
CMDragons 2010 Extended Team Description

Stefan Zickler, Joydeep Biswas, James Bruce,
Michael Licitra, and Manuela Veloso

Carnegie Mellon University
{szickler,jbruce,veloso}@cs.cmu.edu

{joydeep,mlicitra}@cmu.edu

Abstract. In this paper we present an overview of CMDragons 2010,
Carnegie Mellon’s entry for the RoboCup Small Size League. Our team
builds upon the research and success of RoboCup entries in previous
years. Our team’s success can be contributed to a well-balanced combi-
nation of sophisticated robot hardware and a layered, intelligent software
architecture consisting of computer vision, multi-robot play selection, as
well as single robot tactics and navigation.

1 Introduction

Our RoboCup Small Size League entry, CMDragons 2010, builds upon the on-
going research used to create the previous CMDragons teams (1997-2003, 2006-
2009) and CMRoboDragons joint team (2004, 2005). Our team entry consists of
five omni-directional robots controlled by an offboard computer. Sensing is pro-
vided by two overhead mounted cameras via the SSL-Vision system. This first
half of this paper describes the robot and vision hardware of the system. The
second half of this paper describes the overall architecture and individual com-
ponents of the offboard control software required to implement a robot soccer
team.

2 Hardware

The modern Small Size League has brought along many challenging demands
on hardware. To perform well as a team, robots need to be reliable, fast, and
accurate in their actuations. Similarly, global vision sensing needs to not only
be low-latency, but also needs to have sufficient resolution to accurately localize
the robots and the ball on the relatively large field. This Section describes these
hardware components of our system.

2.1 Vision

In previous years, the CMDragons team has relied heavily on traditional off-the-
shelf camcorders in conjunction with low-cost capture cards as its vision system.
Our previous hardware delivered a 640 × 240 pixel video stream at 60Hz. The



2

continued increases in field size however, have led this system to reach its limits
in terms of resolution. Another limitation of this traditional vision hardware is
the inability to modify video settings without physically interacting with the
camera which is mounted above the playing field. To overcome these issues,
CMDragons 2010 features two new IEEE 1394B (Firewire 800) cameras (AVT
Stingray F-46C) which provide a 780 × 580 YUV422 progressive video stream
at 60Hz, thus delivering roughly three times as much data throughput as our
previous system. Each camera is connected to the central computer via two
dedicated PCI-Express IEEE 1394B cards. The images delivered by the cameras
are then processed by the vision software which is described in detail in Section
3.1.

2.2 Robots

Fig. 1. A CMDragons robot shown with and without protective cover.

Our team consists of seven homogeneous robot agents, with five being used
in a game at any point in time. In Figure 1, an example robot is shown with and
without a protective plastic cover. The hardware is the same as used in RoboCup
2006-2009. We believe that our hardware is still highly competitive and allows
our team to perform close to optimal within the tolerances of the rules. One
noticeable hardware improvement for 2010, however, is a new dribbler-mount
assembly, better protecting the robot’s infrared sensors and dribbler motor. Be-
sides this hardware improvement, we focus most of our efforts on improving the
software to fully utilize the robots’ capabilities instead.

The robot drive system and kicker are shown in Figure 2. Each robot is omni-
directional, with four custom-built wheels driven by 30 watt brushless motors.



3

Each motor has a reflective quadrature encoder for accurate wheel travel and
speed estimation. The kicker is a large diameter custom wound solenoid attached
directly to a kicking plate, which offers improved durability compared to designs
using a standard D-frame solenoid. The kicker is capable of propelling the ball
at speeds up to 15m/s, and is fully variable so that controlled passes can also be
carried out. The CMDragons robot also has a chip-kicking device in the style of
FU-Fighter’s 2005 robot design. It is a custom-made flat solenoid located under
the main kicker, which strikes an angled wedge visible at the front bottom of
the robot. The wedge is hinged and travels a short distance at a 45% angle from
the ground plane, driving the ball at a similar angle. It is capable of propelling
the ball up to 4.5m before it hits the ground. Both kickers are driven by a bank
of three capacitors charged to 200V . The capacitors are located directly above
the kicker and below the electronics, leading to our unusual mechanical design
which lacks a single connected “midplate”. By using a slightly thicker baseplate,
and several partial midplates with multiple standoffs for support, we were still
able to design a highly robust robot.

Ball catching and handling is performed by a motorized rubber-coated drib-
bling bar which is mounted on an hinged damper for improved pass reception.
The dribbling bar is driven by a brushless motor so that it can achieve a high
speed without sacrificing torque. The hinged damper can also be retracted us-
ing a small servo. This is used during certain kicking maneuvers, so that the
dribbling bar does not interfere with speed or accuracy.

Fig. 2. Top view of the robot drive system, kicker, and dribbler.



4

Our robot is designed for full rules compliance at all times. The robot fits
within the maximum dimensions specified in the official rules, with a maximum
diameter of 178mm and a height of 143mm. The dribbler holds up to 19% of the
ball when receiving a pass, and somewhat less when the ball is at rest or during
normal dribbling. The chip kicking device has a very short travel distance, and at
no point in its travel can it overlap more than 20% of the ball due to the location
of the dribbling bar. While technically able to perform kicks of up to 15m/s, the
main kicker has been hard-coded to never exceed kick-speeds of 10m/s for full
rule compliance.

The robot electronics consists of an ARM7 core running at 58MHz linked
to a Xilinx Spartan2 FPGA. The ARM7 core handles communication, runs the
PD drive control calculations, and monitors onboard systems. The FPGA im-
plements the quadrature decoders, PWM generation, serial communication with
other onboard devices, and operates a beeper for audible debugging output.
Figure 3 shows the main electronics board which integrates all electronic com-
ponents except for a separate kicker board and IR ball sensors. This high level
of integration helps to keep the electronics compact and robust, and helps to
maintain a low center of gravity compared to multi-board designs. Despite the
limited area, a reasonable amount of onboard computation is possible. Specifi-
cally, by offloading the many resource intensive operations onto the FPGA, the
ARM CPU is freed to perform relatively complex calculations.

Fig. 3. The main robot electronics board for CMDragons 2010.



