventmay be one of{ StateStartEvent, StateStopEvent, InstantStateEvent, NoOpEvent, ErrorEvent},
with the last two events added for log entries extraneous to our analysis that do not describe any significant change
in workload (such as idle heartbeat messages, or a message indicating no useful work is being done), and for error
messages, respectively. Thus, a time series of events can beimmediately generated from the Hadoop activity logs
(for DataNodes and TaskTrackers presently) with a single forward pass over the log entries.

In order to generate the vector ofstatesthat the application is in for each window, the log parser maintains
internal state to remember the number ofStateStartEvents andStateStopEvents that it has seen for eachstateat each
time instance. Then, the number of threads executing eachstateis simply the difference between the number of
StateStartEvents andStateStopEvents, plus the number ofInstantStateEvents seen for eachstate, within the given
window.

A minor complication arises with theStateStartEvents for theReadBlockandWriteBlockstates in the DataNode-
—StateStartEvents for most states in the logs of DataNodes are denoted by a generic message, while state-specific
information is available only inStateStopEvents. Hence, we make the simplifying assumption thatStateStartEvents
andStateStopEvents corresponding to the samestateoccurrence occur in FIFO order to make processing possible.
This also implies that for any givenStateStartEvent, the state it corresponds to cannot be identified before its (as-
sumed) correspondingStateStopEventis observed.StateStartEvents in the DataNode logs are given an additional
designation asDeferredStateStartEvents to indicate that the identity of the state corresponding tothe event has not
been ascertained, and the window is prevented from sliding forward until the identity of theStateStartEventhas been
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resolved (by observing a correspondingStateStopEvent).

4.4 Parser architecture

The log parsing algorithm has been implemented as a library of C++ calls that can be easily reused in a larger
software framework.

All logs are represented by a generic base class, which defines functionality common to manipulating each type
of log, from which subclasses are derived and implemented for specific log types. Each log-specific subclass (e.g.
DataNode, or TaskTracker) then implements its own monolithic parser to parse log entries from that particular type
of log. The log base class stores a chronologically ordered list of Events, with the identity of theEventstored as an
enumeration, and its associatedStatestored as a member variable.States are defined by a generic base class, from
which subclasses are defined forStates specific to each different logged component of Hadoop. The log-specific
subclasses then implement functionality for processing a given list of events associated with states specific to the
particular type of logged component to generate time series’ of observed events and application states.

The log parser has a modular architecture, which exposes a common interface for sampling events and states from
the different types of logs produced by Hadoop. A query object accepts a log object and calls on the log-specific
event-processing method to generate samples of occurringEvents or samples ofStates that the application is in. The
query object manages the window over which sampling is performed, and manages the formating and presentation
of reports of observations.

The log parser library supports on-demand, lazy parsing, and only needs to remember the latest log entry to
perform processing; all information from prior log entriesis summarized and stored as internal representations as
lists of Events andStates, and users of the library can explicitly request the library to clean up past reported events
and states.

4.5 Offline Parser Output

In addition, the log parser provides an offline output mode, in which the log parser is provided with a sampling
interval, and the parser generates a comma-separated value(CSV) file of a time series of the counts of each of the
states and events for the particular node type—the number ofeach of the states and events for the particular node
type in each sampling time interval is listed as a row in the CSV file. A visualization of these states is shown in
Figures 22, 23, 24, 25.

5 RAMS: Statistical Tests of ana priori Model of System Activity

5.1 Analytical Methodology

5.1.1 Linear regression model of system activity

On each node in the system, we collect traces of the intra-node performance counter values for OS activity,ost,
and application activity,appt (as discussed later). Consider a linear ordinary least-squares regression fitted to the
time-series of the node’s OS’ performance counters (ost) and the application’s performance counters (appt), with
Gaussian noiseut allowed:

ost = βappappt + ut

Concretely, (t) pairs of observed OS and application performance counter values form a window, and these are
plotted as a function of each other, and a straight-line which minimizes the sum of squared errors between observed
ost and fittedos′t is plotted through these points. Thus, for each pair(appt, ost), fitted valuesos′t and the noise, or
regression residual,ut = os′t − ost, are generated from the regression.

5.1.2 Autocorrelation of residuals

Next, consider first-order lagged residuals,ut−1, (i.e. consider the residual from the preceding pair in the time-
series for each given time) and residualsut, from the linear regression. When a node is not experiencingproblems,
ut−1 will be independent ofut, if the window over which regression is performed includes samples from both
the communication-intensive and compute-intensive phases of the system. This is because the strong correlation
between OS and application performance counters results ina strong relationship between the regressand (ost) and
regressor (appt), so that residualsut reflect purely Gaussian noise and are uncorrelated.

When nodes are experiencing performance problems, there will be correlation betweenut andut−1. This is
because application activity becomes increasingly uncorrelated with the OS activity, so thatut andut−1 become
correlated. The regression residuals will reflect movements in the application activity counts and hence are no
longer random noise, but become correlated.
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This statistical condition in which residuals (ut) become correlated with their lags (ut−i for i > 0) is autocorre-
lation.

Hence, we hypothesize that autocorrelation between laggedresiduals in an observation window exists on a node
if and only if the node experiences performance problems in that window.

5.1.3 Autocorrelation tests for identifying anomalous nodes

The Breusch-Godfrey and Durbin-Watson [13] tests for autocorrelation were used to detect autocorrelation in the
linear regressions of OS with application performance counter values for problem diagnosis. In each of these tests,
the ordinary least-squares linear regression is first fittedto the window of observed OS and application performance
counter values, from which secondary regressions and test statistics are computed based on the regression residuals.
Each of these is a statistical test, which tests the null hypothesis that there is no autocorrelation present against
the alternate hypothesis that there is autocorrelation present in the regression residuals, and returns ap-value—the
probability of wrongly rejecting the null hypothesis.

Since our hypothesis is that autocorrelation is present in aregression on a given window of performance counter
values if and only if the node is a problem node, the null hypothesis of these two statistical tests is exactly the
(statistical) hypothesis that the node is problem-free. Thus, a smallerp-value indicates greater confidence that a
problem is present in the node.

5.2 Experimental Setup and Methodology

We conducted a series of experiments to test theRAMShypothesis. Our goal was to study the characteristics of
the time-series of metric traces of every node’s OS’ and the application’s activity under normal execution and under
induced performance problems.

