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Abstract

A significant challenge in developing automated probleagdosis tools for distributed systems is the ability of
these tools to differentiate between changes in systenvimhdue to workload changes from those due to faults.
To address this challenge, current, typically white-bexhniques extract semantically-rich knowledge about the
target application through fairly invasive, high-overtiéastrumentation. We propose and explore two scalable,
low-overhead, non-invasive techniques to infer semaiaticait target distributed systems, in a black-box manner,
to facilitate problem diagnosis. RAMS applies statistianhlysis on hardware performance counters to predict
whether a given node in a distributed system is faulty, wBickSheep corroborates multiple system metrics with
application-level logs to determine whether a given nodatiy. In addition, we have developed and demonstrated
a novel technique to extract, from existing applicatioveldogs, semantically-rich behavior that is immediately
amenable to analysis and synthesis with other numericatkdbox metrics. We have evaluated the efficacy of
RAMS and BlackSheep in diagnosing real-world problems é@Hlhdoop distributed parallel programming system.
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1 Introduction

Finding the location and root cause of a failure in a distelusystem is an inherently difficult problem. Execution
paths span multiple machines and can be arbitrarily complexa result, a fault may manifest itself as an error many
execution modules down the execution path, before the eraoifests itself as a failure, making the fault difficult to
trace. Fault localization—tracing a system failure to tie sf its initial manifestation as an error—requires eithe

a characterization of externally observable correct systates, so that system states outside of this set are marked
as erroneous, or a direct characterization of erroneotssst®n the other hand, root-cause analysis—tracing a
system error to its fault—requires detecting when softwaebavior deviates from the programmers’ intentions.
This requires knowledge of the semantics of the programghwisi not present in the program.

We propose two new techniques for identifying the locatiod @ferring the root-cause of a failure in a dis-
tributed system. These techniques attempt to infer seoadlytirich white-box software behavior using black-box
techniques. These techniques are designed to work in amegstalable fashion that is amenable to use on produc-
tion systems. They aim to address problem diagnosis onhiitgd systems with long-lived jobs, few user-initiated
requests, and complex execution paths. While we do not inateddimplement an online solution in this work, our
approach has been carefully designed to ensure that thethige used are amenable to being run online with rea-
sonable computation cost. We achieve this by usipgiori knowledge of both distributed systems in general, and
the deployed software, to build two classes of inferenceeatgdrhese models allow for white-box information of
varying granularity about the phase of execution of sofénarbe inferred from black-box information. In addition,
our techniques require only intra-node information withiigiven node, so that these techniques are immediately
scalable to distributed systems containing arbitrarilywnaodes.

We designed and investigated the efficacy of two black-bokrigues. RAMS(Regression Autocorrelation
for detecting Malfunctioning nodeS) attempts to performltfdocalization for Hadoop [25] by inferring coarse-
grained white-box information about application behayiar. whether the target system is malfunctioning) from
black-box hardware performance countdickSheepses black-box techniques to corroborate black-box operat
ing system-reported metrics and white-box applicatiorelléogs, for problem diagnosis in a candidate distributed
system, Hadoop, with fine-grained white-box root-causdyaisga

We demonstrate the efficacy of our root-cause diagnosisitgebd on Hadoop, the open-source implementation
of the Map/Reduce distributed parallel programming ruetenvironment and distributed filesystem [25], and fur-
ther demonstrate the applicability of our technique wheireent problem diagnosis techniques are not immediately
applicable, on Hadoop.

2 Background

There are two broad classes of techniques for analyzingmygsand software. Black-box techniques treat the soft-
ware system as an enclosed, unobservable entity that daenoadified. We classify information sources that do not
reveal the execution path inside software components ak-blax, while we classify techniques that neither require
source code nor machine code modification as black-box igels. White-box information sources provide views
into the internals and execution path of the software systWenclassify information sources that provide knowledge
of the original source code or execution path structure efsthftware, such as knowledge of the order of function
calls, as white-box, while we classify techniques that negany form of source code modification as white-box
techniques. While white-box information is a much wealtsigurce of information than black-box sources, there is
typically an inherent trade-off between the richness afiinfation that can be extracted from software, and the cost
of gathering that information in terms of runtime overheand ease of deployment. Black-box techniques are easy
to use at existing software installations and typicallyoime setting up external software monitors that record gen-
eral system state, but provide limited information. Whitex techniques may involve significant initial programmer
effort to insert source code such as assertions (which dyeasmgood as the correctness of the assertions, creating a
dual problem), and providing a fine granularity of infornoatiabout control flow may have involve high overheads
as large numbers of probe-and-record instructions will dsedied.

It would appear that white-box techniques are necessamate ta software error to the fault that is its root-
cause. Faults occur when the software behavior deviatesthe intentions of its programmers, and programmer
intentions are reflected in the execution path at the graityitef control flow through functions. Current techniques
have danced this tightrope of the inherent tension betwestrumentation overheads and the amount of information
that can be extracted, to try to find a good leverage on thelssh@lossible information source from which they can
extract maximum diagnostic value .

Major black-box techniques have included Pinpoint, whitdtiumented the J2EE middleware platform to trace
message flows between software components, to associsitfaargroups of components with erroneous trans-



actions, and to find anomalous control flow paths [5]. Cohenadts work has focused on using clustering on

black-box system metrics, and building informative sunissaof metrics to reduce the amount of information that
must be exchanged among the nodes of a distributed systernmitnize bandwidth use [6], but can only detect the

location but not the root-cause of anomalous behavior. NMagprrelated resource usage information from operat-
ing system-provided resource accounting facilities wititpait from application event logs to build causal paths of
applications on a single node using clustering (that isresibde to multiple nodes, albeit at possibly high cost when
tracing execution flows across large distributed systef]s) [

Major white-box techniques have included Pip, which reltadprogrammer-written expectations of correct
behavior, and recorded alarms of anomalous behavior réisedwithin the software itself [16], but Pip is only
as good as the programmer-written expectations it useagdmivorks on stand-alone (non-distributed) software to
uncover the faulty source code behavior or system enviromfeature which caused a crash by using a re-execution
framework combined with a trial-and-error automation @& thtuitive human troubleshooting process [18], but this
method is an after-the-fact technique that relies on thiesybeing down to allow such root-cause discovery (rather
than online diagnosis).

Current techniques which allow for root-cause analysishsas Pip and Triage, require too much programmer
input, which precludes the discovery of bugs that programrage unaware of. Both Pip and Triage do not allow
for runtime prognostics to be made for detecting errors fieefioey have resulted in failures. Both Pip and Triage
also require access to program source code, which may nayalbe feasible, especially at commercial production
sites. Even black-box techniques such as Pinpoint are rassarily suited to production sites, because Pinpoint
requires a modified middleware, which production sites n@yatiow due to various concerns such as security, while
techniques such as Cohen et al.'s work do not allow for rapise analysis although it is amenable to deployment at
production sites.

The goal of this work is to develop techniques for problengdi@sis on distributed software systems deployed in
production environments. Production environments tyyiceploy commercial or otherwise third-party software
packages for which source code is often not available. Rtgmuenvironments also typically have strict require-
ments on availability and quality of service—productiostgyns strive to achieve maximum throughput and mini-
mum latencies on servicing requests at a minimum cost. Rtmsuenvironments will generally prohibit modifying
even program binaries for security and privacy concerngicelgintrusive and high-overhead white-box techniques
are not amenable to our goal. Instead, we infer and extraitevlox information using black-box techniques, to
perform root-cause analysis in addition to fault localizat

2.1 Scalable Problem Diagnosis

The difficulty of finding the location and root cause of fadsrin distributed systems is further complicated by the
fact that execution can take place on arbitrarily many systdeading to an explosion in the volume of trace data
gathered. Again, there is a trade-off between gleaning iméoemation by combining trace data across systems to
obtain a system-wide view, and incurring higher bandwidttl processing costs of transmitting large amounts of
data across a network and processing it. This work studiesgtreme of this trade-off, and uses only node-local
information for problem diagnosis in a distributed syst&ffe restrict ourselves to using only information available

on a single node for diagnosis on the node, to push the boiasdsrthe efficacy of using only local information.

2.2 Problem Diagnosis using Multiple Data Sources

Our key to pushing the boundaries of using only node-lodafimation for problem diagnosis is in the synthesizing
of multiple data sources on the same node in a meaningful endamgain additional information for problem diag-
nosis. To this end, we have examined various local inforonagources available at various levels of each node , such
as hardware performance counters, operating systemtegjqoetrics such as processor, memory, disk and network
bandwidth utilization, and application-reported infotioa such as logs. We make initial efforts at synthesizing th
information for further analysis. This meaningful use offnpaata sources (as opposed to mathematically collapsing
all the data for analysis using machine learning algoritf6ijs distinguishes our approach from current work which
mostly use few (one or two) information sources [16] [5]. Bggerving the meaning in the information sources,
we are able to assist human operators by highlighting plessibt-causes of the failure, in addition to localizing the
fault.

2.3 Application Logs as a White-box Data Source

In addition, this work presents what is (to the best of théaris knowledge) a novel use of application activity logs,
using application activity logs from the Hadoop distriliifgarallel programming platform as a case study. Since
application-levellog entries are programmer-reportateshents of application behavior, they can be seen as assourc



of white-box information that provdes semantically-riaktails about the activity of the application. Most current
work on the use of application logs focuses on text-minindp &ecess logs to analyze traffic patterns [21], and
on text-mining error and access logs to discover pertinemiufes [17] [12]. However, the data mined from these
logs using text-mining techniques is typically in an unstaed, multinomial (but not ordinal) form that cannot
be immediately combined with operating system-reportettioseand performance counters, which are typically
numerical, ordinal values, for analysis. The closest raab our approach of interpreting event logs as a time-
series of ordinal values is [10], although the author exachiarror logs rather than activity logs, and examined
logs from a hardware source. The distinguishing featuresipfpproach to application-level logs, as demonstrated
through application activity logs from Hadoop, are: (i) oige of simple parsing instead of text-mining, (ii) infegin
high-level white-box states of application execution, diiijl generating structured data with a fixed number of
descriptive numerical variables, each with ordinal val{eesints of states), and that (iv) the structured, ordintd da
we generate is immediately amenable to a larger range ofgia@nd machine learning algorithms.

We have built an online parser library for the applicatiotivéty logs of the various components of the Hadoop
platform that reports (i) significant white-box applicatievents in the lifecycle of Hadoop, and (ii) the instantarseeo
workload/behavior state of Hadoop. The ability of our pagsalgorithm to extract semantically-rich information
about application behavior useful for problem diagnosis @ao provide insight into how application logging can
be designed to aid problem diagnosis of the application.

2.4 Problem Diagnosis for Hadoop

Distributed systems, such as Hadoop, and other Map/Regpeedistributed parallel processing systems, are de-
signed for batch processing of large datasets [25] [7], aathat amenable to problem diagnosis using most existing
techniques.

These distributed systems see much fewer user-initiatpaests, so that there are much fewer runs on which
techniques such as Cohen’s work, Magpie, and Pinpoint cdarpeclustering for learning the correct behavior of
the system. Cohen et al.'s work, Magpie, Pinpoint, and Hipsdume the availability of large numbers of short-
lived user-initiated requests, so that each of these réguwes be used as a sample for clustering to determine
which requests are anomalous. This model is well-suitethéovast majority of traditional multi-tier web-based
applications, with common tiers being a web-server frard;ean application server tier, and a database back-end,
but not to Hadoop.

