
Depth-based Short-sighted Stochastic Shortest Path
Problems

Felipe W. Trevizan fwt@cs.cmu.edu

Manuela M. Veloso mmv@cs.cmu.edu

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213 USA

Abstract

Stochastic Shortest Path Problems (SSPs) are a common representation for proba-
bilistic planning problems. Two approaches can be used to solve SSPs: (i) consider all
probabilistically reachable states and (ii) plan only for a subset of these reachable states.
Closed policies, the solutions obtained in the former approach, require significant computa-
tional effort, and they do not require replanning, i.e., the planner is never re-invoked. The
second approach, employed by replanners, computes open policies, i.e., policies for a subset
of the probabilistically reachable states. Therefore, when a state is reached in which the
open policy is not defined, the replanner is reinvoked to compute a new open policy. In this
article, we introduce a special case of SSPs, the depth-based short-sighted SSPs, in which
every state has a nonzero probability of being reached using at most t actions. We also
introduce the novel algorithm Short-Sighted Probabilistic Planner (SSiPP), which solves
SSPs through depth-based short-sighted SSPs and guarantees that at least t actions can be
executed without replanning. Therefore, SSiPP can compute both open and closed poli-
cies: as t increases, the returned policy approaches the behavior of a closed policy, and for t
large enough, the returned policy is closed. Moreover, we present two extensions to SSiPP:
Labeled-SSiPP and SSiPP-FF. The former extension incorporates a labeling mechanism to
avoid revisiting states that have already converged. The latter extension combines SSiPP
and determinizations to improve the performance of SSiPP in problems without dead ends.
We also performed an extensive empirical evaluation of SSiPP and its extensions in sev-
eral problems against state-of-the-art planners. The results show that (i) Labeled-SSiPP
outperforms SSiPP and the considered planners in the task of finding the optimal solution
when the problems have a low percentage of relevant states; and (ii) SSiPP-FF outperforms
SSiPP in the task of quickly finding suboptimal solutions to problems without dead ends
while performing similarly in problems with dead ends.

1. Introduction

Stochastic Shortest Path Problems (SSP) [Bertsekas and Tsitsiklis, 1991] provide a conve-
nient framework for modeling fully observable probabilistic planning problems. A solution
to an SSP is a policy – a mapping from states to actions – that is guaranteed to reach a
goal state when executed from the initial state of the given SSP. In this article, we address
the question of how to improve the scalability of probabilistic planners when searching for
(i) an optimal policy and (ii) a suboptimal policy given a time deadline.

One approach to computing optimal solutions to SSPs is to use value iteration and
policy iteration algorithms, which are optimal [Bertsekas and Tsitsiklis, 1996]. Planners

1

based on these algorithms return a closed policy, i.e., a policy that is defined at least over
all the probabilistically reachable states of the given SSP. Assuming the model correctly
captures the cost and uncertainty of the actions in the environment, closed policies are
extremely powerful as their execution never “fails”; therefore, the planner is never reinvoked.
Unfortunately, the computation of such policies is prohibitive in complexity as problems
scale up. The efficiency of value-iteration-based probabilistic planners can be improved
by combining asynchronous updates and heuristic search (e.g., Labeled RTDP [Bonet and
Geffner, 2003]), resulting in optimal algorithms with convergence bounds. Although these
techniques allow planners to compute compact policies, in the worst case, these policies are
still linear in the size of the state space, which itself can be exponential in the size of the
state or goals.

Different approaches have been proposed to efficiently find nonoptimal solutions to SSPs
based on replanning. Replanners do not invest the computational effort to generate a closed
policy, and instead compute an open policy, i.e., a policy that does not address all the
probabilistically reachable states. Different methods can be employed to generate open
policies, e.g., determinization [Yoon et al., 2007, Yoon et al., 2008], sampling [Dean et al.,
1995, Teichteil-Koenigsbuch et al., 2008], and finite horizon search [Pearl, 1985, Kocsis and
Szepesvári, 2006]. During the execution, if a state not included in the open policy is reached,
the replanner is reinvoked to compute a new open policy starting from the unpredicted state.