5.2.1 Setup

We deployed a 6-node (5 slave, 1 master) Hadoop 0.4.0 clusteron two 3.0GHz Xeon nodes, each running the
Xen 3.1.0 hypervisor [3] hosting three unprivileged Linux 2.6.18 guests, on the Emulab [20] remote testbed. The
Nutch (version 0.8.1) web-crawler [28], running on a Linux 2.6.18 guest hosted on a third 3.0GHz Xeon node over
a Xen hypervisor, was used to generate workloads for the Hadoop cluster. Each iteration of the experiment in-
volved rebooting all of the nodes in the Hadoop cluster, running a single Nutch web-crawling request, and collecting
performance-counter traces over the duration of the execution. Each iteration of the experiment lasted approximately
as long as the execution of the Nutch web-crawling job of 40 minutes.

5.2.2 Fault Injection

As Hadoop is written in Java, we used a JVM Tool Interface (JVMTI) agent [27] to perform load-time class
bytecode-rewriting to inter-position calls to methods in our problem-injector class before the actual methods of
interest. As our problem injection uses Java methods withinthe same virtual machine as the target application, all
problem-injection activity is encompassed in the activityof the target application.

One of the two types of problem manifestations at one of two levels (high and low) of intensities was injected
into three of the five slave nodes in each of the problem-induced iterations of the experiment. 72 iterations of the
experiment were run, of which 27 iterations had memory leaksinjected (11 high-intensity, 16 low-intensity) and 45
had process delays injected (14 high-intensity, 31 low-intensity).

Process-delay injection involved awhile loop running for a preset duration—an infinite loop in the high in-
tensity case, and alternation between executing the loop for one second and yielding control in the low-intensity
case. The memory-leak injection involved allocating Java objects and adding them to a persistent vector, for a preset
duration, in a similar manner to the process-delay injection described above.

The injected problems are representative of the manifestations of real-world performance problems recorded in
the Hadoop bug database, as described in Section 2.5. As our problem diagnosis approach is a manifestation-driven
one, being able to detect the identical manifestation wouldbe a sufficient benchmark for our technique.

5.2.3 Instrumentation and Data Collection

The intra-node metrics that we gathered were Intel P4 performance-counter counts of instruction cycles collected
by oprofile [29] with thexenoprof [14] Xen driver. Samples of instruction-cycle counts were taken at 10s
intervals byoprofile, and attributed to the Linux processes whose instructions accounted for the cycle counts.
In particular, we examined the counts for the Linux kernel process and the aggregate activity counters for the Java
Virtual Machine (JVM) processes of the multiple Hadoop components.
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5.2.4 Analysis

We analyzed the collected metrics offline after completing the experiments. For each node in each iteration of the
experiment, the time-series of instruction-cycle counts for the Linux kernel (ost) and the JVM (appt) were fitted to
the linear regression:

ost = appt + ut

Next, we ran the Breusch-Godfrey and Durbin-Watson [13] tests for autocorrelation between the first-order lags of
residuals (ut, ut−1), generating thep-values for the probability that there is no serial correlation between the first-
order lagged residuals for each node. Thep-values are used as a measure of serial correlation between the first-order
lagged residuals. Then, specificp-value thresholds were used to identify the culprit node(s). Nodes withp-values
below the threshold value were classified as being the culprits. Variousp-value thresholds were used to vary the
recall of the algorithm, to study how precision varied with recall (see Section 5.3 for definitions of precision and
recall).

5.3 Evaluation Results

5.3.1 Statistical Characteristics of Metrics

Figure 2: Regression residuals as a function of application activityfor a culprit node with a low-intensity process delay (left)and
a non-culprit node (right)

In the case of process delays, in nodes with injected problems (the culprit nodes), the residuals of the linear
regressions of OS activity (ost) with application activity (appt) were strongly correlated with application activity,
indicating strong autocorrelation in the (lagged) residuals. This is seen in the clear linear, non-zero relationship
between the residuals and application activity in the left graph in Figure 2, while in problem-free nodes, the residuals
showed no clear relationship with application activity, asseen in the right graph in Figure 2. This observation
is consistent with our hypothesis. This observation was also confirmed by the statistically significant evidence of
autocorrelation between the residuals in the culprit nodes, in contrast with the lack of such autocorrelation in the
problem-free nodes.

However, in regressions for the experiments with injected memory leaks, there appeared to be no clear differ-
ence in the correlation patterns between the regression residuals and the application activity across the culprit and
problem-free nodes.

5.3.2 Efficacy of Problem Diagnosis

Next, we examine the effectiveness of our approach at classifying culprit and problem-free (non-culprit) nodes.
Figures 3, 4 shows the performance of our initial problem-diagnosis algorithm for each type of failure, broken

down by failure intensity. We quantified the efficacy of our approach usingprecisionandrecall, measures of clas-
sification effectiveness from the data-mining literature [19]. When our problem-diagnosis algorithm indicts a node,
that node becomes a suspect; this is different from the node being truly guilty, i.e., aculprit. Precision measures
the fraction of all suspects that are indeed culprits, whilerecall measures the fraction of culprits that our algorithm
successfully indicted. We tuned the recall of our approach by varying thep-value threshold (Section 5.2.4), where
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Plot of Recall vs Precision (in percentages) 
for various statistical tests of autocorrelation 
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Figure 3: Overall precision as a function of recall for failure diagnosis algorithm for high-intensity failures

a p-value threshold of 1.0 results in our algorithm indicting all of the nodes in the system. As the number of sus-
pects increases with more aggressive indictment (higherp-value thresholds), recall increases, but precision suffers.
A perfect problem-diagnosis algorithm would have a precision/recall curve with a precision of1.0 for all values of
recall [11].

From Figure 3, our algorithm has some success identifying nodes suffering high-intensity problems—precision
falls gradually and does not suffer a complete collapse as recall is increased, while our algorithm has some success
with identifying nodes with low-intensity process-delay problems (Figure 4), but is ineffective at identifying nodes
with low-intensity memory leaks, as precision collapses when recall is increased.