Also, Hadoop has uninteresting execution paths througtoitsponents, as it implements a node-based process-
ing model in which every node performs the same computatagher than a path-based processing model in which
each node along the processing path performs specialined$sing. Thus, there is only one type of execution com-
ponent (the TaskTracker), such that path-based technpedsas Pinpoint’s Probabilistic Context-Free Grammars
and Pip will have limited leverage from analyzing paths ad@xtion flows for problem diagnosis.

Hence another key objective of our work is to use node-lquath-agnostic techniques for problem diagnosis
on Map/Reduce-type distributed parallel processing syster which current problem diagnosis techniques are not
effective.

2.5 Hadoop failure scenarios

We studied 9 months of data (October 2006 to July 2007) froerbthlg database [23] of Hadoop, an open-source
implementation of the MapReduce distributed parallel ppogming model, which motivated the characteristics
of our target system, to identify common failure manifastag of faults. We found that the majority of faults
manifested as process hangs and resource exhaustionst Z3ubugs surveyed from the Hadoop bug database, 11
resulted in process hangs in which no forward progress wakenaresulted in excessive CPU usage that slowed
nodes down, 2 resulted in out of memory errors, while 7 reslil application-level Java exceptions being thrown.
Hence, we focused our fault-injection and problem-diagneorts on detecting process hangs and memory leaks
(in which objects that were allocated but which the systeitedato dereference failed to be garbage collected,
leading to out of memory errors).

3 Approach

3.1 Target System

Hadoop, an open-source implementation of Google's MapiBednfrastructure, handles a workload of long-
running jobs that aim to process large datasets. Hadoopssemslave architecture has a fe@(() in the num-

ber of slave nodes) master nodes coordinating many slavesnetlich all have the same functionality. Master
nodes provide two types of functionality in two separatendas: the NameNode serves as the directory service
for the Hadoop Distributed Filesystem (HDFS, a block-regtied filesystem that implements the Google Filesystem



(GFS) [8]), providing the mapping from named files to the sawn which the individual fixed-size blocks are stored,
while the JobTracker serves as the coordinator for Map/Beghbs. Similarly, slave nodes provide two types of
functionality in two separate daemons: the DataNode sertsvaschunk server in GFS terminology, providing actual
storage of blocks, while the TaskTracker shepherds exatafitasks on slave nodes by starting up new Java Virtual
Machines (JVMs) to execute tasks.

Long-running jobs are divided by the JobTracker on the maside into smaller, short-lived (relative to jobs)
subtasks that are processed by the TaskTrackers on slaes.nAdob’s subtasks are likely to be small relative to
the job itself, in order to minimize the amount of re-compigtawhen a node fails. We assume that the number of
slave nodes can be large: any fault-tolerance techniqaesviirrant the remote inspection of nodes (e.g., through
heartbeats) from a central/master location are likely tod®tly in network bandwidth, thus the case for node-local
diagnosis. We make no assumptions about the number of totpdes in the system, and do not currently probe
further to discern which of the fingerpointed culprit nodeghm be more to blame than the others. We focus our
problem diagnosis efforts on node-local diagnosis on steges, since these can be arbitrarily many while there
are few master nodes; we first attempt to localize the fawdtsimgle node, and make further efforts at localizing the
fault to a phase of execution in the TaskTracker or DataNode slave node.

3.2 Manifestation-centric Problem Diagnosis: Goals and Ne-goals

The actual root causes of performance problems are oftéoullito diagnose without detailed application/domain
knowledge. On the other hand, the manifestations of pedona problems are observable errors or anomalous
system activity, ultimately leading to system unavailépibr unresponsiveness. Thus, our approach to problem
diagnosis seeks to identify the culprit (node) of a perfaroggproblem by tracing any observed problem manifesta-
tions back to their source node. This also allows us to perfadack-box problem diagnosis in a production setting,
with neither access to nor modification of application setrode.

The goal of our work is to perform online problem determioatito locate, during the execution of the system,
the node(s) on which a performance problem occurred, andawde suggestions as to what the root-cause of
the failure might be—these suggestions are in the form degaysesource categories that are possible sources of
performance issues, such as processing, memory, disk,etwonik resources. The eventual aim of this work is to
expedite system recovery from a failure, either by aidingiesyy administrators and operators in isolating faults and
identifying recovery actions, or by providing diagnostifarmation for automated tools to decide the best course of
action for system recovery.

In the context of the candidate failures identified in Setldb, the goal of our work is to flag off nodes exhibiting
failure manifestations to isolate the failure, and to theovjule informative metrics as suggestions as to what the
root-cause of the failure might be.

Program debugging is a non-goal of our work. Our techniquesat intended to aid programmers in performing
code-level analysis and extremely fine-grained localiratif faults. Instead, our techniques bridge the gap between
requiring access to and instrumentation of applicatiorra®uaode for extremely fine-grained, code-level analysis,
and using coarse-grained non-invasive black-box infoienatources by introducing (i) the use of statistical analys
to gain additional insights and enable inference aboutiegmdn behavior, and (ii) white-box information sources
that can be accessed using black-box techniques.

3.3 Available Data Sources

The following main categories of sources of performance dabbut systems that can be accessed using black-box
techniques, requiring no access nor modification to apiicaource-code, have been utilized in our approach. A
brief description of the type of information, the means dfextion, and the cost of collecting each data source, in
terms of overheads imposed, follows.

3.3.1 Hardware Performance Counters

Modern microprocessors implement performance countgmotdde counts of hardware events, such as the number
of unhalted cycles, or the number of cache hits and missgsH22dware performance counters provide the lowest-
level view of a system from the perspective of software, adide a most fundamental (to the extent that collecting
performance counter values causes minimal perturbatioas)of the system closest to the ground truth of the bare
metal of the system, free of artifacts as introduced by dperaystem or middleware-induced abstractions. The
RAMSechnique of our approach examines hardware performanceas to make inferences about the (correctness
of the) behavior of the candidate application.

However, hardware performance counters can be potengapgnsive to collect, as each data collection re-
quires a context-switch into kernel mode to access the paence counter values. Nonetheless, our work uses



the opr of i | e hardware performance counter monitoring package, whishahmeasured overhead of between
1-8% [29].

3.3.2 Operating System-reported Resource Metrics

The next higher level of abstraction from system hardwareldth monitoring can be performed is the operat-
ing system. Major operating systems report aggregatettatabout various system resource categories—namely
processing, memory, disk, network, and the virtual memahsgstem. These statistics are typically reported pe-
riodically as part of the service provided by the operatiygtem, regardless of whether they are collected. Hence,
these metrics can typically be collected in a low-overheathibn. Specifically, Linux and many variants of Unix
implement thepr oc filesystem, an interface through which a comprehensivey af@perating system-provided
information about aggregate system state and per-protassan be accessed.

The BlackSheepechnique of our approach leverages on the low overheadsoflata source and focuses on
synthesizing the wide array of information available thgbthepr oc filesystem on Linux for problem diagnosis.

3.3.3 Application Logs

Many software applications, especially Internet-deptbgad distributed software applications, have activityslog
that describe the actions of the software application. ficaghlly, application logs have provided a trace of error
messages for system administrators and users to identifygms and for programmers to debug the application;
application logs also sometimes provide a trace of accdesemudit trails to identify security breaches. These
software applications typically have configurable levdldogging detail, so that they can be set to generate log
messages about the software’s actions with varying levieleosity. At the minimum level of verbosity, log
messages are usually generated only in the event of fataisenhich caused the application to fail completely
and crash, while at the maximum level of verbosity, log mgesamay be generated during the course of normal
application execution as well, to report events.

Applications can be thought of as being in one of a finite nunobligh-level states, with each state correspond-
ing to a particular mode in which a particular type of taskéily executed, giving rise to a signature of that state
which characterizes it. A key insight is that the normal &gtion events as reported by detailed log messages will
typically correspond to the entrance and exit of abstrapliegtion states as described above.

Hence, if an application has sufficiently few types of stathese states and the events which demarcate the
entrance into/exit from abstract application states camibenerated. Then, well-structured logs from the appbcati
can be parsed to process textual event reports to generatrical counts of the states which the application is in.
These numerical reports are more amenable to synthesi®thigh metrics, as they are all numerical and hence can
be synthesized and treated with statistical analysis ardileg as with typical numerical metrics.

3.4 Analytical Framework

Next, we provide an overview to the key ideas that the twongplkes of our approach use for identifying deviant
application behavior.

3.4.1 RAMS an a priori Model of System Activity

The RAMStechnique is based on the following hypothesized model @idlal behavior of nodes in a distributed
system.

The processing on slave nodes is always in one of two modesorfimunication with the other nodes in the
system, or (ii) actual data processing to compute a subfdskuser-space application (henceforth the application)
invokes system calls to perform its external communicatidrich is recorded as operating system (OS), or kernel-
space activity. Hence, under communication-intensiveamms, a node’s OS activity will dominate that node’s
application activity; conversely, under compute-intgasiperations, the node’s application activity will be regh

The processing of a job’s subtasks will likely involve reebcommunication between nodes in the cluster—for
subtasks to be dispatched to nodes, and for the results afsksto be returned to the dispatcher.

Consider a sufficiently long observation window on a nodé ém@ompasses both the communication phase of
receiving and returning the results of the subtask as weth@somputation phase to execute the subtask locally.
Our hypothesis is that when a node experiences a perfornprabkem, its processing is likely to be interrupted or
to take significantly longer (possibly never returning) tisat the node might not be observed (albeit indirectly) to
be communicating as much with the other nodes in the systehinvthe window of observation. Thus, we expect
the system metrics that respectively characterize OS’ aptication’s activity to be correlated in the absence of
performance problems. OS activity and application agtiwill increase together in the same window, reflecting
the external communication and the local computation reguio process a subtask. However, when the node
experiences a performance problem, we expect to see sanilfidess correlation between the node’'s OS’ and



application’s activity, as either no computation nor conmication are occurring, or the application is failing to
return—in both cases, application activity moves indegatig of OS activity. An obvious side-benefit of this
hypothesis (if indeed, it is borne out by experimental en@d) is that a node’s observed local behavior alone ought
to suffice for deciding whether that node is a culprit of a perfance problem.

3.4.2 BlackSheepCorroborating Application Behavior with System Activity

The BlackSheepechnique is based on the key hypothesis that during nopralem-free execution, the abstract
state or mode of execution of the application should be agprately in line with the observed black-box metrics
of the system.

We hypothesize that given normal execution, during a givealenof execution of the application, particular
black-box metrics will exhibit stable patterns, such thzdmges in the mode of execution of the application will be
followed by, possibly with a time lag, changes in the aggtetahavior of black-box aggregate system metrics.

Conversely, when there is a problem in the application, wemarios are possible. First, there can be changesin
the mode of execution of the application as reported by tipdicgiion in its logs, but no changes in the aggregate
behavior of system metrics, due to a failure of the applicetd transition to the new execution mode. Second, there
can be changes in the aggregate behavior of system metticsigh there was no change in the mode of execution
of the application, as the change in system behavior wagght@bout by the transitioning of the application from
its normal execution mode to a problematic one. By detedtiegphase of execution at which an anomaly occurred
(unexpected change in system activity, or unexpected absgfinchange in system activity, relative to application
behavior), we can thus isolate the fault to a phase of exatiti a particular component (DataNode/TaskTracker)
of our target application.