5

World Model

Single-Robot Tactics

Multi-Robot Strategy Playbook

SoccerServer

Tracker

Radio Server

Vision

Camera

Camera

"SSL-Vision"
Vision System

GUIViewer Logging

Navigation Planner

Fig. 4. The general architecture of the CMDragons offboard control software.

3 Software

The software architecture for our offboard control system is shown in Figure 4.
Our entire software architecture has been written in C++ and currently runs un-
der Linux. It follows the same overall structure as has been used in the previous
year, outlined in [1, 2]. The major organizational components of the system are a
server program which receives the vision system’s output and manages commu-
nication with the robots, and two client programs which connect to the server
via UDP sockets. The first client is a soccer program, which implements the
soccer playing strategy and robot navigation and control, and the second client
is a graphical interface program for monitoring and controlling the system. The
details of the soccer program are described in the following Sections.

The server program consists of tracker, radio, and a multi-client server. The
tracker receives the raw positions and orientations from the SSL-Vision system
(see Section 3.1). Tracking is achieved using a probabilistic method based on
Extended Kalman-Bucy filters to obtain filtered estimates of ball and robot po-
sitions. Additionally, the filters provide velocity estimates for all tracked objects.
Further details on tracking are provided in [6]. Final commands are communi-
cated by the server program using a radio link as described in Section 3.2. Al-
ternatively to running the server which observes and interfaces with the actual
robots, it is also possible to employ the simulator which appears semantically
identical to the server, but uses an internal, physics-based world model. The
details of this simulator are described in Section 3.3.

3.1 Vision

CMDragons 2010 operates using SSL-Vision as its vision system [7]. In our lab,
we use two Firewire 800 cameras (AVT Stingray F-46C) which provide a 780×580
progressive video stream at 60Hz. SSL-Vision is released as open source and
is therefore available to all teams. In order to use SSL-Vision, the “Vision”



6

component in Figure 4 represents a network client that receives packets from the
SSL-Vision system. These packets will contain the locations and orientations of
all the robots, as well as the location of the ball. However, data fusion of the two
cameras and motion tracking will continue to be performed within our system,
as SSL-Vision does not currently support such functionality.

For competing in RoboCup 2010, SSL-Vision provides several advantages
compared to CMDragons pre-2009 system. One major improvement is the ge-
ometry calibration of the cameras. Our previous system required the use of
paper calibration patterns to be carefully placed on the field for calibration pur-
poses. SSL-Vision does not require any such calibration patterns and can be fully
calibrated through its user interface. Another improvement is that SSL-Vision
provides direct access to all DCAM parameters of our Firewire cameras, thus
allowing configuration of settings such as exposure, white balance, or shutter
speed, during runtime. Finally, SSL-Vision contains a very open and extendible
architecture, allowing the interchangeability of different image processing “plug-
ins”. This will allow teams to develop their own improvements and extensions to
the system, such as faster image processing algorithms or improved calibration
routines. It furthermore allows quick switching and performance comparisons
between such plugins.

3.2 Wireless Communication

Wireless communication with the robots is performed in the 902-927 MHz fre-
quency range through the Linx HP3 module connected via a standard serial port.
The CMDragons robots are fully equipped with both receivers and transmitters
which provides them with bi-directional communication abilities, thus not only
allowing the central software to control the robots, but also allowing the con-
trol software to receive IR sensor feedback and battery status from the robots.
However, due to the added latency of these robot observations, the system relies
mostly on one-way communication for control only. Sensor observations however,
are used if vision data becomes unavailable (e.g. in case of occlusion).

3.3 Simulator

Being able to accurately simulate robot behaviors is an integral part of our
team’s development cycle. Simulation allows rapid testing of new code without
the need to impose drain on our robotic hardware. Additionally, it allows us to
simulate scenarios which we are unable to recreate by our limited number of
physical robots, such as full five-on-five RoboCup games. In recent years, our
ball-manipulation capabilities and behaviors have become very sophisticated.
Our strategies often rely on complex dynamics interactions such as deflecting a
ball off from opponents. The introduction of chip-kicks has added the additional
requirement of three-dimensional simulation. Finally, many of our most recent
behaviors rely heavily on our robots’ ball-dribbling capabilities, and thus should
also be accommodated in a simulated model.



7

In order to model such behaviors, we use a simulator that is able to compute
complex rigid body dynamics. Various free and commercial simulation engines
exist to perform this task. We choose NVIDIA’s PhysX as our simulation engine
due to its performance and ease of use, but other candidates such as e.g. the Open
Dynamics Engine (ODE) might be equally suited. The concept of such simulation
engines is that, given a scene of rigid-bodies and a set of initial positions and
velocities, we can apply forces and torques to arbitrary objects in the scene. The
engine will then integrate the scene forward in time, automatically resolve any
rigid-body interactions (such as collisions) using basic Newtonian physics, and
finally provide us with a new state of positions and velocities. Our simulator
is able to act as a full replacement of the standard server depicted in Figure 4,
thus processing the soccer-system’s commands and returning the newly observed
state of the world.

t

r2

r1
f1

f2

Fig. 5. A diagram of the simulated dribbling model and its parameters.

Our robots are modeled using a convex triangulated shell in combination with
other convex rigid-body primitives. The golf-ball is approximated by using a sim-
ple sphere. In order to achieve accurate dynamics simulations, it is important
that we have an adequate model of our robot’s ball-handling capabilities. One
particularly challenging issue is to correctly model the robots’ dribbler-bar. One
approach is to model the dribbler implicitly, by defining a motorized, rotating,
high-friction cylinder which is connected to the robot by using a rotary joint. In
practice however, this approach failed to accurately model the dribbling behav-
ior, possibly due to the accumulation of joint-error and an insufficient simulated
torque transfer between the bar and the ball. The approach we took instead
was to model the dribbling action explicitly: if the ball is in contact with the
dribbler-bar then we directly apply a torque to the ball facing towards our robot.
The exact dribbling behavior can be controlled by modifying the various vari-
ables that affect the ball’s dynamics. A diagram of the dribbling model is shown
in Figure 5. The applied torque is depicted as t. Variables that affect our ball,
are the friction in relation to the floor f2 and in relation to the dribbler bar f1.