Perhaps a more informative statistic isBalanced Accuracy(BA) [11], the average of the proportion of problem-
induced and problem-free nodes that were correctly classified. If problems occurred randomly, a random classifier
would, in the limit, achieve a balanced accuracy of0.5. Figures 5, 6 show the highest BA achieved by our algorithm
under high- and low-intensity problems for memory leaks andprocess delays across allp-value thresholds used
for each of the problem-intensity and problem-type cases shown (these are upper bounds on the efficacy of the
algorithm; further work is needed to find the best single threshold value for all problem types and intensities). From
Figure 5, our approach is moderately effective at identifying nodes with high-intensity problems and low-intensity
process-delays, achieving a BA of greater than0.7 using both (Breusch-Godfrey and Durbin-Watson tests) measures
of autocorrelation. However, from Figure 6, our approach does only marginally better than a random classifier for
nodes with low-intensity memory leaks.

In conclusion, we have shown thatRAMSis effective at detecting both types of injected high-intensity faults,
process hangs and memory leaks, and is somewhat effective atdetecting low-intensity process hangs, but not much
better than random at detecting low-intensity memory leaks. RAMSshows some promise at being able to identify
anomalous nodes exhibiting process slowdowns and hangs, which would be helpful for detecting the large proportion
of Hadoop bugs that manifest as process hangs (as surveyed inSection 2.5).

6 BlackSheep: Application-System Corroboration through Change Point Analysis of Sys-
tem Activity

6.1 Analytical Methodology

The fundamental idea ofBlackSheepis that application logs and operating system-reported resource metrics (which
we will refer to as resource metrics) provide orthogonal views of a system that should agree with each other at a high
level during problem-free operation. Application logs provide semantically rich information about the high-level
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Plot of Recall vs Precision (in percentages) 
for various statistical tests of autocorrelation 
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Figure 4: Overall precision as a function of recall for failure diagnosis algorithm for low-intensity failures

modes of execution of the application, while operating system metrics such as disk, memory, processor, and network
utilization provide evidence of the actual behavior of the application as observed from its system-level actions. Thus,
we would expect the high-level activities that the application reports itself as performing to correspond with its actual
system-level actions during problem-free execution. An immediate consequence is that multiple views of the system
disagreeing with each other is an indication of a problem. Then, the system resources whose metrics disagree with
the view provided by application logs will provide suggestions as to which area of the application is not behaving as
the high-level log information suggests the application should be.

Application logs typically contain textual information, while operating system-reported resource metrics are
typically sequences of observed counts, and are not immediately comparable to determine if they agree with each
other. However, this textual information in application logs can be parsed to extract counts of high-level states, each
of which corresponds to a logical task performed by the application, and events, which correspond to the beginning
and ending of states, as we have demonstrated for Hadoop in Section 4. These counts of high-level states and events
can then be compared with operating system-reported metrics.

Change point analysis is applied to resource metrics and application state counts to compare them with each
other for determining if an anomaly is present in the system.

6.1.1 Change point analysis

Operating system-reported resource metrics and counts of high-level application states are compared by computing
the change points in resource metrics and application statecounts, and ensuring that they occur together. We define
the steady state of both the application and the system resources to be durations of absences of change points. The
intuition is that when the counts of the number of occurrences of each state remain unchanged, the application is in
a steady state, so that its system-level behavior as reflected by resource metrics should be steady and unchanging as
well. Hence, we make thea priori assumption that a change in resource metrics when the application is exhibiting a
steady state is anomalous, and likewise, that a change in application behavior when system resources are exhibiting
a steady state is anomalous.

Change point detection is a classification problem over a time series of values. The objective is to separate the
time series of values into contiguous segments, in which theunderlying parameters describing the distribution of
values is the same within each segment. A challenge of using popular change point detection algorithms such as
Shewart control charts and CUSUM [4] are that they require atleast one of either of (i) the parameters governing
the distribution of values before the change, (ii) after thechange, or (iii) the time of change—however, it is not
clear what the correct parameters of the process generatingthe distribution of values of resource metrics are, and the
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objective is precisely to determine the time of change, so that popular change point algorithms are not amenable.
Instead, we use a difference of means algorithm that is a variant of an image edge detection technique [1]. This

algorithm had been previously successfully applied to problem determination in enterprise middleware systems, but
on individual resource metrics in a group of metrics. Our useof change points analysis differs from [1] in that we
are continuously comparing change points across two completely orthogonal measurements (application state counts
and resource metrics) to corroborate change points.

6.1.2 Change Point Detection Algorithm

Our change point detection algorithm is described as follows:

Algorithm 1 Decision function for deciding if a given observation in a time series is a change point

1: procedure CHANGEPOINT(obs[], obsnum, window, thresh, prevobs[], prevmax) ⊲ prevmaxobs is a
fixed-size persistent queue that stores the lastwindow differences of means

2:

µL ←

∑obsnum−1

i=obsnum−window obs[i]

window

3:

µR ←

∑obsnum+window
i=obsnum+1

obs[i]

window

4: ∆µ = µL − (−µR)
5: prevobs.queue(∆µ)
6: if (max(prevobs) == ∆µ) && (∆µ > prevmax) then
7: if ∆µ > thresh ∗ µL then
8: prevmax = ∆µ

9: return true
10: end if
11: end if
12: return false
13: end procedure

Algorithm 1 takes as its input a time series of metric values (which can be resource metrics or application
state counts), and an observation number (obsnum) in the time series, and returnstrue if the given observation
number is a change point (i.e. statistical properties of thevalue in the time series changed at the time of the given
observation), andfalse otherwise. For a given window size,window, the left and right means (µL, µR) respectively
are computed overwindow samples before and after the given observation. The criteria for determining when the
time of the observation is a change point is when the difference between the left and right means (∆µ) for the given
observation is a local maximum, and exceeds the value of the left mean,µL, by a given threshold factor,thresh. The
first conditional in Line 6 ensures that∆µ is indeed a local maximum over the observation window. An additional
heuristic is included in the second conditional in Line 6 to ensure that the same local maxima is reported only once.

The size of the observation window,window, and threshold factorthresh, are tunable parameters of the detec-
tion algorithm, and adjust the sensitivity of change pointsbeing reported. We then apply the change point detection
algorithm to each time series for each resource metric and each application state count of interest, and compare the
change points in the two, to determine if the execution of theapplication is free of anomalies. This comparison is
detailed next.

The change point detection algorithm can be implemented in alazy, dynamic fashion for online use, by keeping
only state that has size that is constant (O(1)) in the order of the length of the time series examined, so that the
algorithm can be run indefinitely with a constant amount of memory. The only persistent state required by the
algorithm iswindow number of∆µ values, and the value of the previous reported local maxima,prevmax.