Hence, the key idea behimlackSheejfs in quantifying changes in both the mode of execution ofghygication,
and in black-box system metrics, and in identifying bladkbystem metrics whose changes co-occur with changes
in the mode of execution of the application.

4 Application Log Parsing Case Study: Hadoop activity logs

There are four different types of activity logs provided baddop: one for each of the four different types of
daemons (NameNode, JobTracker, DataNode, TaskTrackeprbvide services in Hadoop. Our initial efforts focus
on the activity logs from the DataNode and TaskTracker. ldadases the Apache Log4J [24] logging framework,
thus emitting logs that are standardized across many oftem-source software which also use this framework,
suggesting that our approach is possibly portable to otphpliGtions also using Log4J (to the extent that the
application developers of other applications using Loddd provide log messages with similar semantic content as
Hadoop does).

4.1 Log Overview

A snippet of log messages from the TaskTracker logs are shiowigure 1. Log entries are timestamped, and
the level of verbosity and the originating component of thg éntry are stated, followed by a descriptive message.
The Log4J framework used by Hadoop allows the destinatidogpmessages to be configured; we assume that the
default configuration of Log4J in Hadoop is used, so that legsages are written to plain text files.

Our Hadoop log parser parses each log message into its éimpsthe level of logging verbosity, the reporting
component, and its message, and parses the log messagectatgeapplication events, from which application
states are inferred, as described next.

2008-04- 22 08:53: 10, 347 | NFO or g. apache. hadoop. mapr ed. TaskRunner :

t ask_0003_r .000000.0 Copyi ng task_0003.-m004566_0 out put from pc69. enul ab. net.
2008- 04- 22 08:53:10, 349 I NFO or g. apache. hadoop. mapr ed. TaskRunner :

t ask_0003_r .000000.0 Copyi ng task_0003.m001577_0 output from pc73. enul ab. net.
2008- 04- 22 08:53: 10, 358 | NFO or g. apache. hadoop. mapr ed. TaskRunner :

t ask_0003_r _.000000_0 done copyi ng task_0003_.m004566_0 out put from

pc69. emul ab. net .

2008- 04- 22 08:53:10, 436 | NFO org. apache. hadoop. mapr ed. TaskRunner :

t ask_0003_r .000000_0 done copyi ng task 0003.m001577_0 output from

pc73. emul ab. net .

Figure 1: A snippet from a TaskTracker log showing log entries whidhger StateStart Events andStateStop Events for
the ReduceCopyTaskrocal and ReduceCopyT askremote states.



4.2 Application Views: Events and States
4.2.1 Events and States

In order to interpret the semantic meaning of applicatigison a manner useful for problem diagnosis), we propose
two orthogonal ways of viewing the high-level modes of ex&xuof applications in general: @&ventsandstates
using Hadoop as a case-in-point: Consider each singlediufezxecution in an application as a deterministic finite
automaton (a transition must be taken at each step, and ttigimeacan be in at most one state) which is in exactly
one DFA state at each time instant. Then, the mode of execafithe application can be viewed sitesof the
DFA, or asevents which are related to the transitions in the DFA, as explimext.

We definestatesin the DFA to correspond to high-level tasks (e.g. servinfpalbread request to a remote client
in a DataNode), andventsto be the entering and exiting of states, from which we derigasitions in the DFA
to correspond to a composition of one state-entrance andtateexit event. We define the two types of events
as StateStartEvents and StateStopEvents. Then, mudadbd applications would comprise multiple threads of
execution, with one DFA representing the execution modeiché¢hread. The mode of execution of the application
at each time instant can then be represented by (i) a vecstaiafs in each of the DFAs, with one for each thread of
execution, showing the instantaneous composite workld#teoapplication, or as (ii) a vector of events in each of
the DFAs, showing the changes that have taken place in tiensyd the time instance.

4.2.2 Events and States in Logs for Hadoop

A key observation about the log messages in Hadoop is thatdbieespond to notifications about the events as
defined above. At the highest level of logging verbosityytheecisely denote the starting and stopping of each
high-level task (e.g. Maps, various Reduce phases, blaa#srerites served) undertaken by the DataNode and
TaskTracker. Hence, our model of high-level applicatioha&wor can be directly parsed and extracted from the
activity logs of Hadoop.

There are, however, exceptions: only the occurrence, antha@ntrance to and exit from certain states in the
DataNode and TaskTracker are reported, presumably bettautssks corresponding to these states are short-lived;
we define a third event type, an InstantStateEvent, for igahstates for these types of states. Events of this type,
when composed with an event before it and an event afteeit, torresponds to a transition into the state, followed
by an immediate transition out of the state, in the context DFA.

A list of states for the DataNode and the TaskTracker areuded in Appendix A, and each state has two
associated events: one for the entrance to the state, arfdiothe exit from the state, and an InstantStateEvent is
included for states whose execution is reported only inrgsteant manner.

4.3 Parsing Algorithm

The log parser implements a discrete window over the agtliwg. The log entries reported in each window of time
under consideration are processed to returretentsoccurring in the window. In addition, tHeventsoccurring in
the window are processed to return Htatesthat the application is in within the window of consideratio

Log entries are read sequentially in strictly increasinguoblogical order, and parsed to assigrEaentto each
log entry. AnEventmay be one of StateStartEvent, StateStopEvent, InstantStateEve®pB\ent, ErrorEver,
with the last two events added for log entries extraneousit@palysis that do not describe any significant change
in workload (such as idle heartbeat messages, or a mess#gating no useful work is being done), and for error
messages, respectively. Thus, a time series of events damtediately generated from the Hadoop activity logs
(for DataNodes and TaskTrackers presently) with a singledod pass over the log entries.

In order to generate the vector sfatesthat the application is in for each window, the log parserntans
internal state to remember the numbeBtdteStartEvestandStateStopEvesthat it has seen for easltateat each
time instance. Then, the number of threads executing sthis simply the difference between the number of
StateStartEvestandState StopEvest plus the number dhstantStateEveatseen for eachktate within the given
window.

A minor complication arises with th8tateStartEvestfor theReadBloclandWriteBlockstates in the DataNode-
—StateStartEvestfor most states in the logs of DataNodes are denoted by aigemessage, while state-specific
information is available only ifstate StopEvest Hence, we make the simplifying assumption tBizte StartEvest
andStateStopEvestcorresponding to the sarstateoccurrence occur in FIFO order to make processing possible.
This also implies that for any giveBtateStartEventhe state it corresponds to cannot be identified beforags (
sumed) correspondingtateStopEvers observed.StateStartEvestin the DataNode logs are given an additional
designation aPeferredStateStartEvento indicate that the identity of the state correspondintpéoevent has not
been ascertained, and the window is prevented from slidingdrd until the identity of th&tateStartEveritas been
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resolved (by observing a correspondBigite StopEvent
4.4 Parser architecture

The log parsing algorithm has been implemented as a libra§+a calls that can be easily reused in a larger
software framework.

All logs are represented by a generic base class, which @dfinetionality common to manipulating each type
of log, from which subclasses are derived and implementeddecific log types. Each log-specific subclass (e.g.
DataNode, or TaskTracker) then implements its own monolfarser to parse log entries from that particular type
of log. The log base class stores a chronologically ordéseédfl Events with the identity of theEventstored as an
enumeration, and its associatgthtestored as a member variabl8tates are defined by a generic base class, from
which subclasses are defined fatates specific to each different logged component of Hadoop. ®bespecific
subclasses then implement functionality for processinganglist of events associated with states specific to the
particular type of logged component to generate time sesfasbserved events and application states.

The log parser has a modular architecture, which exposasmoao interface for sampling events and states from
the different types of logs produced by Hadoop. A query digecepts a log object and calls on the log-specific
event-processing method to generate samples of occuviegs or samples obtates that the application is in. The
guery object manages the window over which sampling is peréd, and manages the formating and presentation
of reports of observations.

The log parser library supports on-demand, lazy parsind,arty needs to remember the latest log entry to
perform processing; all information from prior log entrisssummarized and stored as internal representations as
lists of Evens andStates, and users of the library can explicitly request the Iiptarclean up past reported events
and states.

4.5 Offline Parser Output

In addition, the log parser provides an offline output modewhich the log parser is provided with a sampling
interval, and the parser generates a comma-separated(@G3¥§ file of a time series of the counts of each of the
states and events for the particular node type—the numbeadf of the states and events for the particular node
type in each sampling time interval is listed as a row in th&/Gife. A visualization of these states is shown in
Figures 22, 23, 24, 25.

5 RAMS Statistical Tests of ana priori Model of System Activity

5.1 Analytical Methodology
5.1.1 Linear regression model of system activity

On each node in the system, we collect traces of the intrapedformance counter values for OS activity;,
and application activityapp, (as discussed later). Consider a linear ordinary leastreguregression fitted to the
time-series of the node’s OS’ performance countess)(and the application’s performance countergyy), with
Gaussian noise; allowed:

oSt = ﬁappappt + uy

Concretely, {) pairs of observed OS and application performance couiaiees form a window, and these are
plotted as a function of each other, and a straight-line tvhiinimizes the sum of squared errors between observed
os; and fittedos, is plotted through these points. Thus, for each paitp;, os;), fitted valuess; and the noise, or
regression residual,; = os} — os;, are generated from the regression.

5.1.2 Autocorrelation of residuals

Next, consider first-order lagged residuals, 1, (i.e. consider the residual from the preceding pair in threet
series for each given time) and residuajsfrom the linear regression. When a node is not experiernmioglems,
uz—1 Will be independent of., if the window over which regression is performed includemples from both
the communication-intensive and compute-intensive mhase¢he system. This is because the strong correlation
between OS and application performance counters resudtstiong relationship between the regressang @nd
regressordpp;), so that residuals, reflect purely Gaussian noise and are uncorrelated.

When nodes are experiencing performance problems, thdrbevcorrelation between; andwu,_;. This is
because application activity becomes increasingly uetated with the OS activity, so that andwu;_, become
correlated. The regression residuals will reflect moveméanthe application activity counts and hence are no
longer random noise, but become correlated.
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This statistical condition in which residuals;j become correlated with their lags;( ; for i > 0) is autocorre-
lation.

Hence, we hypothesize that autocorrelation between lagggdiuals in an observation window exists on a node
if and only if the node experiences performance problemisahwindow.

5.1.3 Autocorrelation tests for identifying anomalous noés

The Breusch-Godfrey and Durbin-Watson [13] tests for antieation were used to detect autocorrelation in the
linear regressions of OS with application performance tewelues for problem diagnosis. In each of these tests,
the ordinary least-squares linear regression is first fittge window of observed OS and application performance
counter values, from which secondary regressions andt&stties are computed based on the regression residuals.
Each of these is a statistical test, which tests the null thgsis that there is no autocorrelation present against
the alternate hypothesis that there is autocorrelatiosegntain the regression residuals, and returpsvalue—the
probability of wrongly rejecting the null hypothesis.

Since our hypothesis is that autocorrelation is present@geession on a given window of performance counter
values if and only if the node is a problem node, the null higpsis of these two statistical tests is exactly the
(statistical) hypothesis that the node is problem-freeusTta smallep-value indicates greater confidence that a
problem is present in the node.

5.2 Experimental Setup and Methodology

We conducted a series of experiments to testRBdShypothesis. Our goal was to study the characteristics of
the time-series of metric traces of every node’s OS’ and fipdi@ation’s activity under normal execution and under
induced performance problems.