8

The dribbler bar uses an anisotropic friction model, defining low friction against
the vertical direction of the bar (thus, roughly simulating a freely spinning bar),
and higher friction against the horizontal direction of the bar (thus modeling
the high friction of the bar’s rubber). In addition to friction, we can control the
ball’s coefficient of restitution against the dribbler and the floor respectively.
Naturally r1 will have a fairly low coefficient, thus roughly modeling the drib-
bler’s softness and dampening, whereas r2 will have slightly higher coefficient to
model the bounciness of the carpet. Additional constants in our physics model
are angular and linear damping of both the robot and ball, thus simulating air-
drag. The robot’s motions are simulated explicitly as well. Instead of modeling
the wheels which will impose friction on the floor, we model the robot as having
a flat, low-friction base-plate. We then directly apply forces and torques to the
robot to simulate its motions. Kicks and chip-kicks are simulated in a similar
fashion, by exerting linear impulses directly on the ball. A simulated sequence
of one of our robots performing a “dribble and fling”-maneuver can be found in
Figure 6.

Fig. 6. A simulation sequence of a “dribble-and-fling” behavior.

It should be noted that currently, all of the variables have been tweaked
experimentally to obtain a relatively accurate model of the robot. In the future,
it will be interesting to employ supervised learning techniques to automate this
task.

3.4 Behavior

The three major components of the soccer behavior control system are: (1) world
state evaluation and play selection; (2) skills and tactics; (3) navigation.

1. World state evaluation involves determining high level states about the
world, such as whether the team is on offense or defense. This allows us
to select among a set of possible plays [8]. It also involves finding and rank-
ing possible subgoals, such as evaluating a good location to receive a pass.



9

2. Tactics and skills implement the primitive behaviors for a robot, and can
range from the simple “go to point” skill, up to complex tactics such as “pass”
or “shoot”. A role in our system is defined as a tactic with all parameters
fully specified, which is then assigned to a robot to execute. The executed
tactic generates a navigation target either directly or by invoking lower level
skills.

3. The navigation module takes the targets specified by tactics and plans a path
using a randomized path planner. The path is then processed by motion con-
trol and dynamic obstacle avoidance to generate robot velocity commands.
These resulting commands are sent to the robots by a radio link.

In order to take advantage of opportunities as they arise in the dynamic
environment of a competitive soccer game, the entire control system executes at
60 times a second, synchronously with the vision system. This requires all of the
cooperating components to run within a real-time constraint.

Teamwork Multi-robot domains can be categorized according to many different
factors. One such factor is the underlying parallelism of the task to be achieved.
In highly parallel domains, robots can complete parts of the task separately,
and mainly need to coordinate to achieve higher efficiency. In a more serialized
domain, some part of the problem can only be achieved by one robot at a time,
necessitating tighter coordination to achieve the objective efficiently. Robotic
soccer falls between parallel and serialized domains, with brief periods of joint
actions. Soccer is a serialized domain primarily due to the presence of a single
ball; At any given time only one robot from a team should be actively handling
the ball. In a domain such as soccer, multi-robot coordination methods need
to reason about the robot that actively addresses the serial task and to assign
supporting objectives to the other members of the team. Typically, there is one
active robot with multiple robots in supporting roles. These supporting roles add
a parallel component to the domain, as supporting robots can execute actions
in a possibly loosely coupled way to support the overall team objective.

Multi-Robot Role Assignment A large number of methods exists for task
assignment and execution in multi-agent systems. [9] provides an overview and
taxonomy of task assignment methods for multi-robot systems. [10] points out
the direct conflicts that can arise between multiple executing behaviors, as well
as complications arising when the number of tasks does not match the number
of robots. [11] present a cooperation method that handles tight coordination in
robot soccer using messaging between the behaviors controlling each agent. The
STP architecture [6] describes another method of cooperation using centralized
plays and communicating single-robot behaviors.

In addition to the assignment of tasks to agents, their still lies the problem of
describing how each agent should implement its local behavior. [12] presents an
artificial potential field for local obstacle avoidance. There are limitations of di-
rect local execution of potential functions however [13], including local minima in



10

the potential field gradient and the inability to represent hard action constraints.
The SPAR algorithm [14], describes a method combining binary constraints with
linear objective functions to define a potential over the workspace, but is only
used for navigation target selection rather than direct actions.

Task allocation in our system follows the STP model [6]. Our systems adopts
a split of active and support roles and solves each of those subtasks with a
different method. Active roles which manipulate the ball generate commands
directly, receiving the highest priority so that supporting roles do not interfere.
Supporting roles are based on optimization of potential functions defined over
the configuration space, as in SPAR and later work. With these two distinct
solutions, part of our system is optimized for the serialized aspect of ball han-
dling, while another part is specialized for the loosely coupled supporting roles.
We address the need for the even more tight coupling that is present in passing
plays through behavior dependent signalling between the active and supporting
behaviors as in [11].

Fig. 7. An example demonstrating the pass evaluation function inputs. The input
values for evaluating a point p are the subtended angle a of the reachable area d, the
unobstructed goal angle b, and the angle e between the pass and shoot centerlines.
These are combined in specific evaluation functions to achieve the desired behavior.

Objective Evaluation Functions In our system, the navigation targets of
supporting roles are determined by world state evaluation functions defined over



11

the entire soccer field. Each function holds the world state external to a robot
constant, while varying the location of the robot to determine a real valued
evaluation of that state within the workspace. Hard constraints are represented
using multiplicative boolean functions, whereas soft constraints are modelled as
general real-valued functions.

Passing Evaluation An example of the general form of the pass position eval-
uation function is given in Figure 7. There are several variables given the current
world state and a point p to evaluate:

– d is the reachable area, which is defined by the perpendicular distance the
robot can travel in the time it takes a pass to reach a perpendicular centered
on p.

– a is the subtended angle of d from the current ball location
– b is the angular width of the free angle toward the goal from point p
– c is the angle between the pass from the ball to p, and the shot from p to

the center of the free angle on the goal

Using this general model, we can define several types of passes:

– A one-touch pass-and-shoot which intercepts the moving ball to kick it at the
goal. This estimates the a time t as the pass length divided by the pass speed,
plus the shot length divided by the shooting speed. An angular preference
k(e) is calculated which increases linearly from 0 at e = 0 to 1 at e = 45◦.
It stays at 1 until e = 90◦, where is decreases rapidly to 0. The evaluation
is then [k(e) min (a, b)/t].