However, a disadvantage of a lazy, greedy implementation isthat continuously rising metric values will result
in successive change points being reported, rather than a single local maxima—fortunately, our analysis involves
comparing change points across resource metrics and application state counts, which are hypothesized to behave in
similar ways in the event of normal operation. Thus, to the extent that our hypothesis will be borne out, this artifact
of lazy evaluation does not skew our analysis. Analytically, in this case, a sequence of successive change points
implies that the observed value of the metric of interest is changing with a magnitude outside of the threshold of a
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change detection, and that the change is taking place at an increasing rate; this can be interpreted as a continuous
change taking place.

6.1.3 Corroborating system activity change points with application log events: Tests for anomalous system
behavior

The next stage of the approach is to corroborate change points in resource metrics with application log events. The
algorithm by which we corroborate the two orthogonal systemviews is as follows:

Algorithm 2 Decision function for deciding if two orthogonal views of the system agree with each other;
changepoint’s are boolean flags indicating if a change point occurred in the time series of the resource metric
or application state count respectively.

1: procedure STATEMETRICNORMALDECISION(changepointmetric, changepointstate)
2: if (changepointmetric == true) && (changepointstate == true) then
3: return true

4: else if(changepointmetric == false) && (changepointstate == false) then
5: return true

6: else
7: return false

8: end if
9: end procedure

Algorithm 2 is the (simple) decision function for determining whether the application is behaving in a normal
fashion. We declare the behavior of the application to be problematic if the absence or presence of a change point
in the given system resource metric does not correspond withan absence or presence of a change point in the given
application state count respectively. It follows that whenthe application is not diagnosed as being problematic, then
the application is exhibiting normal, problem-free operation.

More formally, our approach to characterizing normal application behavior, based on our hypothesis of change
points in application state counts and resource metrics agreeing with each other if and only if the system is problem-
free, is that of classifying a point in the time series of application states as being or not being a change point given
knowledge of whether the corresponding point in the time series of resource metrics is a change point.

Then, Algorithm 2 is applied to the change point pair for every metric of interest with every application state
count of interest, for each time instance for which a diagnosis is desired. The requirement of the computation of left-
and right-means for each decision point implies that the algorithm has an intrinsic lag equal to the duration required
to collect sufficient samples for the window. Nonetheless, the algorithm can be run online, albeit with a lag, as the
space requirements for its state is constant in the order of the duration of the diagnosis run.

6.1.4 Building profiles of application behavior

Finally, training is carried out to identify application state count change points which co-occur with resource met-
ric change points under normal, problem-free operation. Then, diagnosis is carried out using the change point-
corroboration framework as described above, on pairs of application state counts and resource metrics that have
been found to consistently exhibit change points together during problem-free behavior.

6.2 Experimental Setup and Methodology

We conducted a series of experiments to quantify the behavior of Hadoop in terms of the change points of various
operating system-reported resource metrics and Hadoop application state counts. The aim of these experiments was
to identify metrics and application states of interest and significance, so as to characetrize the (problem-free) behavior
of Hadoop under various workloads. This will facilitate thedevising of strategies for maximizing the efficacy of the
BlackSheepproblem-diagnosis approach as applied to Hadoop. A total ofapproximately 30 to 40 problem-free
experiment runs of each workload type examined were run, andall traces were carefully visually inspected to ensure
that for each workload, only traces that were similar to other traces for the same workload were considered. Then,
traces from representative runs were used for our analysis.

6.2.1 Setup and data collection

We deployed a 6-node (5 slave, 1 master) Hadoop 0.12.3 cluster on six 850 MHz Pentium III nodes on the Emulab
remote testbed [20], each with 512 MB of main memory, and running Linux 2.6.20. A seventh 850 MHz Pentium
III node was used to generate workloads for the Hadoop cluster.
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Operating system-reported resource metrics were collected from theproc filesystem using thesysstat-8.0.4
system monitoring package [30]. Metrics from the followingcategories were collected using thesysstat package:
aggregate CPU utilization and process activity, aggregatedisk I/O activity, paging and virtual memory subsystem
activity, per-disk I/O activity, per-network device activity, and per-process CPU and memory utilization. These met-
rics were collected at one second intervals, and the additional overhead imposed on the system was not found to be
significant. However, further work is required to quantify the overheads of this instrumentation.

Hadoop application state counts were collected by parsing Hadoop activity logs from the Hadoop DataNodes and
TaskTrackers using the Hadoop log parser as described in Section 4; this parsing was performed using the offline
mode of the log parser to generate time series traces of application event and state counts. Parsing was generally not
time-consuming, and parsing an average log file from one nodegenerated from an active workload lasting one hour
took less than 2 seconds. Despite this, further work is againneeded to quantify the time costs of using the log parser.

6.2.2 Candidate workloads

Candidate workloads for Hadoop were picked from the exampleHadoop Map/Reduce applications as provided
with the Hadoop distribution, as well as the Nutch distributed web crawler [25] [28]. Therandomwriter and
sort example applications were picked as candidate workloads asthey are commonly suggested as benchmarks for
Hadoop clusters [26], while the Nutch web crawler was pickedas it represents a significant real-world application
commonly used with Hadoop.

The objective of the choice of candidate workloads is to empirically observe the behavioral characteristics of
a gamut of possible Hadoop behavioral profiles when running various types of application workloads, so that the
normal behavior of Hadoop as exhibited with these workloadswill generalize to arbitrary Hadoop workloads. Appli-
cation workloads can be classified as being combinations of compute-intensive, disk-read and disk-write intensive,
and network-intensive, while real application workloads will generally be composed of some combination of these
characteristics.

Therandomwriter example application writes a given configurable number of structured records comprised
of random bytes to disk on each Hadoop node, and represents a disk-write intensive workload with minimal disk-
reads and minimal computation. Thesort example application sorts a given file of structured recordsby key,
and represents a balanced mixed workload with disk-reads, disk-writes, and network transactions to merge sorted
records. The Nutch web crawler represents a real-world workload, and also represents a network-intensive workload
(relative to disk and compute activity). In our experiments, therandomwriterwas typically configured to write 2
GB of data to each node, thesortwas typically set up to sort 2 GB of data per node (or a 10 GB dataset), and Nutch
was used to crawl a locally mirrored static website with approximately 2000 pages, served from an independent node
local to the experiment cluster but not running any Hadoop instance. Hence, we believe that our choice of workloads
feasibly provides adequate coverage of the possible Hadoopworkloads.