In this work, we introduce a new model, the depth-based short-sighted Stochastic Short-
est Path Problems (short-sighted SSPs), a special case of SSPs in which every state has a
nonzero probability of being reached using at most t actions. We also introduce the novel al-
gorithm Short-Sighted Probabilistic Planner (SSiPP), which solves SSPs using short-sighted
SSPs to represent subproblems of the original problem. We prove that the policies com-
puted by SSiPP can be executed for at least t time steps without replanning; therefore, by
varying the parameter t of the short-sighted SSPs, SSiPP can behave as either a probabilis-
tic planner or a replanner: for small values of t, the SSiPP returns open policies and less
replanning is necessary as t increases; and for t large enough, SSiPP returns closed policies.
We provide an upper bound for t in which SSiPP is guaranteed to return closed policies.

We also present two extensions of SSiPP: Labeled-SSiPP and SSiPP-FF. Labeled-SSiPP
improves the performance of SSiPP when searching for the optimal solution of SSPs by not
revisiting states that have already converged. SSiPP-FF combines SSiPP and determiniza-
tion to improve the efficiency of SSiPP when searching for a suboptimal solution under
small time constraints, e.g., the International Probabilistic Planning Competition (IPPC)
[Younes et al., 2005, Bonet and Givan, 2007, Bryce and Buffet, 2008] rules.

Lastly, we extensively compare SSiPP, Labeled-SSiPP, and SSiPP-FF in different do-
mains against the state-of-the-art probabilistic planners. Our results show that in the task
of finding the optimal solution for an SSP, Labeled-SSiPP represents an improvement of
SSiPP, and Labeled-SSiPP outperforms the other considered planners when the optimal
policy encompasses a small fraction of the state space. For the task of quickly finding a
suboptimal solution to an SSP, our results indicate that SSiPP-FF successfully combines the
behavior of SSiPP and FF-Replan: for problems without dead ends, SSiPP-FF performance
is similar to FF-Replan performance (the best planner for problems without dead ends);
and for problems with dead ends, SSiPP-FF performs better than FF-Replan and similarly

2

to SSiPP. Moreover, the solutions obtained by SSiPP-FF in problems without dead ends
have better quality, i.e., lower average cost, than the solutions obtained by FF-Replan.

This article is organized as follows: Section 2 reviews the basic background on SSPs and
the related work. Section 3 defines formally our novel model, the depth-based short-sighted
SSPs, as well as its properties. Section 4 presents our main algorithms, namely SSiPP,
Labeled-SSiPP, and SSiPP-FF, and their theoretical guarantees. Section 5 empirically
evaluates SSiPP (and its extensions) against the state-of-the-art planners in two settings:
search for the optimal solution (Section 5.2) and search for a solution using the IPPC rules
(Section 5.3). Section 6 concludes the article.

2. Background and Related Work

This section introduces the basic concepts and notation used in this article (Section 2.1)
and reviews the related work in probabilistic planning (Section 2.2).

2.1 Stochastic Shortest Path Problem

A Stochastic Shortest Path Problem (SSP) [Bertsekas and Tsitsiklis, 1991] is a tuple
S = 〈S, s0,G,A, P, C〉, in which

• S is the finite set of states;

• s0 ∈ S is the initial state;

• G ⊆ S is the nonempty set of goal states;

• A is the finite set of actions;

• P (s′|s, a) represents the probability that s′ ∈ S is reached after applying action a ∈ A
in state s ∈ S; and

• C(s, a, s′) ∈ (0,+∞) is the immediate cost incurred when state s′ is reached after
applying action a in state s. This function is required to be defined for all s, a, and
s′ in which P (s′|s, a) > 0.

In SSPs, an agent executes actions a ∈ A in discrete time steps at a state s ∈ S. The
chosen action a changes state s to state s′ with probability P (s′|s, a) and the cost C(s, a, s′)
is incurred. If a goal state sG ∈ G is reached, the problem finishes, i.e., no more actions
need to be executed. The sequence of states T = 〈s0, s1, s2, . . . 〉 visited by the agent is
called a trajectory, and the state si is the state of the environment at time step i. Thus, for
every trajectory T , there exists at least one sequence of actions 〈a0, a1, a2, . . . 〉 such that ai
is executed in state si and P (T |〈a0, a1, a2, . . . 〉) =

∏
i∈{0,1,... } P (si+1|si, ai) > 0.