– A pass-receive-turn-shoot which explicitly receives the ball and then aims
and shoots. The estimates the t as the sum of the pass time, turning time
for e, and shot time. The evaluation using this t is [min (a, b)/t].

– Partial chip-pass variants of the above passing methods, where a chip shot
is used to pass partway to the receiver, but dropping soon enough that it
will roll by the time it reaches the receiver. These are used when a robots
blocks the direct passing path.

– A direct chip deflection “header”. Here a chip pass is calculated to a reachable
robot position (a part of d), with a target point that passes over d at a height
midway up the robot. The robot will deflect the ball directly into the goal,
so the pass and shoot speed are identical. The evaluation is then identical
to the one-touch pass-and-shoot evaluation.

The resulting plots from two example passing situations are shown in Fig-
ure 8, with the pass evaluation function for one-touch pass-and-shoot overlaid
on a field. The location of the ball and other robots causes very different target
locations to be selected by the supporting robot. Because large portions of the
field are covered by a continuous evaluation, the existence of an unobstructed
maximum is likely.



12

Fig. 8. Two example passing situations are shown with the passing evaluation metric
overlaid. The values are shown in grayscale where black is zero and the maximum value
is white. Values less than 0.5% of the maximum are not drawn. The maximum value
is indicated by the line extending from the supporting robot.

Properties While the exact parameters and weights applied in evaluation func-
tions are highly application dependent, and thus not of general importance, the
approach has proved of useful throughout many revisions of our system. In par-
ticular, with well designed functions, the approach has the useful property that
large areas have a nonzero evaluation. This provides a natural ranking of alter-
native positions so that conflicts can be resolved. Thus multiple robots to be
placed on tasks with conflicting actions, or even the same task; The calculation
for a particular robot simply needs to discount the areas currently occupied by
other robots. Direct calculation of actions, as is used for active roles, does not in-
herently provide ranked alternatives, and thus leads to conflicting actions when
other robots apply the same technique.

3.5 Action Execution

Numerous low level skills are required to implement a robot soccer team. Many
of the skills such as shooting on a goal and described in other work on robot
soccer, such as in [6]. In this section we describe some of the more unique parts of
our system, namely a new control approach for the “Attacker” tactic, a “delta-
margin” metric for choosing when to kick a ball, and the “one-touch pass-and-
shoot” method to achieve the robot soccer equivalent of the “one-touch” goal
shot from human soccer.

The Attacker Control System The CMDragons robots perform motion pro-
filing off-board, on the central computer. This raises three problems, namely:

System latency: Latency in the control loop introduces a phase delay between
the expected and actual motion profiling. This however is minimized by
forward-predicting the observed world state and computing the motion pro-
file on this future state.



13

Hesitation: Precise motion control can lead to pauses while changing target
locations due to switching of motion profiles.

Underperformance: The robot’s motion profile is computed using expected
robot acceleration and top speeds, although the true values might differ,
and in certain cases the robot might actually be capable of exceeding the
expected values.

To counter the effect of these problems, we implemented an “Attacker Control
System”. The Attacker Control System has two main features:

1. The motion profile parameters (acceleration and velocity limits) are separate
for AI calculations and for execution. Specifically, the parameters used for
AI calculations are more conservative than the true robot parameters, while
the execution parameters marginally exceed the true parameters.

2. Intercept and target locations are explicitly modified by a proportional-
derivative (PD) controller

The PD controller is implemented as follows. Let the target location of the
attacker, as computed by the AI be denoted by ld. Let the current robot location
be denoted by lr. The modified target location l̃d is given by,

l̃d = ld + kp(ld − lr) + kd
d(lr)
dt

(1)

The proportional and derivative gains kp, kd are hand-tuned, and two separate
sets are used during the acceleration and the deceleration stages. The modified
target location l̃d is then used for motion profiling using the execution motion
profile parameters.

Delta-Margin Shooting Metric The shooting metric is a skill that must de-
termine the appropriate time of energizing the kicking device to execute an aimed
shot. The input to the shooting metric is a range of angles [g0, g1] representing
the target, along with the robot’s current angle α(t). This data is provided each
frame as a data stream, and the output of the metric is the a binary value of
whether to kick or not. During this time, the robot will position itself to aim
at the center of the angular range. This problem is similar to an automated
assembly task where a part is positioned and then dropped into place. In both
cases, there is a tradeoff between probability of correct placement (i.e. within
tolerance), and the time used in positioning. Ideally we would like something
that maximizes the probability of correct placement while minimizing the total
time taken in positioning. In the robot soccer environment, this is complicated
by the fact that the target angles can change as a function of time [g0(t), g1(t)].
This situation is similar to an assembly task where both parts to be mated are
moving.

Our method for shooting relies on the assumption that the probability of
shooting within the tolerance is proportional to the margin, where the margin is
defined as the angular distance to the nearest edge of the target range. Formally,



14

we can define the margin function m(t) as shown in Equation 2, which in turn
depends on the angle normalization function N .

m(t) = max [N(α(t)− g0(t)), N(g1(t)− α(t))] (2)

N(a) =


N(a+ 2π) if a < −π,
N(a− 2π) if a > +π,
a otherwise.

(3)

Using the definition of m(t), we can define the binary shooting function S(t)
as shown in Equation 4. The first case will prevent shooting unless the margin is
within the tolerances The second case case will shoot when the margin is nearer
to the optimal margin than the constant fraction β (we use β = 0.9). The third
case, which is the primary contribution of this method, prevents shooting as long
as the margin is increasing with time. In all remaining cases the metric will elect
to shoot.

S(t) =


0 if m(t) < 0,
1 if m(t) > β(g1(t)− g0(t))/2,
0 if m(t) > m(t− 1),
1 otherwise.

(4)

This method has worked extremely well in practice, as it appears to strike a
good balance between the conflicting options of shooting as early as possible (to
capture short-lived opportunities) and waiting to improve the aim (thus lower
the probability of missing the target.) Though simple to compute, the method
captures all of the following qualitative properties:

– Try to aim for the center of the target angular range.
– If an angular range is widening, delay shooting since the miss probability is

dropping with time.
– If an angular range is narrowing, take the shot since the miss probability is

increasing with time.
– If aiming past a moving object (such as a goalkeeper), delay shooting iff our

goal probability is improving faster than the opponent is decreasing it.