6.2.3 Change points applied: Characterizing normal application behavior

Next, the time series’ of each of the resource metrics and application state counts were assembled into a single
trace for each run of an experiment. Visualization tools were then applied to each trace to generate plots of the
time series’ for resource metrics and application state counts, and the change point algorithm was applied to the
time series’ for resource metrics and application state counts. Finally, the behaviors of pairs of the change points of
resource metrics and application state counts was manuallyexamined to identify consistent patterns during normal
application behavior that can be used as behavioral indicators of normal application behavior. These signatures of
normal application behavior can then be applied to problem diagnosis by identifying behaviors that deviate from this
prior-knowledge of problem-free behavior.

The generation of change points for application state counts and resource metrics is as follows. First, values
for the tunable parameters of Algorithm 1 were chosen: thesewerewindow, the size of the observation window
measured in the number of samples to the left and right of the point under consideration in the time series, and
thresh, the proportion of left meanµL, that the difference of means,∆µ, must exceed for a change point to be
flagged. The tuning parameters were chosen to meet two objectives: (i) to generate application state count change
points that corresponded to high-level expectations basedon oura priori understanding of the behavior of Hadoop
(for instance, the number of map tasks changing in the TaskTracker should generate a change point in our algorithm),
and (ii) to generate change points in as many resource metrics as possible that lined up with the application state
change points. This uses the implicit assumption that the hypothesis of theBlackSheepapproach, that resource
metrics and application state counts should behave similarly, is correct—doing so is theoretically sound from a
machine learning point of view, as the assumption is akin to aBayesian assumption of priors, with the exception that
the parameters are being tuned by hand for (at least this initial pass of) this work.
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Next, change points were generated for each application state count and each resource metric, based on tuning
parameter values that were chosen separately for application state counts, and for resource metrics. The intermediate
results and eventual chosen parameter values of the tuning process are reported in Section 6.3.1.

Finally, the corroboration between application state counts and resource metrics was verified using the algorithm
presented next, with the addition that the logarithms (x′ = log(x + 1)) of all measured metrics was used to perform
analysis on the change points rather than the absolute values of observed values.

6.2.4 Evaluation of corroboration between application state counts and resource metrics

Next, we describe the methodology and algorithm for evaluating the paired behavior of change points in application
state counts and resource metrics. Algorithm 2 is the (simple) decision function for determining if the presence (or
absence) of a change point in the resource metric correctly predicted a presence (or absence) of a change point in the
application state, in which case a true positive or true negative was recorded respectively. Evaluation scores of the
accuracy of predictions were assigned as follows: non-negative values were assigned to points in time for which true
positives or true negatives of application state change points were predicted by resource metric change points, and
negative values were assigned to points in time for which false positives or negatives were observed. The rationale
for this choice of scores is that the evaluation score is heavily biased against misdiagnoses, so that misdiagnosing
a change point (false positives/negatives) will impact thescore negatively much more than correctly diagnosing a
change point will positively impact it.

Algorithm 3 Decision function for deciding if two orthogonal views of the system agree with each other
1: procedure STATEMETRICCORROBORATEEVAL (changepointmetric, changepointstate) ⊲ changepoint’s are

boolean flags indicating if a change point occurred in the time series of the resource metric or application state
count respectively

2: if (changepointmetric == true) && (changepointstate == true) then ⊲ True positive
3: return 1
4: else if(changepointmetric == false) && (changepointstate == false) then ⊲ True negative
5: return 0
6: else if(changepointmetric == true) && (changepointstate == false) then ⊲ False positive
7: return −2
8: else if(changepointmetric == false) && (changepointstate == true) then ⊲ False negative
9: return −1

10: end if
11: end procedure

The notion of true/false positives/negatives is defined relative to resource metric change points being used to
predict application state change points. Change points in the application state are arbitrarily chosen, without loss of
generality, to be the unobserved ground truth of the application’s behavior, and the change points in resource metrics
are then used to classify or predict if there is a change pointin the application state. The observed application
state change points are then used to test if the prediction made by the (absence or presence of a) change point in
the resource metric of the application state change point iscorrect. It should be noted that due to our definition
of normal behavior as having both application state and resource metric change points agree with each other, this
choice of ground truth is without loss of generality and can be reversed.

6.3 Results and Analysis

Our analysis provides initial evidence supporting our hypothesis that application state counts and resource metrics
will agree with each other under problem-free, normal execution. Our results suggest further directions for develop-
ing this hypothesis into a full-fledged approach for problemdiagnosis.

In general, some application state count-resource metric pairs have exhibited visually corroborating behavior,
in which change points in the count of the particular application state occurred only together with change points in
the particular resource metric, after allowing for minor edge effects due to possible lags in either of the variables of
interest.

In addition, there is evidence that workload types, as defined in Section 6.2.2, can be identified using change point
corroboration. Particular application state count-resource metric pairs exhibited corroborating behavior only under
particular workloads, and not others, suggesting that the absence or presence of corroboration between particular
application state count-resource metric pairs can serve asidentifying signatures for workload types.
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6.3.1 Parameter tuning

We review the effects of different values for the two tunableparameters for Algorithm 1, the window size measured
in number of samples,window, and the thresholdthresh as a proportion of the left mean,µL, on the change
points generated for each of application state counts and resource metrics. We considered the change points in the
aggregate on state counts for each of the DataNode and TaskTracker (i.e. a change point is said to be observed in the
DataNode (or TaskTracker) at timet if a change point is observed in any of the application statesfor the DataNode (or
TaskTracker) at timet, or more formally,∀x ∈ {statesdatanode/tasktracker}, changepointdatanode/tasktracker =
max{x}) for tuning purposes. In order to maximize the amenability of the change points generated for problem
diagnosis, we aimed to generate change points such that the separation between groups of consecutive change points
was maximized. This was to maximize the degree to which we could visually identify corroborating change points
between application state counts and resource metrics.

First, we held the value ofthresh constant, atthreshstate = 20.0 and threshresource = 1.0, and varied
window for aggregate application state counts for both aggregatedDataNode state counts and TaskTracker state
counts.