The horizon is the maximum number of actions the agent is allowed to execute in the
environment, and therefore the maximum size of T . For SSPs, the horizon is indefinite
because under certain conditions discussed later in this section, a goal state can be reached
using a finite, yet unbounded, number of actions. If the horizon is set to tmax, then the
obtained model is known as a finite-horizon Markov Decision Process (MDP) [Puterman,
1994]. Alternatively, if no goal states are given, then the horizon becomes infinite as no
stop condition is given to the agent. In order to guarantee that the total accumulated cost
is finite in such models, the cost incurred at time step t is discounted by γt, for γ ∈ (0, 1).

3

s
2

s
k

s
0

s
1

s
1
’

a
0

a
1

... s

p
1−p

1−p

p

G

Figure 1: Example of a Stochastic Shortest Path Problem (SSP). The initial state is s0, the
goal set is G = {sG} and C(s, a, s′) = 1, ∀s ∈ S, a ∈ A and s′ ∈ S.

The obtained model, known as discounted infinite-horizon MDPs [Puterman, 1994], and
the finite-horizon MDPs are special cases of SSPs [Bertsekas and Tsitsiklis, 1996].

A solution to an SSP is a policy π, i.e., a mapping from states to actions. A policy
defined over all the states S is know as a complete policy because it is a complete mapping
from S to A. Similarly, a policy π defined only for a subset of S is known as a partial
policy. Given a policy π, the set of all the states reachable when following π from s0 is
denoted as Sπ ⊆ S and the set of states in which replanning is necessary as Rπ. Formally,
Rπ = {s ∈ S \ G|π is not defined for s}. A policy π can also be classified according to
Sπ and Rπ. If π can be followed from s0 without replanning, i.e., Rπ ∩ Sπ = ∅, then π is a
closed policy. Therefore, every complete policy π is also a closed policy since Rπ = ∅. If a
policy π is not closed, then Rπ ∩ Sπ 6= ∅ and π is known as an open policy. For any open
policy π, replanning has a nonzero probability of happening because every state s ∈ Rπ∩Sπ
has a nonzero probability of being reached when following π from s0. Thus, every open
policy π is also partial as π is not defined over the states s ∈ Rπ ∩ Sπ.

Policies can be further classified according to their termination guarantee. If it is in-
evitable to reach a goal state when following the policy π from s0, then π is a proper
policy. Formally,

Definition 1 (Proper policy). A policy π is proper if, for all s ∈ Sπ, there exists a trajectory
T = 〈s, s1, . . . , sk〉 generated by π such that sk ∈ G and k ≤ |S|.

A policy that is not proper is said to be improper. A common assumption used in the
theoretical results for SSPs is as follows:

Assumption 1. There exists at least one policy that is proper independent of the initial
state s0 of the SSP.

Assumption 1 is equivalent to Assumption 2.1 of [Bertsekas and Tsitsiklis, 1996] and implies
that a goal state is always reachable from every state s ∈ S.

By definition, every proper policy is closed, and every open policy is improper; however,
not all closed policies are proper. To illustrate this relationship between closed and proper
policies, consider the SSP depicted in Figure 1: π0 = {(s0, a0), (s′1, a0)} is a proper policy
and Sπ0 = {s0, s

′
1, sG}; π1 = {(s0, a1), (s1, a1)} is an open policy because π1(s2) is not

defined; and π2 = {(s0, a1), (s1, a0)} is a closed and improper policy as no goal state is
reachable from s0 when following π2, and π2 is defined for Sπ2 = {s0, s1}.