Two examples of the shooting method executing on a real robot are shown
in Figures 9 and 10, with the relevant variables plotted over time until the kick
is taken. The experiment setup was a single robot 1.5m from an open goal. In
the first example, the margin increases to the maximum, and the kick is taken
due to the zero crossing of the margin delta. In the second example, the margin
stops improving so the shot is taken before the maximum (the ball was rolling
away from the robot causing its aim to stop improving).



15

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

an
gu

la
r 

m
ar

gi
n 

(r
ad

)

time (sec)

optimal
minimum

margin delta
margin

Fig. 9. An example plot of the delta-margin shooting metric reaching a maximum
margin. Shot is taken at t = 1.15.

One-touch Aiming The one-touch pass-and-shoot skill is a method for inter-
cepting a moving ball to shoot it at the goal, and corresponds to a “one-touch”
strike in human soccer. This skill combines our existing ball interception and
target selection routines with a method for determining the proper angle to aim
the robot to accurately redirect the ball to the target. In order to calculate the
proper aiming angle, a model of how interaction with the kicker will affect the
speed of the ball is needed. In particular, while the kicker adds a large forward
component to the ball velocity, effects from the ball’s original (incoming) velocity
are still present and non-negligible.

The system model is shown in Figure 11. Rh and Rp represent the normalized
robot heading and perpendicular, respectively. After exploring numerous options
to determine the final ball velocity (v1), the model chosen was a weighted sum
of three components:

– Initial ball velocity v0 damped by the dribbling device. This is a tangential
velocity along Rp, or (Rp · v1)Rp, which is scaled by a damping factor β ∈
[0, 1].

– Initial ball velocity v0 reflected by the robot heading Rh. This is expressed
as vector reflection of v0 by Rh, scaled by a constant γ ∈ [0, 1].

– Additive velocity imparted by the kicker along Rh. The kicker provides an
impulse that would propel a ball at rest to speed k (i.e. ‖v0‖ = 0→ ‖v1‖ =
k). Because the kicker is attached to the moving robot, k is the sum of the
kicking device speed and the speed of the robot along Rh.

Using this model, we can estimate v1 as:

v̂1 = β(Rp · v0)Rp + γ(v0 − 2(v0 ·Rh) ·Rh) + kRh (5)



16

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

an
gu

la
r 

m
ar

gi
n 

(r
ad

)

time (sec)

optimal
minimum

margin delta
margin

Fig. 10. An example plot of the delta-margin shooting metric reaching a zero-crossing
of the margin delta. Shot is taken at t = 1.1.

Fig. 11. The model for one-touch pass-and-shoot. The final velocity of the ball v1

contains a component of the initial velocity v0, and thus is not parallel to the robot
heading Rh.

We determined the model parameter values experimentally, by recording the
incoming and outgoing velocity at a variety of angles and kick speeds, and calcu-
lating the most likely values. We found that β = 0.1 and γ = 0.5 best modelled
the data, but these values are likely to be dependent on the exact robot de-
sign, and can even be affected by the field surface. The calibration procedure is
straightforward however, so we have not found this to be a major limitation.

Of course, the forward model alone is not sufficient, as the control problem
requires solving for the robot angle given some relative target vector g. To invert
the model, we use bisection search. The bounding angles for the search are the
original incoming ball angle (where the residual velocity component would be
zero) and the angle of target vector g (where we would aim for an ideal kicker
with total damping (β = 0, γ = 0). The actual solution lies between these limits,



17

and we can calculate an error metric e by setting up Equation 5 as a function of
the robot angle α.

Rh(α) = 〈cosα, sinα〉
Rp(α) = 〈− sinα, cosα〉
v̂1(α) = β(Rp(α) · v0)Rp(α) + kRh(α) +

γ(v0 − 2(v0 ·Rh(α)) ·Rh(α)) (6)
e(α) = v̂1(α) · g (7)

Thus when e(α) > 0 the solution lies with α closer to g, while if e(α) < 0
the solution is closer to v0. A solution at the value of α where e(α) = 0, so
bisection search is simply terminated whenever ‖e(α)‖ < ε. While it is possible
to invert the model so that search is not required, using a numerical method
for determining α allowed rapid testing of different models and parameters. The
complexity of the approximation is O(log(1/ε)), which has proven adequately
fast in practice.

We have found the one-touch aiming method to work with passes between
2m/s and 4m/s, and has proven quite a bit faster than a more explicit receive-
turn-shoot approach. The main limitation of the approach is that the angle
between the pass and the shot on goal should generally lie between 30 and 90
degrees. The receive-turn-shoot approach can be used in cases where the angle
is not amenable to the pass-and-shoot approach.

We also adapted the 2D version of one-touch aiming to the 3D problem
of soccer “headers”. The chip kicker is used to kick the ball in the air, and
a dynamics model of the ball fit a parabolic trajectory to the observed ball
position. This allows a robot to intercept a ball while still in the air to deflect it
into a goal. Because the kicker is not used, the model for aiming is pure reflection
(β = 0, γ = 1.0). The interception method used is to drive to the point where
the ball will reach a particular height above the ground (halfway up the flat part
of the robot’s protective cover). Due to the decreased accuracy of chip kicks, this
type of pass normally does not allow the receiving robot to remain at a fixed
location, and depends heavily of the receiving robot adjusting to intercept the
ball. Despite the low probability of a successful pass compared to other methods
P [success] = 0.3, when it succeeds it has a high chance of scoring as it leaves
little time for the receiving team to react.

3.6 Physics-Based Short-Term Motion Planner

One major problem in Small Size robot soccer is ball manipulation. Traditional
navigation planners, such as ERRT, are typically used to provide robot paths or
trajectories that are unaware of inter-body dynamics, including ball manipula-
tion. Because these motion planners have no awareness of the ball’s dynamics,
they tend to generate paths that are unlikely to be dynamically sound in terms
of ball dribbling. While the generated paths are safe in terms of avoiding colli-
sions with other robots, it is not likely that the ball will remain in front of the



18

Fig. 12. An example header from the RoboCup 2006 semi-final match. Robot A passes
to robot B, which then deflects the ball into the goal. Robot B chooses its angle using
one-touch aiming in order to deflect into the gap left by the goalkeeper.

robot when it begins to execute the solution (due to e.g., the build-up of the
ball’s inertia that was not modeled during planning). To alleviate this problem,
we introduce and integrate a short-term physics-based motion planner that is
aware of multi-body dynamics.