5.2.1 Setup

We deployed a 6-node (5 slave, 1 master) Hadoop 0.4.0 clastéwo 3.0GHz Xeon nodes, each running the
Xen 3.1.0 hypervisor [3] hosting three unprivileged Linu®.28 guests, on the Emulab [20] remote testbed. The
Nutch (version 0.8.1) web-crawler [28], running on a Linug.28 guest hosted on a third 3.0GHz Xeon node over
a Xen hypervisor, was used to generate workloads for the dfadtuster. Each iteration of the experiment in-
volved rebooting all of the nodes in the Hadoop cluster, miga single Nutch web-crawling request, and collecting
performance-counter traces over the duration of the ei@tUEach iteration of the experiment lasted approximately
as long as the execution of the Nutch web-crawling job of 40utss.

5.2.2 Fault Injection

As Hadoop is written in Java, we used a JVM Tool Interface (JVMagent [27] to perform load-time class
bytecode-rewriting to inter-position calls to methods ur @roblem-injector class before the actual methods of
interest. As our problem injection uses Java methods witiersame virtual machine as the target application, all
problem-injection activity is encompassed in the actieityhe target application.

One of the two types of problem manifestations at one of twelge(high and low) of intensities was injected
into three of the five slave nodes in each of the problem-iaduterations of the experiment. 72 iterations of the
experiment were run, of which 27 iterations had memory |éajested (11 high-intensity, 16 low-intensity) and 45
had process delays injected (14 high-intensity, 31 lowrisity).

Process-delay injection involvedvéi | e loop running for a preset duration—an infinite loop in therhig-
tensity case, and alternation between executing the looprfe second and yielding control in the low-intensity
case. The memory-leak injection involved allocating Javacts and adding them to a persistent vector, for a preset
duration, in a similar manner to the process-delay injectiescribed above.

The injected problems are representative of the manifestabf real-world performance problems recorded in
the Hadoop bug database, as described in Section 2.5. Asahlem diagnosis approach is a manifestation-driven
one, being able to detect the identical manifestation wbeld sufficient benchmark for our technique.

5.2.3 Instrumentation and Data Collection

The intra-node metrics that we gathered were Intel P4 pmdarce-counter counts of instruction cycles collected
by opr of i | e [29] with thexenopr of [14] Xen driver. Samples of instruction-cycle counts weaken at 10s
intervals byopr of i | e, and attributed to the Linux processes whose instructicnsunted for the cycle counts.

In particular, we examined the counts for the Linux kernelgaiss and the aggregate activity counters for the Java
Virtual Machine (JVM) processes of the multiple Hadoop comgnts.

12



5.2.4 Analysis

We analyzed the collected metrics offline after complethngéxperiments. For each node in each iteration of the
experiment, the time-series of instruction-cycle countglie Linux kernel ¢s;) and the JVM §pp;) were fitted to
the linear regression:

0S¢ = appt + Ut

Next, we ran the Breusch-Godfrey and Durbin-Watson [13ftés autocorrelation between the first-order lags of
residuals ¢, u;—1), generating th@-values for the probability that there is no serial corielabetween the first-
order lagged residuals for each node. phealues are used as a measure of serial correlation betwedinst-order
lagged residuals. Then, specifievalue thresholds were used to identify the culprit node&)des withp-values
below the threshold value were classified as being the ¢slpviariousp-value thresholds were used to vary the
recall of the algorithm, to study how precision varied widtall (see Section 5.3 for definitions of precision and
recall).

5.3 Evaluation Results
5.3.1 Statistical Characteristics of Metrics

Culprit node of performance problem Non-culprit node of performance problem
Regression residuals (= observed - fitted OS_fault) Regression residuals (= observed - fitted OS_faultfree)
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Figure 2: Regression residuals as a function of application actfeitya culprit node with a low-intensity process delay (lefitd
a non-culprit node (right)

In the case of process delays, in hodes with injected prablghe culprit nodes), the residuals of the linear
regressions of OS activity§;) with application activity ¢pp;) were strongly correlated with application activity,
indicating strong autocorrelation in the (lagged) resiglud his is seen in the clear linear, non-zero relationship
between the residuals and application activity in the ledpdp in Figure 2, while in problem-free nodes, the residuals
showed no clear relationship with application activity, s&en in the right graph in Figure 2. This observation
is consistent with our hypothesis. This observation was etsifirmed by the statistically significant evidence of
autocorrelation between the residuals in the culprit npotesontrast with the lack of such autocorrelation in the
problem-free nodes.

However, in regressions for the experiments with injectegnory leaks, there appeared to be no clear differ-
ence in the correlation patterns between the regressiatueds and the application activity across the culprit and
problem-free nodes.

5.3.2 Efficacy of Problem Diagnosis

Next, we examine the effectiveness of our approach at &§asgiculprit and problem-free (non-culprit) nodes.
Figures 3, 4 shows the performance of our initial probleagdbsis algorithm for each type of failure, broken
down by failure intensity. We quantified the efficacy of oupegach usingrecisionandrecall, measures of clas-
sification effectiveness from the data-mining literatut®][ When our problem-diagnosis algorithm indicts a node,
that node becomes a suspect; this is different from the nedegliruly guilty, i.e., aculprit. Precision measures
the fraction of all suspects that are indeed culprits, wigkzall measures the fraction of culprits that our algorithm
successfully indicted. We tuned the recall of our approactdsying thep-value threshold (Section 5.2.4), where
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Plot of Recall vs Precision (in percentages)
for various statistical tests of autocorrelation
for high-intensity faults
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Figure 3: Overall precision as a function of recall for failure diagi®algorithm for high-intensity failures

a p-value threshold of 1.0 results in our algorithm indictingad the nodes in the system. As the number of sus-
pects increases with more aggressive indictment (highedue thresholds), recall increases, but precision stffe
A perfect problem-diagnosis algorithm would have a precisiecall curve with a precision df0 for all values of
recall [11].

From Figure 3, our algorithm has some success identifyirpasuffering high-intensity problems—precision
falls gradually and does not suffer a complete collapse eallris increased, while our algorithm has some success
with identifying nodes with low-intensity process-delapplems (Figure 4), but is ineffective at identifying nodes
with low-intensity memory leaks, as precision collapsegmwhecall is increased.

Perhaps a more informative statistidBalanced AccuracyBA) [11], the average of the proportion of problem-
induced and problem-free nodes that were correctly clagsiff problems occurred randomly, a random classifier
would, in the limit, achieve a balanced accuracY 6f Figures 5, 6 show the highest BA achieved by our algorithm
under high- and low-intensity problems for memory leaks pratess delays across ghvalue thresholds used
for each of the problem-intensity and problem-type casesveh(these are upper bounds on the efficacy of the
algorithm; further work is needed to find the best singleshodd value for all problem types and intensities). From
Figure 5, our approach is moderately effective at idemijymodes with high-intensity problems and low-intensity
process-delays, achieving a BA of greater thanusing both (Breusch-Godfrey and Durbin-Watson tests) oreas
of autocorrelation. However, from Figure 6, our approacesdonly marginally better than a random classifier for
nodes with low-intensity memory leaks.

In conclusion, we have shown thRAMSis effective at detecting both types of injected high-isignfaults,
process hangs and memory leaks, and is somewhat effectieteatting low-intensity process hangs, but not much
better than random at detecting low-intensity memory led&MSshows some promise at being able to identify
anomalous nodes exhibiting process slowdowns and hangsh wbuld be helpful for detecting the large proportion
of Hadoop bugs that manifest as process hangs (as survegedtion 2.5).

6 BlackSheepApplication-System Corroboration through Change Point Analysis of Sys-
tem Activity

6.1 Analytical Methodology

The fundamental idea &lackSheejs that application logs and operating system-reporteaiimes metrics (which
we will refer to as resource metrics) provide orthogonalwgef a system that should agree with each other at a high
level during problem-free operation. Application logs yide semantically rich information about the high-level
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Plot of Recall vs Precision (in percentages)
for various statistical tests of autocorrelation
for low-intensity faults
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Figure 4: Overall precision as a function of recall for failure diagi®algorithm for low-intensity failures

modes of execution of the application, while operatingesysinetrics such as disk, memory, processor, and network
utilization provide evidence of the actual behavior of tpplacation as observed from its system-level actions. Thus
we would expect the high-level activities that the applaateports itself as performing to correspond with its attu
system-level actions during problem-free execution. Amidiate consequence is that multiple views of the system
disagreeing with each other is an indication of a probleneri[lthe system resources whose metrics disagree with
the view provided by application logs will provide suggess as to which area of the application is not behaving as
the high-level log information suggests the applicatioowt be.

Application logs typically contain textual information,hile operating system-reported resource metrics are
typically sequences of observed counts, and are not imiedgieomparable to determine if they agree with each
other. However, this textual information in applicatiog$ocan be parsed to extract counts of high-level states, each
of which corresponds to a logical task performed by the apfibn, and events, which correspond to the beginning
and ending of states, as we have demonstrated for Hadooptioisd. These counts of high-level states and events
can then be compared with operating system-reported raetric

Change point analysis is applied to resource metrics anticafipn state counts to compare them with each
other for determining if an anomaly is present in the system.

6.1.1 Change point analysis

Operating system-reported resource metrics and counigloflével application states are compared by computing
the change points in resource metrics and application statets, and ensuring that they occur together. We define
the steady state of both the application and the system mes®to be durations of absences of change points. The
intuition is that when the counts of the number of occurrerafeeach state remain unchanged, the application is in
a steady state, so that its system-level behavior as reflbgteesource metrics should be steady and unchanging as
well. Hence, we make the priori assumption that a change in resource metrics when the apiplids exhibiting a
steady state is anomalous, and likewise, that a change licaign behavior when system resources are exhibiting
a steady state is anomalous.

Change point detection is a classification problem over a series of values. The objective is to separate the
time series of values into contiguous segments, in whictutigerlying parameters describing the distribution of
values is the same within each segment. A challenge of usipglar change point detection algorithms such as
Shewart control charts and CUSUM [4] are that they requileadt one of either of (i) the parameters governing
the distribution of values before the change, (ii) after thange, or (iii) the time of change—however, it is not
clear what the correct parameters of the process genethérmistribution of values of resource metrics are, and the
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Balanced Accuracy for detection of various types of high-intensity faults
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Figure 5: Balanced Accuracy (BA) of failure diagnosis algorithm fafferent failure types; BG indicates the Breusch-Godfrey
and DW indicates the Durbin-Watson tests for serial coti@iah: indicates BA for high-intensity variants of problems irtjeat

Balanced Accuracy for detection of various types of high-intensity faults

1.2 ‘
Balanced Accuracy s
Fault Accuracy
1L Fault-free Accuracy |

>
g 08F
5
Q
<
= 06 r
(]
(8]
c
IS
© 04
m

0.2 r

0 -
mem-lo mem-lo proc-lo proc-lo
BG DW BG DW

Figure 6: Balanced Accuracy (BA) of failure diagnosis algorithm fafferent failure types; BG indicates the Breusch-Godfrey
and DW indicates the Durbin-Watson tests for serial coti@ialo indicates BA for low-intensity variants of problems injedt

16



objective is precisely to determine the time of change, abgbpular change point algorithms are not amenable.