We found that the optimal values ofwindow that resulted in the greatest separation between groups of change
points differed for DataNode state counts and resource metrics. Consider Figure 7 and Figure 8: the change points
for the resource metric are relatively well-spaced in Figure 7, where thewindow = 5, while the change points for
the DataNode state counts are relatively poorly spaced and do not appear to mark out distinguishable logical phases
of execution; on the other hand, in Figure 8, withwindow = 45, the change points for the resource metric are less
well-spaced and less coherent than in Figure 7, but the change points for the application state counts in Figure 8
have significantly greater separation between groups of consecutive change points. Hence, we propose as a heuristic
that the value ofwindow for change point generation for resource metrics be approximately one order of magnitude
smaller than that for DataNode state counts, withwindowresourcemetric ≈ 5, andwindowapplicationstatecounts ≈
45.

However, we found that the optimal value ofwindow for TaskTracker state counts and resource metrics that
resulted in the greatest separation between groups of change points was similar—for both TaskTracker state counts
and resource metrics, smaller values ofwindow gave rise to greater separation between groups of change points.
We propose, as a heuristic, that a value ofwindow = 5 be used for computing change points in TaskTracker state
counts (while the heuristic for resource metrics from previously holds). This is as shown by Figures 9 and 10, where
the change points forwindow = 5 are markedly more separated than for the change points forwindow = 45.

The intuition behind the difference in the optimal window sizes for DataNode state counts and for TaskTracker
state counts and resource metrics is that DataNode state counts are experiencing changes in a different time-scale
than TaskTracker state counts and resource metrics. In the steady state during periods of workload, the DataNode
serviced many requests relative to the TaskTracker as each map or reduce task handled by the TaskTracker involved
multiple data blocks. Thus, DataNode states tended to exhibit some intrinsic steady-state fluctuation that was normal
and expected of its problem-free behavior, while TaskTracker states were relatively longer lived as compared to
DataNode states, and resource metrics experienced less fluctuation/fewer change points than DataNode state counts
for the same tuning parameters. Thus, different tuning parameters can be used for the DataNode state counts, as the
changes in the DataNode state counts can be argued to be part of the steady state of its behavior.

Next, we studied the effect of varyingthresh, holdingwindowstate = windowresource = 20.0 constant.
We found that higher threshold values resulted in excessively many change points being omitted from the time

series of resource metrics, resulting in a sparse series of change points generated that fails to correspond with the
series of change points generated from application state counts. For a value ofthresh = 4.0, as shown in the
top panel of Figure 11, the series of change points generatedfrom the time series of the resource metric is sparse
relative to the series of change points from the applicationstate counts in the bottom panel, while for a value of
thresh = 1.0, as shown in the top panel of Figure 12, the series of change points is less sparse than in Figure 11,
but the change points remain well-spaced with significant and clear separation between groups of successive change
points. We believe that the value ofthresh for resource metrics can be further lowered, but we have nonetheless
demonstrated that lower values ofthresh are more effective for use with generating change points forresource
metrics.

In addition, we found that lower threshold values resulted in excessively many change points being generated
for DataNode state counts, reducing the number of consecutive change points, resulting in less smooth state count
change point plots, while lower threshold values resulted in excessively few change points being generated for Task-
Tracker state counts, increasing the number of consecutivechange points, resulting in smoother state count change
point plots. This is as demonstrated from the bottom panel plots of Figures 11, 12, 13 and 14 respectively. The change
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Figure 7: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change points
of application state counts for DataNode in bottom panel, with x-axis measured in seconds for both plots;window = 5.

Figure 8: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change points
of application state counts for DataNode in bottom panel, with x-axis measured in seconds for both plots;window = 45.
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Figure 9: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots;window = 5.

Figure 10:Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots;window = 45.
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point plots are smoother and the successive change points have greater inter-change point separation for DataNode
state counts in Figure 12, with the largerthreshstate = 4.0 than in Figure 11, with the smallerthreshstate = 1.0,
and so are more amenable to statistical analysis in general.The change point plots for TaskTracker state counts, on
the other hand, are smoother in Figure 14, withthreshstate = 1.0, than in Figure 13, withthreshstate = 4.0.

The general intuition for the difference between the optimal value of thresh in these cases is that DataNode
states, such as ReadBlock and WriteBlock, are short-lived (for the configured block sizes) relative to TaskTracker
states, such as Maps and Reduces. Hence, with shorter-livedstates, the DataNode has greater steady-state fluctua-
tions than the TaskTracker, so that for high-level meaning to be extracted from the DataNode state counts, greater
threshold values must be used to filter out fluctuations that are intrinsic to its steady-state behavior to characterize
bulk behavior, which is more useful for problem diagnosis ingeneral. Also, the intuition for the optimalthresh

value for resource metrics is that the heuristic that is guiding our choice in this case is our prior assumption of how
change points in resource metrics should corroborate with the change points in application state counts.

Thus, we have demonstrated a few optimal tuning parameter values for Algorithm 1, and have in so doing
demonstrated that our hypothesis has thus far been supported by the successful tuning of the parameters. The
general intuition obtained from the tuning process suggests that the parameters used by the algorithm are sensitive
to the configuration of the application, and has illuminatedsome aspects of the behavior of the application.

This is a double-edged sword, as it demonstrates that analyzing the change points of application states and re-
source metrics together can aid in understanding the application, but also that tuning the algorithm can be a challenge
for users without significant prerequisite knowledge aboutthe application to be profiled/to have problem diagnosis
carried out. However, this is also an opportunity, as Bayesian hyper-parameter learning can be applied to the problem
of learning the optimal values of the tuning parameters, andthe learning process itself can provide positive feedback
to the diagnostic process, as will be described in Section 8.3.2.

6.3.2 Distinguishing workloads

From the trace data collected, we found that particular pairs of the counts of particular application states and the
metrics of particular resources displayed consistent behavior within each workload, but varied across workloads.
One such case in point is the change point series of the countsof the ReduceTask state for the TaskTracker, and the
change point series of the user-space percentage CPU utilization (user%) resource metric.

From traces shown in Figures 15 and 16 for therandomwriter andsort workloads respectively, it can be
seen that there is a strong co-occurrence of the change points of the counts of the ReduceTask state and the change
points of theuser%metric, such that the presence (and absence) of a change point in the state count or metric serves
as a good predictor of the presence (and absence) of the metric or state count respectively.

On the other hand, from the trace shown in Figure 17, for the Nutch web crawler workload, it can be seen that
the co-occurrence of the change points of the counts of the ReduceTask state and the change points of theuser%
metric is much weaker than in the previous two workloads, although all three traces were drawn from problem-free
runs. This suggests that the patterns of the strength of co-occurrence of change points in application state counts and
metrics can be used as a signature for workloads to infer the type of workload being executed on a given node.