We define the motion planning problem as follows: given a state space X,
an initial state xinit ∈ X, and a set of goal states Xgoal ⊂ X, a motion planner
searches for a sequence of actions a1, . . . , an, which, when executed from xinit,
ends in a goal state xgoal ∈ Xgoal. Additional constraints can be imposed on all
the intermediate states of the action sequence by defining only a subset of the
state-space to be valid (Xvalid ⊆ X) and requiring that all states of the solution
sequence xinit, x1, x2, . . . , xgoal are elements of Xvalid.

A physics-based planner uses domain models that aim to reflect the inherent
physical properties of the real world. The Rigid Body Dynamics model [15] pro-
vides a computationally feasible approximation of basic Newtonian physics, and
allows the simulation of the physical interactions between multiple mass-based
non-deformable bodies. The term Dynamics implies that rigid body simulators
are second order systems, able to simulate physical properties over time, such
as momentum and force-based inter-body collisions. Physics-Based Planning is
an extension to kinodynamic planning [16], adding the simulation of rigid body
interactions to traditional second order navigation planning [17].

Domain Model and Parameters A rigid body system is composed of n rigid
bodies r1 . . . rn. A rigid body is defined by two disjoint subsets of parameters
r = {r̂, r̄} where
• r̂ : the body’s mutable state parameters,

• r̄ : the body’s immutable parameters.
r̂ is a tuple, containing the second order state parameters of the rigid body,

namely its position, orientation, and their derivatives:

r̂ = 〈α, β, γ, ω〉



19

where
• α : position (3D-vector),

• β : orientation (unit quaternion or rotation matrix),

• γ : linear velocity (3D-vector),

• ω : angular velocity (3D-vector).
r̄ is a tuple r̄ = 〈φShape, φMass, φMassC, φFricS, φFricD, φRest, φDampL, φDampA〉,

describing all of the rigid body’s inherent physical parameters, namely: 3D shape,
mass, center of mass, static friction, dynamic friction, restitution, linear damp-
ing, and angular damping. With the exception to φShape (which is a 3D mesh or
other 3D primitive) and φMassC (which is a 3D vector), all parameters are single
finite continuous values.

The physics-based planning state space X is defined by the mutable states
of all n rigid bodies in the domain and time t. That is, a state x ∈ X is defined
as the tuple

x = 〈t, r̂1, . . . , r̂n〉.

The action space A is the set of the applicable controls that the physics-based
planner can search over. An action a ∈ A is defined as a vector of sub-actions
〈a1, . . . , an〉, where ai represents a pair of 3D force and torque vectors applicable
to a corresponding rigid body ri.

A physics-based planning domain d is defined as the tuple d = 〈G, r̄1 . . . r̄n,M〉
where
• G : global gravity force vector,

• r̄1 . . . r̄n : immutable parameters of all n rigid bodies,

Fig. 13. A physics engine computes state transitions.

A physics-based planner searches for solutions by reasoning about the states
resulting from the actuation of possible actions. The state computations are
performed by simulation of the rigid body dynamics. There are several robust
rigid body simulation frameworks freely available, such as the Open Dynamics
Engine (ODE), and NVIDIA PhysX. Frequently referred to as physics engines,
these simulators are then used as a “black box” by the planner to simulate state



20

Fig. 14. Physics-based planner integration into the CMDragons execution environ-
ment.

transitions in the physics space (see Figure 13). We define the physics state
transition function e:

e : 〈r̂1, . . . , r̂n, a, d,∆t〉 → 〈r̂′1, . . . , r̂′n, L〉.

Given a current state of the world x, the simulation function e supplies the con-
tained rigid body states r̂1, . . . , r̂n and a control action vector a to the physics en-
gine. Using the parameters contained in the domain description d, the physics en-
gine then simulates the rigid body dynamics forward in time by a fixed timestep
∆t, delivering new states for all rigid bodies r̂′1, . . . , r̂

′
n. These rigid body states

are then stored in the new resulting planning state x′ along with its new time
index t′ = t+∆t. Additionally, e also returns a list of collisions L = 〈l1, l2, . . . 〉
that occurred during forward simulation. Each item l ∈ L is an unordered pair
l = 〈λ1, λ2〉, consisiting of the indices of the two rigid bodies rλ1 , rλ2 involved in
the collision.

Planning and Execution To efficiently plan in this physics-based space,
we use the Behavioral Kinodynamic Balanced Growth Trees (BK-BGT) algo-
rithm [18, 17, 19]. It needs to be noted, however, that physics-based planning
is computationally extremely expensive, due to the rich detailed simulations of
multi-body dynamics. Additionally, because we are planning through a second-
order timespace, the search space is extremely large. Effectively, this means that
a full search to the goal state (i.e., the ball being in the opponent’s goal-box)
is infeasible. Furthermore, it is unlikely that such a long-term plan will ever
succeed, due to the unpredictability of the opponent team and other factors of
uncertainty.

To overcome these issues, we integrate our physics-based planner in a finite-
horizon fashion where we limit its search to take less than one frame period and
therefore limit the resulting tree to several hundred nodes (with ∆t = 1/60s) on
the current hardware. We evaluate these partial solutions heuristically, prefer-
ring nodes that lead the ball closer to its goal state and further away from oppo-
nents. The resulting path is executed for several frames, before the physics-based
planner is invoked again to replan. This replanning interval was tweaked exper-
imentally. More frequent replanning (e.g., on every frame), creates unnecessary



21

oscillations, whereas less frequent replanning struggles with too much build-up
in the domain’s uncertainty. Figure 14 shows the integration of the physics-based
planner (“Planning” indicates planner invokation, “Plan” represents the solution
generated by the physics-based planner). A complete description and evaluation
of this physics-based planning approach is available in [19].