Instead, we use a difference of means algorithm that is ameoif an image edge detection technique [1]. This
algorithm had been previously successfully applied to [gmldetermination in enterprise middleware systems, but
on individual resource metrics in a group of metrics. Our ofsehange points analysis differs from [1] in that we
are continuously comparing change points across two cdeiplerthogonal measurements (application state counts
and resource metrics) to corroborate change points.

6.1.2 Change Point Detection Algorithm
Our change point detection algorithm is described as falow

Algorithm 1 Decision function for deciding if a given observation inmé series is a change point

1: procedure CHANGEPOINT(0bs|], obsnum, window, thresh, prevobs|], prevmazx) > prevmaxobs is a
fixed-size persistent queue that stores theddstiow differences of means
2:
Z?iirzzz;nlfwindow ObS[Z]
pr -
window
3: )
S obs[]
IR -
window
4 Ap=pL—(—pr)
5: prevobs.queue(Ap)
6: if (max(prevobs) == Ap) && (Ap > prevmaz) then
7 if Ay > thresh * pr, then
8: prevmar = Ap
9: return true
10: end if
11: end if

12: return false
13: end procedure

Algorithm 1 takes as its input a time series of metric valughi¢h can be resource metrics or application
state counts), and an observation numhégum) in the time series, and returmsue if the given observation
number is a change point (i.e. statistical properties ofvtiige in the time series changed at the time of the given
observation), andalse otherwise. For a given window sizejndow, the left and right meang.(,, ) respectively
are computed ovarindow samples before and after the given observation. The aiteridetermining when the
time of the observation is a change point is when the diffegdretween the left and right meaws() for the given
observation is a local maximum, and exceeds the value oéthmkan ., by a given threshold factothresh. The
first conditional in Line 6 ensures thaty is indeed a local maximum over the observation window. Anitaaithl
heuristic is included in the second conditional in Line 6 hs@re that the same local maxima is reported only once.

The size of the observation windowjndow, and threshold factahresh, are tunable parameters of the detec-
tion algorithm, and adjust the sensitivity of change pobrig reported. We then apply the change point detection
algorithm to each time series for each resource metric acld &aplication state count of interest, and compare the
change points in the two, to determine if the execution ofapplication is free of anomalies. This comparison is
detailed next.

The change point detection algorithm can be implementeddrya dynamic fashion for online use, by keeping
only state that has size that is constafitX)) in the order of the length of the time series examined, sbttiea
algorithm can be run indefinitely with a constant amount ohmagy. The only persistent state required by the
algorithm iswindow number ofAp values, and the value of the previous reported local maximaymazx.

However, a disadvantage of a lazy, greedy implementatidimaiscontinuously rising metric values will result
in successive change points being reported, rather thamgiedbcal maxima—fortunately, our analysis involves
comparing change points across resource metrics and afipticstate counts, which are hypothesized to behave in
similar ways in the event of normal operation. Thus, to thiemixthat our hypothesis will be borne out, this artifact
of lazy evaluation does not skew our analysis. Analyticatiythis case, a sequence of successive change points
implies that the observed value of the metric of interestisnging with a magnitude outside of the threshold of a
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change detection, and that the change is taking place atcegaising rate; this can be interpreted as a continuous
change taking place.

6.1.3 Corroborating system activity change points with appcation log events: Tests for anomalous system
behavior

The next stage of the approach is to corroborate changesgoinésource metrics with application log events. The
algorithm by which we corroborate the two orthogonal systésws is as follows:

Algorithm 2 Decision function for deciding if two orthogonal views ofettsystem agree with each other;
changepoint’s are boolean flags indicating if a change point occurrechantime series of the resource metric
or application state count respectively.

1. procedure STATEMETRICNORMALDECISION(changepoint,etric, changepoint siate)

2: if (changepoint,,etric == true) && (changepointsiqare == true) then
3 return true
4 else if (changepoint metric == false) && (changepointsiqare == false) then
5 return true
6: else
7
8
9:

return false
end if
end procedure

Algorithm 2 is the (simple) decision function for deternmigiwhether the application is behaving in a normal
fashion. We declare the behavior of the application to bé&lproatic if the absence or presence of a change point
in the given system resource metric does not correspondanitibsence or presence of a change point in the given
application state count respectively. It follows that whie@ application is not diagnosed as being problematic, then
the application is exhibiting normal, problem-free openat

More formally, our approach to characterizing normal aggilon behavior, based on our hypothesis of change
points in application state counts and resource metrieseagy with each other if and only if the system is problem-
free, is that of classifying a point in the time series of &milon states as being or not being a change point given
knowledge of whether the corresponding point in the timéesesf resource metrics is a change point.

Then, Algorithm 2 is applied to the change point pair for gueretric of interest with every application state
count of interest, for each time instance for which a diagniedesired. The requirement of the computation of left-
and right-means for each decision point implies that theritlym has an intrinsic lag equal to the duration required
to collect sufficient samples for the window. Nonethelelss,dlgorithm can be run online, albeit with a lag, as the
space requirements for its state is constant in the ordéeadtration of the diagnosis run.

6.1.4 Building profiles of application behavior

Finally, training is carried out to identify applicatioras¢ count change points which co-occur with resource met-
ric change points under normal, problem-free operationenTdiagnosis is carried out using the change point-
corroboration framework as described above, on pairs ofiGgijpn state counts and resource metrics that have
been found to consistently exhibit change points togethénd problem-free behavior.

6.2 Experimental Setup and Methodology

We conducted a series of experiments to quantify the behatidadoop in terms of the change points of various
operating system-reported resource metrics and Hadodjgalign state counts. The aim of these experiments was
to identify metrics and application states of interest agdiicance, so as to characetrize the (problem-free) iehav
of Hadoop under various workloads. This will facilitate thevising of strategies for maximizing the efficacy of the
BlackSheemproblem-diagnosis approach as applied to Hadoop. A totalppfoximately 30 to 40 problem-free
experiment runs of each workload type examined were runaliticices were carefully visually inspected to ensure
that for each workload, only traces that were similar to otreces for the same workload were considered. Then,
traces from representative runs were used for our analysis.

6.2.1 Setup and data collection

We deployed a 6-node (5 slave, 1 master) Hadoop 0.12.3 clustex 850 MHz Pentium Il nodes on the Emulab
remote testbed [20], each with 512 MB of main memory, and inghinux 2.6.20. A seventh 850 MHz Pentium
[l node was used to generate workloads for the Hadoop ¢luste
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Operating system-reported resource metrics were cotiéaen thepr oc filesystem usingtheysst at - 8. 0. 4
system monitoring package [30]. Metrics from the followsajegories were collected using gyesst at package:
aggregate CPU utilization and process activity, aggrediste!/O activity, paging and virtual memory subsystem
activity, per-disk 1/0 activity, per-network device adtiyy and per-process CPU and memory utilization. These met-
rics were collected at one second intervals, and the additmverhead imposed on the system was not found to be
significant. However, further work is required to quanttfigtoverheads of this instrumentation.

Hadoop application state counts were collected by parsadpidp activity logs from the Hadoop DataNodes and
TaskTrackers using the Hadoop log parser as described tioB8e this parsing was performed using the offline
mode of the log parser to generate time series traces ofcagipl event and state counts. Parsing was generally not
time-consuming, and parsing an average log file from one gederated from an active workload lasting one hour
took less than 2 seconds. Despite this, further work is agegded to quantify the time costs of using the log parser.

6.2.2 Candidate workloads

Candidate workloads for Hadoop were picked from the exarhfaldoop Map/Reduce applications as provided
with the Hadoop distribution, as well as the Nutch distrédautveb crawler [25] [28]. Theandomw i t er and
sort example applications were picked as candidate workloatlegsare commonly suggested as benchmarks for
Hadoop clusters [26], while the Nutch web crawler was picked represents a significant real-world application
commonly used with Hadoop.

The objective of the choice of candidate workloads is to eitgily observe the behavioral characteristics of
a gamut of possible Hadoop behavioral profiles when runnargus types of application workloads, so that the
normal behavior of Hadoop as exhibited with these worklagitlgeneralize to arbitrary Hadoop workloads. Appli-
cation workloads can be classified as being combinationsmptite-intensive, disk-read and disk-write intensive,
and network-intensive, while real application workloadB generally be composed of some combination of these
characteristics.

Ther andomm i t er example application writes a given configurable numberrofcstired records comprised
of random bytes to disk on each Hadoop node, and represeigk-avite intensive workload with minimal disk-
reads and minimal computation. Thert example application sorts a given file of structured recdrg&ey,
and represents a balanced mixed workload with disk-reasls,vetites, and network transactions to merge sorted
records. The Nutch web crawler represents a real-world wads and also represents a network-intensive workload
(relative to disk and compute activity). In our experimettier andomm i t er was typically configured to write 2
GB of data to each node, th®r t was typically set up to sort 2 GB of data per node (or a 10 GBs#dfaand Nutch
was used to crawl a locally mirrored static website with agpnately 2000 pages, served from an independent node
local to the experiment cluster but not running any Hadostsimce. Hence, we believe that our choice of workloads
feasibly provides adequate coverage of the possible Hadoddoads.

6.2.3 Change points applied: Characterizing normal appliation behavior

Next, the time series’ of each of the resource metrics andicgpion state counts were assembled into a single
trace for each run of an experiment. Visualization toolsemiien applied to each trace to generate plots of the
time series’ for resource metrics and application statentguand the change point algorithm was applied to the
time series’ for resource metrics and application statetourinally, the behaviors of pairs of the change points of
resource metrics and application state counts was marexdiyiined to identify consistent patterns during normal
application behavior that can be used as behavioral iraticatf normal application behavior. These signatures of
normal application behavior can then be applied to problEmgrbsis by identifying behaviors that deviate from this
prior-knowledge of problem-free behavior.

The generation of change points for application state cantl resource metrics is as follows. First, values
for the tunable parameters of Algorithm 1 were chosen: these window, the size of the observation window
measured in the number of samples to the left and right of tiet mnder consideration in the time series, and
thresh, the proportion of left meam, that the difference of meangu, must exceed for a change point to be
flagged. The tuning parameters were chosen to meet two ogjec(i) to generate application state count change
points that corresponded to high-level expectations baseslira priori understanding of the behavior of Hadoop
(forinstance, the number of map tasks changing in the Taslk&r should generate a change pointin our algorithm),
and (ii) to generate change points in as many resource metsipossible that lined up with the application state
change points. This uses the implicit assumption that theotiesis of theBlackSheempproach, that resource
metrics and application state counts should behave sigiliarcorrect—doing so is theoretically sound from a
machine learning point of view, as the assumption is akinBayesian assumption of priors, with the exception that
the parameters are being tuned by hand for (at least thialipéss of) this work.
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Next, change points were generated for each applicatio@ staint and each resource metric, based on tuning
parameter values that were chosen separately for applicsttite counts, and for resource metrics. The intermediate
results and eventual chosen parameter values of the tuniicg$s are reported in Section 6.3.1.

Finally, the corroboration between application state ¢®and resource metrics was verified using the algorithm
presented next, with the addition that the logarithmis=£ log(« + 1)) of all measured metrics was used to perform
analysis on the change points rather than the absolutesvafusbserved values.