An explanation for the difference in change point behavior between therandomwriter andsort workloads
and the Nutch web crawler workload is that the former two workloads contain periods of disk-I/O-bound activity,
when large amounts of blocks are being written to disk, whilethe web crawler workload does not have such a phase
of execution. This suggests that a strong co-occurrence of change points for the ReduceTask state and theuser%
metric can be an indicator for disk-I/O-bound activity.

Again, the higher level implication of this observation is that patterns can be found in co-occurrences of behaviors
in application state counts and resource metrics to learn signatures of workload types for anomaly detection.

6.3.3 Change point corroboration with resource metrics

Next, we present, in Figure 18 a visualization of the operation of our change point corroboration algorithm, Algo-
rithm 3, using a single resource metric and a single application state count, when applied to every point in the time
series of change points generated from a resource metric andan application state count. The values of the evaluation
score defined in Section 6.2.4 are plotted against time alongside the time series of change points for the resource
metric and counts of the chosen application state. This illustrates how we evaluate the efficacy of the corroboration
of check points for a single experimental run.

This example trace highlights one source of false positivesand negatives in the corroboration of change points-
—edge effects, due to minor lags in the response of application state counts to resource metrics, or vice versa. Even
in the case that application state count change points appear to visually line up with resource metric change points,
false positives and negatives still occur in the immediate vicinity of the change points in the time series, resulting in
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Figure 11: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change
points of application state counts for DataNode in bottom panel, with x-axis measured in seconds for both plots;threshmetric =

4.0, threshstate = 4.0.

Figure 12: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change
points of application state counts for DataNode in bottom panel, with x-axis measured in seconds for both plots;threshmetric =

1.0, threshstate = 1.0.
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Figure 13:Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots;threshmetric =

4.0, threshstate = 4.0.

Figure 14:Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots;threshmetric =

1.0, threshstate = 1.0.
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Figure 15: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots; Trace of a
single run of arandomwriter workload.

Figure 16: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots; Trace of a
single run of asort workload.
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false positives and negatives that are spurious and not truly indicative of prediction error. This issue is addressed,
and a solution is proposed, in Section 8.3.1. Apart from edgeeffects, it appears that false positives and negatives also
result from tuning parameter values that result in different high-level sensitivities of the change points produced, with
change points being generated for changes that have different orders, that parameter tuning will be highly critical to
any success of this approach.

6.3.4 Change point corroboration: Evaluation

Finally, we present aggregate statistics of the evaluationscores for the corroboration between the change points
of every pair of application state and resource metrics for asingle representative node in a single representative
experimental run for each workload type, as an illustrationof the general performance of our corroboration technique
in its current form. The histograms presents the frequency of mean evaluation scores for application state-resource
metric pairs.

From Figures 19, 20, and 21, it can be seen that the evaluationscores for all application state-resource metric
pairs are negative, indicating that the false positive/negative rate for the change point corroboration is currently not
sufficiently effective for the corroboration of change points to be used as a problem diagnosis algorithm.

Nonetheless, the modal mean evaluation score is approximately < −0.1, with a strong distribution of mean
evaluation scores around this range. This implies that there are slightly more than two false negatives or one false
positive on average for every true positive (see Section 6.2.4 for a detailed definition of true/false positives/negatives
in this context). Given that the mean evaluation score is almost0 and only slightly negative, this suggests that there
is potential for the algorithm to be refined to produce betterclassification results than a random classifier.

Finally, the histograms of mean evaluation scores for all three workloads are similar in shape, suggesting that
our approach is possibly agnostic to different workload types.

7 Related Work

7.1 Problem-Diagnosis Techniques

There are many existing techniques to perform problem diagnosis in distributed systems. TheRAMSapproach
proposed here differs from those of Cohen et al [11] and Pinpoint [5] in a few ways. First, we do not employ
any learning or training prior to problem diagnosis. Our approach is based on a hypothesizeda priori model of
problem-free system behavior, and we use statistical methods to establish whether this hypothesized behavior is
being followed. Our technique has no learning overhead but is constrained by the degree to which our hypothesized
model of system behavior is applicable to other types of systems.

Second, both Pinpoint and Cohen’s ”ensembles” utilize a system-wide, global approach that examines metrics on
every node in the distributed system. This may cause scalability issues in terms of computation and communication
overhead in large systems (although [11] presents a scalable approach). Both theRAMSandBlackSheepapproaches
addresses scalability by making the rather strong assumption that information local to a node alone is sufficient
for problem diagnosis, thereby saving the network bandwidth needed to transmit metrics to a central location for
analysis, and limiting the analysis to the size of the performance-data set of one node.

Our approach is also a black-box technique (although we do make use of white-box information, obtained via
black-box techniques, in the form of application logs), andRAMSaims for problem diagnosis without using any
application-level knowledge, in constrast with Pip’s white-box approach [16]. Finally, the ”odd-man-out” peer-
comparison heuristic [15] proposed by Pertet et al might apply to the target distributed system used in our paper, as
the slave nodes in a Map/Reduce cluster could conceivably berunning very similar workloads and therefore, might
lend themselves to the peer comparison of performance data for problem diagnosis.

7.2 Vertical Profiling

The idea of correlating system behavior across multiple layers of a system is not new. Hauswirth et al’s ”vertical pro-
filing” [9] aims to understand the behavior of object-oriented applications by correlating metrics collected at various
abstraction levels in the system. Vertical profiling was used to diagnose performance problems in applications in a
debugging context at development time, requiring access tosource code while our approach diagnoses performance
problems in production systems without using application knowledge.

8 Future Work

8.1 Sliding windows forRAMS

Currently, the use of an ordinary least squares linear regression to compute a test statistic as a criteria for diagnosis
requires the use of large windows of samples (at least 30 to 50samples) for the linear regression to produce statisti-
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cally sound (unbiased estimators with reasonably good fits)estimates of the various parameters. Hence, the next area
of improvement forRAMSis to use more direct measures of correlation other than autocorrelation between lagged
residuals in an ordinary least squares linear regression. This will reduce the computational cost of computing the test
statistic needed for determining if a node is a problem node.Also, the use of a sliding window, in conjunction with
more direct measures of correlation, will hopefully reducethe number of samples needed for a statistically sound
test statistic to be computed.