3.7 Navigation Planning

The motion planner adopted for our navigational system is based on the RRT
family of randomized path planners. Our latest variant adopts additional modi-
fied features from RRT-Connect, and is called Bidirectional Multi-Bridge ERRT
[20]. A basic RRT planner search for a path from an initial state to a goal state
by expanding a search tree. Table 1 shows the pseudo-code for a basic RRT
motion planner. It relies on three primitives which are defined for the domain.
First, the Extend function calculates a new state that can be reached from the
target state by some incremental distance (usually a constant distance or time),
which in general makes progress toward the goal. If a collision with an obstacle
in the environment would occur by moving to that new state, then a default
value, EmptyState, of type state is returned to capture the fact that there is
no “successor” state due to the obstacle. Next, the function Distance needs to
provide an estimate of the time or distance (or any other objective that the
algorithm is trying to minimize) that estimates how long repeated application
of Extend would take to reach the goal. Finally, RandomState returns a state
drawn uniformly from the state space of the environment. For a simple example,
a holonomic point robot with no acceleration constraints can implement Extend
simply as a step along the line from the current state to the target, and Distance
as the Euclidean distance between the two states.

The RRT-Connect variant of RRT has demonstrated high performance for
one-shot queries when compared to other motion planners [21]. It combines bidi-
rectional search with an iterated extension step. In RRT-Connect, a random
target is chosen just as with a base RRT planner. However, instead of calling
the extend operator once, the RRT-Connect repeats the extension until either
the target point is reached, or the extension fails (such as when it would hit an
obstacle). The search is performed bidirectionally, with a tree growing from both
the initial and goal configurations. In each step, after a random target point is
chosen, one tree repeatedly extends toward that target, reaching some final con-
figuration q′. The second tree then repeatedly extends toward q′ (as opposed to
the random target), in an operation referred to as Connect. After each iteration,
the tree swaps roles for extending and connecting operations, so that both the
initial and goal trees grow using both operations.

While these improvements can markedly improve RRT’s one-shot planning
time, they do have an associated cost. While RRT, with its single extensions,
tends to grow in a fixed rate due to the step size, RRT-Connect has a much
higher variance in its growth due to the repeated extensions. As a result, when
planning is iterated, RRT-Connect tends to find more widely varying homotopic
paths. This is not an issue for one-shot planning, but can become a problem for



22

function RRTPlan(env:Environment, initial:State, goal:State) : RRTTree
1 var nearest,extended,target : State
2 var tree : RRTTree
3 nearest ← initial
4 tree ← initial
5 while Distance(nearest,goal) < threshold do
6 target ← ChooseTarget(goal)
7 nearest ← Nearest(tree,target)
8 extended ← Extend(env,nearest,target)
9 if extended 6= EmptyState
10 then AddNode(tree,extended)
11 return tree

function ChooseTarget(goal:State) : State
1 var p : R
2 p ← UniformRandom(0,1)
3 if p ∈ [0, GoalProb]
4 then return goal
5 else if p ∈ [GoalProb, 1]
6 then return RandomState()

function Nearest(tree:RRTTree,target:State) : State
1 var nearest : State;
2 nearest ← EmptyState;
3 foreach State s ∈ tree do
4 if Distance(s,target) < Distance(nearest,target)
5 then nearest ← s;
6 return nearest;

Table 1. The basic RRT planner stochastically expands its search tree to the goal or
to a random state.



23

5600

5800

6000

6200

6400

0 2 4 6 8 10 12 14 16

av
g.

 p
la

n 
le

ng
th

 (
m

m
)

maximum repeated extensions

mean
90% confidence

Fig. 15. The effect of repeated extensions in ERRT on plan length.

iterated planning with interleaved execution. Thus ERRT adopts the improve-
ments of RRT-Connect, but modified somewhat. First, ERRT supports repeated
extensions, but only up to some maximum constant, which can be tuned for the
domain. Figure 15 shows the effect of this parameter on the average plan length
for a domain. Each datapoint is includes the mean and confidence interval for
300 test runs, where each run represents 240 iterated plans in a small-size do-
main with 64 random rectangular obstacles. The initial and goal positions were
varied with sinusoidal motion. As the number of extensions increases, the plan
average length grows. While applications can apply smoothing to remove some
of the inefficiency of less optimal plans, a shorter plan is more likely to be in
the same homotopy class as the optimal plan. Thus plan length is at least one
indicator of the reachable length even after smoothing, and stability in the ho-
motopic path is important for interleaved execution of the plan. Thus repeated
extensions, while they may speed planning, may come at the expense of average
plan length. ERRT, by using a tunable constant to set the maximum number
of extensions, allows the system designer to trade off between the two. In most
applications, we have used a value of 4, and found it to represent a reasonable
compromise.

ERRT also adopts the notion of the connect operation from RRT-Connect,
however this can also cause plan length to suffer. ERRT again offers a way to mit-
igate this with a tunable parameter, which is the number of connections between
the initial and goal trees before planning is terminated. Thus, ERRT allows mul-
tiple connection points, and can choose the shortest path of those available when
planning terminates. Implementing such a feature represents an important de-
parture from RRT however; with multiple connections the connected planning



24

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

0 2 4 6 8 10 12 14 16

av
g.

 p
la

n 
le

ng
th

 (
m

m
)

target number of bridges

mean
90% confidence

Fig. 16. The effect of multiple connection points in ERRT on plan length.

“tree” is actually now a graph. This does not pose any significant theoretical
problems to RRT, but requires the implementation to support graph operations
efficiently instead of the normally faster tree operations. When planning ter-
minates, A* search is used over the resulting graph. The effect of varying the
number of connection points is shown in Figure 16. The methodology is the same
as used for the maximum repeated extensions, but using the domain RandCircle.
As can be seen, increasing the number of connections improves the plan length,
although the effect decreases after 6-8 connection points. Multiple connection
points by definition increase planning execution time, since ERRT continues to
search even after a path has been found. However, after the first connection,
ERRT can operate in a purely any-time fashion, using up idle time in the con-
trol cycle to improve the solution, but able to terminate and return a valid
solution whenever it is needed. Again, by offering the number of connections as
a parameter, the tradeoff can be set by the system designer.

Supporting multiple extensions and multiple connection points give ERRT
the benefits of RRT-Connect, as well as the ability to tune the system as needed.
By supporting a graph representation instead of search trees, as well as planning
over the resulting roadmap graph, ERRT takes a step toward unification with the
PRM family of planners. The only differences that remain are in the sampling
strategies for building and maintaining the search graph or roadmap structure.