6.2.4 Evaluation of corroboration between application stée counts and resource metrics

Next, we describe the methodology and algorithm for evalgahe paired behavior of change points in application
state counts and resource metrics. Algorithm 2 is the (gjgbécision function for determining if the presence (or
absence) of a change point in the resource metric correcliigted a presence (or absence) of a change point in the
application state, in which case a true positive or true tiegavas recorded respectively. Evaluation scores of the
accuracy of predictions were assigned as follows: non{hegeaalues were assigned to points in time for which true
positives or true negatives of application state changetpevere predicted by resource metric change points, and
negative values were assigned to points in time for whickefglositives or negatives were observed. The rationale
for this choice of scores is that the evaluation score is ihebiased against misdiagnoses, so that misdiagnosing
a change point (false positives/negatives) will impactgbere negatively much more than correctly diagnosing a
change point will positively impact it.

Algorithm 3 Decision function for deciding if two orthogonal views oftBystem agree with each other
1: procedure STATEMETRICCORROBORATEEVAL (changepoint metric, changepointsiaie) > changepoint’s are
boolean flags indicating if a change point occurred in thetseries of the resource metric or application state
count respectively
if (changepoint,,etric == true) && (changepointsiqare == true) then > True positive
return 1
else if (changepoint metric == false) && (changepointsiqare == false) then > True negative
return 0
else if (changepoint metric == true) && (changepointsiqare == false) then > False positive
return —2
else if (changepoint metric == false) && (changepointsiqare == true) then > False negative
return —1
10: end if
11: end procedure

The notion of true/false positives/negatives is definedtigd to resource metric change points being used to
predict application state change points. Change pointsdmpplication state are arbitrarily chosen, without Idss o
generality, to be the unobserved ground truth of the apjidica behavior, and the change points in resource metrics
are then used to classify or predict if there is a change poitiie application state. The observed application
state change points are then used to test if the predictiaerbg the (absence or presence of a) change point in
the resource metric of the application state change poiotiigect. It should be noted that due to our definition
of normal behavior as having both application state anduresometric change points agree with each other, this
choice of ground truth is without loss of generality and candversed.

6.3 Results and Analysis

Our analysis provides initial evidence supporting our hiapsis that application state counts and resource metrics
will agree with each other under problem-free, normal ekeauOur results suggest further directions for develop-
ing this hypothesis into a full-fledged approach for probtiagnosis.

In general, some application state count-resource mediis pave exhibited visually corroborating behavior,
in which change points in the count of the particular appitcastate occurred only together with change points in
the particular resource metric, after allowing for minogecffects due to possible lags in either of the variables of
interest.

In addition, there is evidence that workload types, as défim&ection 6.2.2, can be identified using change point
corroboration. Particular application state count-reseunetric pairs exhibited corroborating behavior only emd
particular workloads, and not others, suggesting that bserce or presence of corroboration between particular
application state count-resource metric pairs can serigeasifying signatures for workload types.
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6.3.1 Parameter tuning

We review the effects of different values for the two tungideameters for Algorithm 1, the window size measured
in number of samplesyindow, and the thresholdhresh as a proportion of the left meam,;,, on the change
points generated for each of application state counts asuliree metrics. We considered the change points in the
aggregate on state counts for each of the DataNode and Eaerr(i.e. a change pointis said to be observed in the
DataNode (or TaskTracker) at timé a change pointis observed in any of the application statethe DataNode (or
TaskTracker) at time, or more formallyVa € {statesqatanode/tasktracker ;> CRaNGEPOINt datanode /tasktracker =
max{z}) for tuning purposes. In order to maximize the amenabilftyhe change points generated for problem
diagnosis, we aimed to generate change points such thatpheation between groups of consecutive change points
was maximized. This was to maximize the degree to which wédodaually identify corroborating change points
between application state counts and resource metrics.

First, we held the value ofhresh constant, athreshgsiare = 20.0 andthreshresource = 1.0, and varied
window for aggregate application state counts for both aggregastdNode state counts and TaskTracker state
counts.

We found that the optimal values afindow that resulted in the greatest separation between grougsaoige
points differed for DataNode state counts and resourceiesetConsider Figure 7 and Figure 8: the change points
for the resource metric are relatively well-spaced in Fégtirwhere thevindow = 5, while the change points for
the DataNode state counts are relatively poorly spaced amdtappear to mark out distinguishable logical phases
of execution; on the other hand, in Figure 8, wittndow = 45, the change points for the resource metric are less
well-spaced and less coherent than in Figure 7, but the ehpoimts for the application state counts in Figure 8
have significantly greater separation between groups cfemirtive change points. Hence, we propose as a heuristic
that the value ofvindow for change point generation for resource metrics be apprabdly one order of magnitude
smaller than that for DataNode state counts, Withdow,csourcemetric = 5, ANdwindoWapplicationstatecounts =
45.

However, we found that the optimal value ©tndow for TaskTracker state counts and resource metrics that
resulted in the greatest separation between groups of eh@wigts was similar—for both TaskTracker state counts
and resource metrics, smaller valuesughdow gave rise to greater separation between groups of changespoi
We propose, as a heuristic, that a valuewhdow = 5 be used for computing change points in TaskTracker state
counts (while the heuristic for resource metrics from poagiy holds). This is as shown by Figures 9 and 10, where
the change points farindow = 5 are markedly more separated than for the change pointsitafow = 45.

The intuition behind the difference in the optimal windowes for DataNode state counts and for TaskTracker
state counts and resource metrics is that DataNode stateéscare experiencing changes in a different time-scale
than TaskTracker state counts and resource metrics. Irtéhdysstate during periods of workload, the DataNode
serviced many requests relative to the TaskTracker as eaplonreduce task handled by the TaskTracker involved
multiple data blocks. Thus, DataNode states tended to gdoitme intrinsic steady-state fluctuation that was normal
and expected of its problem-free behavior, while TaskTeadtates were relatively longer lived as compared to
DataNode states, and resource metrics experienced lessafion/fewer change points than DataNode state counts
for the same tuning parameters. Thus, different tuningrpatars can be used for the DataNode state counts, as the
changes in the DataNode state counts can be argued to bd fiertsteady state of its behavior.

Next, we studied the effect of varyin@resh, holdingwindowstate = window,esource = 20.0 constant.

We found that higher threshold values resulted in excelysmany change points being omitted from the time
series of resource metrics, resulting in a sparse serieBaofge points generated that fails to correspond with the
series of change points generated from application statatso For a value ofhresh = 4.0, as shown in the
top panel of Figure 11, the series of change points genefaipdthe time series of the resource metric is sparse
relative to the series of change points from the applicasiate counts in the bottom panel, while for a value of
thresh = 1.0, as shown in the top panel of Figure 12, the series of chanmesgs less sparse than in Figure 11,
but the change points remain well-spaced with significadt@ear separation between groups of successive change
points. We believe that the value tfiresh for resource metrics can be further lowered, but we have thetess
demonstrated that lower values @fresh are more effective for use with generating change pointgdsource
metrics.

In addition, we found that lower threshold values resulteéxcessively many change points being generated
for DataNode state counts, reducing the number of conseccitiange points, resulting in less smooth state count
change point plots, while lower threshold values resulteskicessively few change points being generated for Task-
Tracker state counts, increasing the number of conseathiaege points, resulting in smoother state count change
point plots. This is as demonstrated from the bottom pawesuif Figures 11, 12, 13 and 14 respectively. The change
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Figure 7: Plot of change points (binary indicators) of resource mé@iPU utilization, user%) in top panel, and of change points
of application state counts for DataNode in bottom paneh wiaxis measured in seconds for both platspdow = 5.

Figure 8: Plot of change points (binary indicators) of resource mé@iPU utilization, user%) in top panel, and of change points
of application state counts for DataNode in bottom paneh wiaxis measured in seconds for both plat$ndow = 45.
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Figure 9: Plot of change points (binary indicators) of resource mé@iPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom panéh x-axis measured in seconds for both plet$pdow = 5.
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Figure 10: Plot of change points (binary indicators) of resource méiPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom panéh x-axis measured in seconds for both plat$ndow = 45.
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point plots are smoother and the successive change powveggheater inter-change point separation for DataNode
state counts in Figure 12, with the largéreshgiqte = 4.0 than in Figure 11, with the smalléhreshgsqre = 1.0,

and so are more amenable to statistical analysis in gerldralchange point plots for TaskTracker state counts, on
the other hand, are smoother in Figure 14, withesh ;. = 1.0, than in Figure 13, withhreshgqie = 4.0.

The general intuition for the difference between the optivadue of thresh in these cases is that DataNode
states, such as ReadBlock and WriteBlock, are short-lif@dtlie configured block sizes) relative to TaskTracker
states, such as Maps and Reduces. Hence, with shorterstizes$, the DataNode has greater steady-state fluctua-
tions than the TaskTracker, so that for high-level meaniniget extracted from the DataNode state counts, greater
threshold values must be used to filter out fluctuations tretrdrinsic to its steady-state behavior to characterize
bulk behavior, which is more useful for problem diagnosigéneral. Also, the intuition for the optimahresh
value for resource metrics is that the heuristic that is iggidur choice in this case is our prior assumption of how
change points in resource metrics should corroborate Witthange points in application state counts.

Thus, we have demonstrated a few optimal tuning parameteesvdor Algorithm 1, and have in so doing
demonstrated that our hypothesis has thus far been sugdwoytéhe successful tuning of the parameters. The
general intuition obtained from the tuning process suggstt the parameters used by the algorithm are sensitive
to the configuration of the application, and has illuminatethe aspects of the behavior of the application.

This is a double-edged sword, as it demonstrates that dnglytze change points of application states and re-
source metrics together can aid in understanding the aiolic; but also that tuning the algorithm can be a challenge
for users without significant prerequisite knowledge atlibatapplication to be profiled/to have problem diagnosis
carried out. However, this is also an opportunity, as Bayekyper-parameter learning can be applied to the problem
of learning the optimal values of the tuning parametersthadearning process itself can provide positive feedback
to the diagnostic process, as will be described in Sectigr28.

6.3.2 Distinguishing workloads

From the trace data collected, we found that particularspafithe counts of particular application states and the
metrics of particular resources displayed consistent\iehavithin each workload, but varied across workloads.
One such case in point is the change point series of the cofititie ReduceTask state for the TaskTracker, and the
change point series of the user-space percentage CPlatititizuser %) resource metric.

From traces shown in Figures 15 and 16 for tlendomar i t er andsort workloads respectively, it can be
seen that there is a strong co-occurrence of the changespditite counts of the ReduceTask state and the change
points of theuser %metric, such that the presence (and absence) of a changémpibia state count or metric serves
as a good predictor of the presence (and absence) of thecraesttiate count respectively.

On the other hand, from the trace shown in Figure 17, for theeNweb crawler workload, it can be seen that
the co-occurrence of the change points of the counts of tliei€®Task state and the change points ofuber %
metric is much weaker than in the previous two workload$calgh all three traces were drawn from problem-free
runs. This suggests that the patterns of the strength o€corence of change points in application state counts and
metrics can be used as a signature for workloads to infeytieedf workload being executed on a given node.

An explanation for the difference in change point behaveinezen the andomwr i t er andsort workloads
and the Nutch web crawler workload is that the former two Wwalls contain periods of disk-1/0-bound activity,
when large amounts of blocks are being written to disk, wthieeweb crawler workload does not have such a phase
of execution. This suggests that a strong co-occurrencharige points for the ReduceTask state anduther %
metric can be an indicator for disk-1/0-bound activity.