8.2 Experimental Setup forBlackSheep

The two main areas of improvement for the experimental procedure forBlackSheepare in (i) the controlled measur-
ing of the overheads of instrumentation, as measured in system resource usage and impact on system performance,
and (ii) the varying of workloads for Hadoop to increase the generality of the experiments ran, to create work-
loads with a variable mix of modes of operation (disk-, compute-, memory-, or network-intensive, for instance),
and to identify any characteristics of Hadoop that exhibit astable relationship with workloads that vary along the
dimensions we have defined.

8.3 Change Point Corroboration

Various improvements and enhancements can be made to the overall change point corroboration algorithm to im-
prove its accuracy in correctly predicting application state behavior (in terms of change points) using the behavior
of resource metrics, to create a viable problem diagnosis approach.

8.3.1 Accounting for edge-effects in change point corroboration

To account for edge-effects and possible lags in application behavior, we intend to implement a low-pass Gaussian
filter over a tunable window size of change points observed before and after the given instance in time of observation-
–for a given change point detected in the system resource metric at time t, if a change point is observed in the
application state count in a time within the given windowt′ ∈ [t − w, t + w], then, the algorithm diagnoses the
application as being problem-free with a probability that has a Gaussian fall-off, so that the further fromt that the
application state count change point is observed, the lowerthe probability that the application is truly problem free.
Conversely, if a change point is not observed in the system resource metric at timet, but a change point is observed in
the application state count within the given window att′ ∈ [t−w, t+w], then the algorithm diagnoses the application
as having a problem with probability that has a Gaussian fall-off, so that the greater the difference|t− t′|, the lower
the probability that the application has a problem.

8.3.2 Dealing with magic numbers: Bayesian hyper-parameter learning

TheBlackSheepapproach currently uses two tunable parameters: a window size and a threshold. However, initial
results have proved that optimal values for these parameters can be highly sensitive to the particular variables in
question that they are applied to, specifically, resource metrics and application state counts. Hence, an approach to
these magic numbers, or optimal values for tunable parameters, would be to introduce an additional layer of Bayesian
hyper-parameter learning to learn values for these tunableparameters that will optimize the classification problem
of change point identification in application states.

8.3.3 Learning workload identities

Finally, an extension of theBlackSheepchange point corroboration technique would be to use the same change point
corroboration ideas to attempt to learn identities of workloads, and to find out if the parameters that identify these
workloads can be composed in an intelligible manner to create signatures of arbitrary workloads as defined using
change point corroborations between application state counts and resource metrics.

8.4 Application logs

Finally, yet another extension to the work presented here with the Hadoop log parser would be to identify charac-
teristics of applications and their logs in general that would render them amenable to similar treatment of extracting
events, and more importantly, inferring states of executions of the applications.

9 Conclusion
In conclusion, we have presented: (i) what we believe to be a novel use of application logs to extract application
events, and to use these events to infer high-level, semantically-rich states of execution of the application; (ii)RAMS,
a new, scalable black-box approach to problem diagnosis using extremely low-level metrics, hardware performance
counters, in conjunction with ana priori statistical model of the behavior of nodes in a distributed system, to
perform node-local problem determination in a distributedsystem, and (iii)BlackSheep, a black-box technique for
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characterizing application software behavior by synthesizing application behavior, as reported through application
logs using our newly presented log parsing technique and library, together with collections of operating system-
reported resource metrics, with the eventual objective of performing problem diagnosis by detecting anomalies from
normal application behavior. Not only have we described theprinciples behind the algorithm and the architecture of
our log parser for inferring state, we have also presented rudimentary results demonstrating the efficacy ofRAMSat
problem determination. Lastly, we have shown an approach tosynthesizing information from application logs with
operating system metrics.
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APPENDIX

A Hadoop Application States
The list of DataNode and TaskTracker events and states that our Hadoop log parser extracts from the DataNode and
TaskTracker logs respectively are as listed. TheIdle state is a special state which is never reported, but is included
for completeness’ sake. The TaskTracker and DataNode are each implied to be in theIdle state by an absence of
counts of all other states.

TheError state can either be an instant or persistent state–instantError states are ones reported on encounter-
ing error messages in the log, while persistentError states are reported when any of the other persistent states are
reported to have been terminated due to an error.

A.1 TaskTracker Events and States

States / Events StartStartEvent? StateStopEvent? InstantStateEvent?
Idle N N N
Error Y Y Y

ReduceTask Y Y N
ReduceCopyTask Y Y N

ReduceCopyTaskLocal Y Y N
ReduceCopyTaskRemote Y Y N

ReduceSortTask N N Y
ReduceMergeCopy Y Y N
ReduceReduceTask N N Y

MapTask Y Y N
CleanUp N N Y

A.2 DataNode Events and States

States / Events StartStartEvent? StateStopEvent? InstantStateEvent?
Idle N N N

DeleteBlock N N Y
ReadBlockRemote Y Y N
WriteBlockLocal Y Y N

WriteBlockRemote Y Y N
WriteBlockLocalReplicated Y Y N

WriteBlockRemoteReplicated Y Y N
Error Y Y Y
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Figure 17: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in bottom panel, with x-axis measured in seconds for both plots; Trace of a
single run of a Nutch workload.
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Figure 18: Plot of change points (binary indicators) of resource metric (CPU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in the middle panel, and the evaluation score of the change point in the resource
metric for predicting a change point in the application state count, with x-axis measured in seconds for all three plots;Trace of a
single run of arandomwriter workload.
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Figure 19: Plot of histogram of evaluation score values for each possible (application state)-(resource metric) change point series
pair. Trace of a single run of arandomwriter workload on a single representative node.

Figure 20: Plot of histogram of evaluation score values for each possible (application state)-(resource metric) change point series
pair. Trace of a single run of asort workload.
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Figure 21: Plot of histogram of evaluation score values for each possible (application state)-(resource metric) change point series
pair. Trace of a single run of aNutch workload.

36



Figure 22: Plot of time series of counts of application events as reported by the Hadoop DataNode, as parsed by our Hadoop log
parser.
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Figure 23: Plot of time series of counts of application states as reported by the Hadoop DataNode, as parsed by our Hadoop log
parser.
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Figure 24: Plot of time series of counts of application events as reported by the Hadoop TaskTracker, as parsed by our Hadoop
log parser.
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Figure 25: Plot of time series of counts of application states as reported by the Hadoop TaskTracker, as parsed by our Hadoop
log parser.
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