3.8 GUI

Using the Skills, Tactics, and Plays infrastructure, it is possible to model complex
multi-robot behaviors. However, such complexity can also make it challenging to



25

analyze and debug the many components and parameters of the system. To over-
come such challenges, CMDragons features a logging infrastructure that is able
to record complete sequences of world states during games. Besides containing
the world state (which consists of the ball’s and all the robots’ state parameters),
the system also records the internal state of the Play-selection system and the
current hierarchy of selected Tactics. Additionally, each Tactic is able to write
further debugging information into the log, thus providing detailed information
about the Tactics’ internal reasoning at any given point in time.

To make use of such rich data, CMDragons features a Viewer program that
allows easy browsing through logs. Figure 17 shows a screenshot of this viewer.
The internal state of the Play system and Tactics is shown as a browsable hierar-
chy of text (on the right). The world state is drawn onto the virtual soccer field,
and allows toggling of several visualization options. Furthermore, the viewer can
display the current velocity of the robots or balls as a graph (bottom).

Fig. 17. A screenshot of the CMDragons Viewer.

4 Conclusion

This paper gave an overview of CMDragons 2010, covering both the robot hard-
ware and the software architecture of the offboard control system. The hardware
has built on the collective experience of our team and continues to advance in

1 Provided software component as part of a joint team with Aichi Prefectural Univer-
sity, called CMRoboDragons



26

Competition Result

US Open 2003 1st
RoboCup 2003 4th
RoboCup 2004 4th 1

RoboCup 2005 4th 1

US Open 2006 1st
RoboCup 2006 1st
China Open 2006 1st
RoboCup 2007 1st
US Open 2008 1st
RoboCup 2008 2nd
US Open 2009 1st
RoboCup 2009 Quarter Final

Table 2. Results of RoboCup small-size competitions for CMDragons from 2003-2009

ability. The software uses our proven system architecture with continued im-
provements to the individual modules. The CMDragons software system has been
used in three national and seven international RoboCup competitions, placing
within the top eight teams of the tournament every year since 2003, and finishing
1st in 2006 and 2007. The competition results since 2003 are listed in Table 2.
We believe that the RoboCup Small Size League is and will continue to be an
excellent domain to drive research on high-performance real-time autonomous
robotics.

References

1. Zickler, S., Vail, D., Levi, G., Wasserman, P., Bruce, J., Licitra, M., Veloso, M.:
CMDragons 2008 Team Description. In: Proceedings of RoboCup 2008

2. Bruce, J., Zickler, S., Licitra, M., Veloso, M.: CMDragons 2007 Team Descrip-
tion. Technical report, Tech Report CMU-CS-07-173, Carnegie Mellon University,
School of Computer Science (2007)

3. Bruce, J., Balch, T., Veloso, M.: Fast color image segmentation for interactive
robots. In: Proceedings of the IEEE Conference on Intelligent Robots and Systems,
Japan (2000)

4. Bruce, J.: CMVision realtime color vision system. The CORAL Group’s Color
Machine Vision Project http://www.cs.cmu.edu/̃jbruce/cmvision/.

5. Bruce, J., Veloso, M.: Fast and accurate vision-based pattern detection and iden-
tification. In: Proceedings of the IEEE International Conference on Robotics and
Automation, Taiwan (May 2003)

6. Browning, B., Bruce, J.R., Bowling, M., Veloso, M.: STP: Skills tactics and plans
for multi-robot control in adversarial environments. In: Journal of System and
Control Engineering. (2005)

7. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The
Shared Vision System for the RoboCup Small Size League. RoboCup 2009: Robot
Soccer World Cup XIII (2009) 425–436



27

8. Bowling, M., Browning, B., Veloso, M.: Plays as effective multiagent plans enabling
opponent-adaptive play selection. In: Proceedings of International Conference on
Automated Planning and Scheduling (ICAPS’04). (2004)

9. Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation
in multi-robot systems. International Journal of Robotics Research 23(9) (2004)
939–954

10. Uchibe, E., Kato, T., Asada, M., Hosoda, K.: Dynamic task assignment in a multi-
agent/multitask environment based on module conflict resolution. In: Proceedings
of the IEEE International Conference on Robotics and Automation. (2001) 3987–
3992

11. D’Angelo, A., Menegatti, E., Pagello, E.: How a cooperative behavior can emerge
from a robot team. In: Proceedings of the 7th International Symposium on Dis-
tributed Autonomous Robotic Systems. (2004)

12. Tilove, R.B.: Local obstacle avoidance for mobile robots based on the method of
artificial potentials. General Motors Research Laboratories, Research Publication
GMR-6650 (September 1989)

13. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitations
for mobile robot navigation. In: Proceedings of the IEEE International Conference
on Robotics and Automation. (April 1991) 1398–1404

14. Veloso, M., Bowling, M., Achim, S., Han, K., Stone, P.: The CMUnited-98 cham-
pion small robot team. In: RoboCup-98: Robot Soccer World Cup II, Springer
Verlag (1999)

15. Baraff, D.: Physically Based Modeling: Rigid Body Simulation. SIGGRAPH
Course Notes, ACM SIGGRAPH (2001)

16. Donald, B., Xavier, P., Canny, J., Reif, J.: Kinodynamic motion planning. Journal
of the ACM (JACM) 40(5) (1993) 1048–1066

17. Zickler, S., Veloso, M.: Efficient physics-based planning: sampling search via non-
deterministic tactics and skills. In: Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1. (2009) 27–33

18. Zickler, S., Veloso, M.: Tactics-Based Behavioural Planning for Goal-Driven Rigid-
Body Control. Computer Graphics Forum 28(8) (2009) 2302–2314

19. Zickler, S.: Physics-Based Robot Motion Planning in Dynamic Multi-Body Envi-
ronments. PhD thesis, Carnegie Mellon University, Thesis Number: CMU-CS-10-
115 (May 2010)

20. Bruce, J.R.: Real-Time Motion Planning and Safe Navigation in Dynamic Multi-
Robot Environments. PhD thesis, Carnegie Mellon University (Dec 2006)

21. James J. Kuffner, J., LaValle, S.M.: RRT-Connect: An efficient approach to single-
query path planning. In: Proceedings of the IEEE International Conference on
Robotics and Automation. (2000)