Again, the higher level implication of this observationtigt patterns can be found in co-occurrences of behaviors
in application state counts and resource metrics to legmasiires of workload types for anomaly detection.

6.3.3 Change point corroboration with resource metrics

Next, we present, in Figure 18 a visualization of the operatif our change point corroboration algorithm, Algo-
rithm 3, using a single resource metric and a single apjicatate count, when applied to every point in the time
series of change points generated from a resource metrigraapplication state count. The values of the evaluation
score defined in Section 6.2.4 are plotted against time aldaghe time series of change points for the resource
metric and counts of the chosen application state. Thistithtes how we evaluate the efficacy of the corroboration
of check points for a single experimental run.

This example trace highlights one source of false positireksnegatives in the corroboration of change points-
—edge effects, due to minor lags in the response of appicatiate counts to resource metrics, or vice versa. Even
in the case that application state count change points appe#ually line up with resource metric change points,
false positives and negatives still occur in the immedi&tinity of the change points in the time series, resulting in
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Figure 11: Plot of change points (binary indicators) of resource mei@PU utilization, user%) in top panel, and of change
points of application state counts for DataNode in bottomahawith x-axis measured in seconds for both plotsieshmeiric =
4.0, threshstate = 4.0.

Figure 12: Plot of change points (binary indicators) of resource mei@PU utilization, user%) in top panel, and of change
points of application state counts for DataNode in bottomghawith x-axis measured in seconds for both plotsieshmetric =
1.0, threshstate = 1.0.
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Figure 13: Plot of change points (binary indicators) of resource mé@PU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom pawith x-axis measured in seconds for both pldts;reshmetric =
4.0, threshstate = 4.0.

tasktracker

Figure 14: Plot of change points (binary indicators) of resource méiPU utilization, user%) in top panel, and of change points
of application state counts for TaskTracker in bottom pawéth x-axis measured in seconds for both platsreshmetric =
1.0, threshstate = 1.0.
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tasktracker

Figure 15: Plot of change points (binary indicators) of resource mei@PU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in batfwanel, with x-axis measured in seconds for both plots; el'aa
single run of & andomar i t er workload.

Tineie

Tineis

Figure 16: Plot of change points (binary indicators) of resource mei@PU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in batfmanel, with x-axis measured in seconds for both plots; elafa
single run of asor t workload.
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false positives and negatives that are spurious and ngtitrdicative of prediction error. This issue is addressed,
and a solution is proposed, in Section 8.3.1. Apart from edigets, it appears that false positives and negatives also
result from tuning parameter values that result in diffehégh-level sensitivities of the change points produceth w
change points being generated for changes that have differgers, that parameter tuning will be highly critical to
any success of this approach.

6.3.4 Change point corroboration: Evaluation

Finally, we present aggregate statistics of the evaluaamres for the corroboration between the change points
of every pair of application state and resource metrics feingle representative node in a single representative
experimental run for each workload type, as anillustratititme general performance of our corroboration technique
in its current form. The histograms presents the frequeficyemn evaluation scores for application state-resource
metric pairs.

From Figures 19, 20, and 21, it can be seen that the evalustmnes for all application state-resource metric
pairs are negative, indicating that the false positivedtigg rate for the change point corroboration is currendly n
sufficiently effective for the corroboration of change fsito be used as a problem diagnosis algorithm.

Nonetheless, the modal mean evaluation score is approadynat —0.1, with a strong distribution of mean
evaluation scores around this range. This implies thaethes slightly more than two false negatives or one false
positive on average for every true positive (see Sectiod6a2 a detailed definition of true/false positives/neggdi
in this context). Given that the mean evaluation score i®athand only slightly negative, this suggests that there
is potential for the algorithm to be refined to produce bettassification results than a random classifier.

Finally, the histograms of mean evaluation scores for adghworkloads are similar in shape, suggesting that
our approach is possibly agnostic to different workloades/p

7 Related Work

7.1 Problem-Diagnosis Techniques

There are many existing techniques to perform problem disignin distributed systems. THRAMSapproach
proposed here differs from those of Cohen et al [11] and Rimdb] in a few ways. First, we do not employ
any learning or training prior to problem diagnosis. Ourra@gh is based on a hypothesizegriori model of
problem-free system behavior, and we use statistical ndsthwm establish whether this hypothesized behavior is
being followed. Our technique has no learning overheaddxxwnstrained by the degree to which our hypothesized
model of system behavior is applicable to other types oesyst

Second, both Pinpoint and Cohen’s "ensembles” utilize tesyavide, global approach that examines metrics on
every node in the distributed system. This may cause stifyabsues in terms of computation and communication
overhead in large systems (although [11] presents a seaqiproach). Both thRAMSandBlackSheeppproaches
addresses scalability by making the rather strong assamfiat information local to a node alone is sufficient
for problem diagnosis, thereby saving the network bandwigteded to transmit metrics to a central location for
analysis, and limiting the analysis to the size of the penfmce-data set of one node.

Our approach is also a black-box technique (although we deraae of white-box information, obtained via
black-box techniques, in the form of application logs), &&MSaims for problem diagnosis without using any
application-level knowledge, in constrast with Pip’s vehiiox approach [16]. Finally, the "odd-man-out” peer-
comparison heuristic [15] proposed by Pertet et al mightyafapthe target distributed system used in our paper, as
the slave nodes in a Map/Reduce cluster could conceivahiyrioeng very similar workloads and therefore, might
lend themselves to the peer comparison of performance digpadblem diagnosis.

7.2 Vertical Profiling

The idea of correlating system behavior across multiplerdagf a system is not new. Hauswirth et al's "vertical pro-
filing” [9] aims to understand the behavior of object-orehpplications by correlating metrics collected at vasiou
abstraction levels in the system. Vertical profiling wasdusediagnose performance problems in applications in a
debugging context at development time, requiring accessuoce code while our approach diagnoses performance
problems in production systems without using applicatioawdedge.

8 Future Work

8.1 Sliding windows forRAMS

Currently, the use of an ordinary least squares linear ssgye to compute a test statistic as a criteria for diagnosis
requires the use of large windows of samples (at least 30 tabiples) for the linear regression to produce statisti-
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cally sound (unbiased estimators with reasonably goodsitinates of the various parameters. Hence, the next area
of improvement foRAMSis to use more direct measures of correlation other tharcatrgation between lagged
residuals in an ordinary least squares linear regressiois.Will reduce the computational cost of computing the test
statistic needed for determining if a node is a problem nédso, the use of a sliding window, in conjunction with
more direct measures of correlation, will hopefully redtlee number of samples needed for a statistically sound
test statistic to be computed.

8.2 Experimental Setup forBlackSheep

The two main areas of improvement for the experimental ptoceforBlackSheepre in (i) the controlled measur-
ing of the overheads of instrumentation, as measured iesystsource usage and impact on system performance,
and (ii) the varying of workloads for Hadoop to increase tlemeayality of the experiments ran, to create work-
loads with a variable mix of modes of operation (disk-, cotepumemory-, or network-intensive, for instance),
and to identify any characteristics of Hadoop that exhitstable relationship with workloads that vary along the
dimensions we have defined.

8.3 Change Point Corroboration

Various improvements and enhancements can be made to thal@eange point corroboration algorithm to im-
prove its accuracy in correctly predicting applicatiortestaehavior (in terms of change points) using the behavior
of resource metrics, to create a viable problem diagnogisoagh.

8.3.1 Accounting for edge-effects in change point corrobaition

To account for edge-effects and possible lags in applicdighavior, we intend to implement a low-pass Gaussian
filter over a tunable window size of change points observéarbend after the given instance in time of observation-
—for a given change point detected in the system resourcecnagttime, if a change point is observed in the
application state count in a time within the given windéwe [t — w, ¢ 4+ w], then, the algorithm diagnoses the
application as being problem-free with a probability thas la Gaussian fall-off, so that the further frorhat the
application state count change point is observed, the Itivgeprobability that the application is truly problem free.
Conversely, if a change point is not observed in the systepuree metric at timg but a change pointis observedin
the application state count within the given window’at [t —w, t+w], then the algorithm diagnoses the application
as having a problem with probability that has a Gaussiarofillso that the greater the differenge- ¢'|, the lower

the probability that the application has a problem.

8.3.2 Dealing with magic numbers: Bayesian hyper-parametdearning

The BlackSheempproach currently uses two tunable parameters: a windmvesid a threshold. However, initial
results have proved that optimal values for these parametar be highly sensitive to the particular variables in
guestion that they are applied to, specifically, resourceioseand application state counts. Hence, an approach to
these magic numbers, or optimal values for tunable parameteuld be to introduce an additional layer of Bayesian
hyper-parameter learning to learn values for these tunzdoi@meters that will optimize the classification problem
of change point identification in application states.

8.3.3 Learning workload identities

Finally, an extension of thBlackSheephange point corroboration technique would be to use the sdiange point
corroboration ideas to attempt to learn identities of woakls, and to find out if the parameters that identify these
workloads can be composed in an intelligible manner to ers@gnatures of arbitrary workloads as defined using
change point corroborations between application statats@and resource metrics.

8.4 Application logs

Finally, yet another extension to the work presented hetle thie Hadoop log parser would be to identify charac-
teristics of applications and their logs in general that Md@ender them amenable to similar treatment of extracting
events, and more importantly, inferring states of exeastiof the applications.

9 Conclusion

In conclusion, we have presented: (i) what we believe to bev@lruse of application logs to extract application
events, and to use these events to infer high-level, seaadigtrich states of execution of the application; RAMS

a new, scalable black-box approach to problem diagnosigusitremely low-level metrics, hardware performance
counters, in conjunction with aa priori statistical model of the behavior of nodes in a distributgstem, to
perform node-local problem determination in a distribuggdtem, and (iiiBlackSheepa black-box technique for
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characterizing application software behavior by synttingi application behavior, as reported through applicatio
logs using our newly presented log parsing technique amdrifptogether with collections of operating system-
reported resource metrics, with the eventual objectiveediggming problem diagnosis by detecting anomalies from
normal application behavior. Not only have we describedtfireciples behind the algorithm and the architecture of
our log parser for inferring state, we have also presentéanentary results demonstrating the efficacyRéMSat
problem determination. Lastly, we have shown an approasknthesizing information from application logs with
operating system metrics.

Acknowledgements

I would like to thank Priya Narasimhan for her advice, constacouragement and inspiring thoughts, and Xinghao
Pan for enduring many animated descriptions of this workhevit which this project would not have been possible.
This work is also dedicated to my parents and sister, for thivavering, whole-hearted support for me to pursue
my dreams.

References

[1] M.K. Agarwal, M. Gupta, V. Mann, N. Sachindran, N. Anesis; L. Mummert.Problem Determination in
Enterprise Middleware Systems using Change Point Cormeladf Time Series Data Proc. 10th IEEE/IFIP
Network Operations and Management Symposium, Vancouwzr2B06.

[2] P. Barham, A. Donnelly, R. Isaacs, R. Mortiélsing Magpie for request extraction and workload modelling
Proc. 6th Symposium on Operating Systems Design & Impleatient, San Francisco, CA, 2004.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A&, R. Neugebauer, I. Pratt, A. Warfielden and the
Art of Virtualization, Proc. 2003 Symposium on Operating Systems Principles,nibdy.

[4] M. Basseville, I. V. Nikiforov. "Change Detection Algithms” in Detection of Abrupt Changes: Theory and
Application,1st ed. New Jersey, USA: Prentice Hall, 1983, pp. 23-62.

[5] M. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewd?inpoint: Problem Determination in Large, Dynamic
Internet Services. Proc. International Conference on Dependable Systems ahaorks, Bethesda, MD,
2002.

[6] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. KellyFax.Capturing, Indexing, Clustering, and Retrieving
System History. Proc. 2003 Symposium on Operating Systems Principles, Naw, XY.

[7] J. Dean, S. GhemawaWlapReduce: Simplified Data Processing on Large ClusterBroc. 6th Symposium on
Operating Systems Design & Implementation, San Franciség2004.

[8] S. Ghemawat, H. Gobioff, and S. Leurithe Google File System. 19th Proc. 19th Symposium on Operating
Systems Principles, Lake George, NY, October, 2003.

[9] M. Hauswirth, A. Diwan, P. Sweeney, M. Hind/ertical Profiling: Understanding the Behavior of Object-
Oriented Applications. presented at the 19th Annual ACM Conference on Object-@tRrogramming,
Systems, Languages, and Applications, Vancouver, BC, dzarzd04.

[10] J. HansenTrend Analysis and Modeling of Uni/Multi-Processor Eveags. Electrical and Computer Engi-
neering Department, Carnegie Mellon University. PittgiiiPA. Rep. CMU-ECE-1988-025, 1988.

[11] C. Huang, I. Cohen, J. Symons, T. Abdelzaher. "Achig\talable Automated Diagnosis of Distributed Sys-
tems Performance Problems,” Enterprise Systems and Seftwadoratory, HP Laboratories Palo Alto. Palo
Alto, CA. Rep. HPL-2006-160(R.1), 2007.

[12] T. T Y. Lin, D P Siewiorek Error Log Analysis: Statistical Modeling and Heuristic Tiet Analysis. |EEE
Transactions on Reliability, Volume 39, Issue 4, Oct 1990,419-432.

[13] G. S. Maddala, "Autocorrelation” itntroduction to Econometrics8rd ed. West Sussex, UK: John Wiley &
Sons, 2001, pp. 228-249.

[14] A. Menon, J. Santos, Y. Turner, G. Janakiraman, W. Zwaeel.Diagnosing Performance Overheads in the
Xen Virtual Machine Environment. Proc. First ACM/USENIX International Conference on VirtiExecution
Environments, Chicago, IL, 2005.

[15] S. Pertet, R. Gandhi, P. Narasimh&mgerpointing Correlated Failures in Replicated Systemgresented at
the USENIX Workshop on Tackling Computer Systems ProbleittsMachine Learning Techniques (SysML),
Cambridge, MA, April 2007.

[16] P. Reynolds, C. Killian, J. Wiener, J. Mogul, M. Shah Mahdat.Pip: Detecting the Unexpected in Distributed
Systems. Proc. 3rd Symposium on Networked Systems Design & Impleatiemt, San Jose, CA, 2006.

[17] D. Tang, R. lyerAnalysis of the VAX/VMS Error Logs in Multicomputer Enviteents A Case Study.Proc.,
3rd International Symposium onSoftware Reliability Eregring, Research Triangle Park, NC, 1992.

30



[18] J. Tucek, S. Lu, C. Huang, S. Xanthos, Y. Zhdtiage: diagnosing production run failures at the usertesi
Proc. 21st Symposium on Operating Systems Principlese8sen, WA, 2007.

[19] I. Witten, E. Frank, Data mining : practical machine learning tools and techregi2nd ed. Boston, MA:
Morgan Kaufman, 2005, pp. 161-176.

[20] White, B. Lepreau, J., Stoller, L., Ricci, R., GurupadsS., Newbold, M., Hibler, M., Barb, C., Joglekan
integrated experimental environment for distributed syst and networks. Proc. 5th Symposium on Operating
Systems Design & Implementation, Boston, MA, 2002.

[21] O. R. Zaane, H. M. Taxin, J. HanDiscovering Web Access Patterns and Trends by Applying GioAFData
Mining Technology on Web Logs.Proc. Advances in Digital Libraries, Pittsburgh, PA, 1998.

[22] Intel 64 and 1A-32 Architectures Software Developer’'s MariWolume 3B: System Programming Guide, Part
2, Intel Corporation, Santa Clara, CA, 2008.

[23] Apache Software Foundation issue database. htgmu#s.apache.orgl/jira, 2006.

[24] Apache Logging Services Project. http://logging @paorg/log4j/, 2007.

[25] Hadoop. http://lucene.apache.org/hadoop, 2007.

[26] core-user@hadoop.apache.org Archives. http:/faraihives.apache.org/mmabox/hadoop-core-user/, 2006.

[27] Java Virtual Machine Tool Interface. http://java.stom/j2se/1.5.0/docs/guide/jvmti/index.html, 2004.

[28] Nutch. http://lucene.apache.org/nutch, 2004.

[29] oprofile. http://oprofile.sourceforge.net, 2003.

[30] SYSSTAT. http://pagesperso-orange.fr/sebastatagd/, 2002.

31



APPENDIX

A Hadoop Application States

The list of DataNode and TaskTracker events and states tin&tadoop log parser extracts from the DataNode and
TaskTracker logs respectively are as listed. Ttk state is a special state which is never reported, but is dieclu
for completeness’ sake. The TaskTracker and DataNode areieglied to be in thddie state by an absence of
counts of all other states.

The Error state can either be an instant or persistent state—inktamt- states are ones reported on encounter-
ing error messages in the log, while persistent-or states are reported when any of the other persistent states a
reported to have been terminated due to an error.

A.1 TaskTracker Events and States

States / Events StartStartEvent? StateStopEvent} InstantStateEvent?
Idle N N N
Error Y Y Y
ReduceTask Y Y N
ReduceCopyTask Y Y N
ReduceCopyTaskocal Y Y N
ReduceCopyTaskemote Y Y N
ReduceSortTask N N Y
ReduceMergeCopy Y Y N
ReduceReduceTask N N Y
MapTask Y Y N
CleanUp N N Y
A.2 DataNode Events and States
States / Events StartStartEvent? StateStopEvent? InstantStateEvent
Idle N N N
DeleteBlock N N Y
ReadBlockRemote Y Y N
WriteBlockLocal Y Y N
WriteBlockRemote Y Y N
WriteBlockLocalReplicated Y Y N
WriteBlockRemoteReplicated Y Y N
Error Y Y Y
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Figure 17: Plot of change points (binary indicators) of resource megi@PU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in batfwanel, with x-axis measured in seconds for both plots; el'aa

single run of a Nutch workload.
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tasktracker state - TTS_ReduceTask - changepoint comparison - user - window 30 + threshold 2.000000 * mean

tmsktracker
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Figure 18: Plot of change points (binary indicators) of resource mei@PU utilization, user%) in top panel, and of change
points of application state counts for TaskTracker in thédi@ panel, and the evaluation score of the change poineiretfource
metric for predicting a change point in the applicationestaiunt, with x-axis measured in seconds for all three ploee of a

single run of @& andomar i t er workload.

34



Histogram of mean evaluation scores for metric-state pairs for randomwriter
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Figure 19: Plot of histogram of evaluation score values for each ptss¢épplication state)-(resource metric) change poirieser
pair. Trace of a single run offlandomar i t er workload on a single representative node.

Histogram of mean evaluation scores for metric-state pairs for sort
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Figure 20: Plot of histogram of evaluation score values for each pésg#pplication state)-(resource metric) change poirnieser
pair. Trace of a single run ofsor t workload.
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Histogram of mean evaluation scores for metric-state pairs for Nutch
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Figure 21: Plot of histogram of evaluation score values for each pts§#pplication state)-(resource metric) change poirieser
pair. Trace of a single run oflsut ch workload.
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1401-node1 :hadoop~d: de-events

T T
DNS_DeleteBlock-InstantStateEvent

DNS_ReadBlockLocal-StateStartEvent
DNS_ReadBlockLocal-StateEndEvent

DNS_ReadBlockRemote-StateStartEvent

DNS_|
DNS_MWriteBlockLocal-StateStartEvent
DNS_MWriteBlockLocal-StateEndEvent
DNS_WriteBlockRemote-StateStartEvent
DNS_MWriteBlockRemote-StateEndEvent
6 — b 2 DNS_WriiteBlockLocal_Replicated-StateStartEvent
DNS_WriteBlockLocal _Replicated-StateEndEvent
DNS_WriteBlockRemote_Replicated-StateStartEvent
DNS_MWriteBlockRemote_Replicated-StateEndEvent
_Error-StateStartEvent
DNS_Error-StateEndEvent
DNS_Error-InstantStateEvent
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Figure 22: Plot of time series of counts of application events as regboly the Hadoop DataNode, as parsed by our Hadoop log
parser.
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20080407-002-1401-node1 :hadoop-datanode-state

12 T T T T T T
DNS_DeleteBlock ———
DNS_ReadBlockLocal ———
DNS_ReadBlockRemote ————
DNS_WriteBlockLocal ———
DNS_WriteBlockRemote
DNS_WriteBlockLocal _Replicated ———
DNS_MWriteBlockRemote_Replicated
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Figure 23: Plot of time series of counts of application states as repldsy the Hadoop DataNode, as parsed by our Hadoop log
parser.
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20080407-002-1401-nodel :hadoop-tasktracker—events
5 T T T T T T

T

TTS_Error-StateStartEvent ———
TTS_Error-StateEndEvent ———
TTS_Error—InstantStateEvent
TTS_ReduceTask-StateStartEvent
TTS_ReduceTask-StateEndEvent
TTS_ReduceTask-InstantStateEvent
TTS_ReduceCopuTask-StateStartEvent
TTS_ReduceCopyTask-StateEndEvent.
TTS_ReduceCopuTask-InstantStateEvent.
TTS_ReduceCopyTask_Local-StateStartEvent.
TTS_RedudeCopuTask_Local-StateEndEvent
TTS_ReduceCopuTask_Local-InstantStateEvent
TTS_ReduceCopuTask_Remote-StateStartEvent
TTS_ReduceCopyTask_Remote-StateEndEvent
4 TT9_RedugceCopyTask_Remote-InstantStateEvent
TTS_ReduceSortTask-StateStartEvent.
TTS_ReduceSortTask-StateEndEvent
TIS_ReduceSortTask-InstantStateEvent
S_ReduceMergeCopy-StateStartEvent
| TTS_ReduceMergeCopy-StateEndEvent
TTS_ReduceMergeCopy-InstantStateEvent
TTS_ReduceReduceTask-StateStartEvent
TTS_| Task-Stat. nt

TS Task-T, tStateE
TTS_MapTask-StateStartEvent
TTS_MapTask-StateEndEvent
TTS_CleanUp-InstantStateEvent
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Figure 24: Plot of time series of counts of application events as repoby the Hadoop TaskTracker, as parsed by our Hadoop
log parser.
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2 407-002-1401 del:hadoop-tasktracker-state

5 T T T T T T T
TTS_ReduceTask
TTS_ReduceCopyTask
TTS_ReduceCopyTask_Local
TTS_ReduceCopuTask_Remote
TTS_ReduceSortTask
TTS_ReduceMergeCopy ———
TTS_ReduceReduceTask
TTS_MapTask
TTS_CleanUp
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Figure 25: Plot of time series of counts of application states as repdoly the Hadoop TaskTracker, as parsed by our Hadoop
log parser.
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