4

Given a closed policy π, V π(s) is the expected accumulated cost to reach a goal state
from state s ∈ Sπ. The function V π, defined at least over Sπ, is called the value function
for π and is the fixed-point solution for the following system of equations:

V π(s) =

{
0 if s ∈ G

E
[
C(s, a, s′) + V π(s′)|s, a = π(s)

]
otherwise

, ∀s ∈ Sπ (1)

where E[C(s, a, s′) + V π(s′)|s, a] =
∑

s′∈S P (s′|s, a) [C(s, a, s′) + V π(s′)]. Another common
assumption for SSPs is as follows:

Assumption 2. For every closed and improper policy π, there exists at least one state
s ∈ Sπ such that V π(s) is infinite.

This assumption is already true in our definition of SSPs as the cost function C(s, a, s′) is
strictly positive. For instance, for the SSP depicted in Figure 1, the trajectories generated
by the closed and improper policy π2 = {(s0, a1), (s1, a0)} have infinite size, and at each
time step, a strictly positive immediate cost is incurred; therefore, V π2(s0) = V π2(s1) =∞.

An optimal policy π∗ is any proper policy that minimizes, over all proper policies, the
expected cost of reaching a goal state from s0, i.e., V π∗(s0) ≤ minπ s.t. π is closed V

π(s0). For
a given SSP, π∗ might not be unique; however, the optimal value function V ∗, representing
for each state s the minimal expected accumulated cost to reach a goal state over all
policies, exists and is unique [Bertsekas and Tsitsiklis, 1996]. For all optimal policies π∗

and s ∈ Sπ
∗
, we have that V ∗(s) = V π∗(s); formally, V ∗ is the fixed-point solution for the

Bellman Equation(s):

V ∗(s) =

0 if s ∈ G

min
a∈A

E
[
C(s, a, s′) + V ∗(s′)|s, a

]
otherwise

, ∀s ∈ S. (2)

Every optimal policy π∗ can be obtained by replacing min by argmin in (2), i.e., π∗ is a
greedy policy of V ∗:

Definition 2 (Greedy policy). Given a value function V , a greedy policy πV is such that
πV (s) = argmina∈AE[C(s, a, s′) + V (s′)|s, a] for all s ∈ S \ G. For the states s in which V
is not defined, V (s) =∞ is assumed.

A possible approach to computing V ∗ is the value iteration algorithm (VI) [Howard,
1960]: given an initial guess V 0 for V ∗, the sequence 〈V 0, V 1, . . . , V k〉 is computed where
V t+1 is obtained by performing a Bellman backup in V t, that is, applying the operator B
in the value function V t for all s ∈ S:

V t+1(s) = (BV t)(s) =

0 if s ∈ G

min
a∈A

E
[
C(s, a, s′) + V t(s′)|s, a

]
otherwise

.

We denote by Bk the composition of the operator B: (BkV)(s) = (B(Bk−1V))(s) for all
s ∈ S; thus, V t = BtV 0. Given a value function V , BtV represents the optimal solution for
the SSP in which the horizon is limited to t and the extra cost V (s) is incurred when agent

5

reaches state s ∈ S \G after applying t actions. (BtV)(s) is known as t-look-ahead value of
state s according to V .

For SSPs in which Assumption 1 holds, V k converges to V ∗ as k →∞ and 0 ≤ V ∗(s) <∞
for all s ∈ S [Bertsekas, 1995]. Because convergence to V ∗ is not feasible in the general
case, one solution is to find a value function V̂ that is at most ε away from V ∗, i.e.,
|V̂ (s) − V ∗(s)| ≤ ε for all s ∈ S [Bertsekas, 1995, Hansen and Zilberstein, 2001]. Unfor-
tunately, the computation of this error bound for V̂ is too expensive to be used as stop
criterion; thus, in practice, we are interested in the problem of finding an ε-consistent value
function V :

Definition 3 (ε-consistent). Given an SSP S, a value function V for S is ε-consistent if

R(S, V) = max
s∈S′

R(s, V) = max
s∈S′
|V (s)− (BV)(s)| ≤ ε,

where S′ = Sπ
V

, i.e., the states reachable from s0 when following a greedy policy πV . The
functions R(s, V) and R(S, V) are known as the Bellman residual w.r.t. V of the state s
and the SSP S, respectively.

By (2), if V is 0-consistent, then V equals V ∗.
Any initial guess V 0 for V ∗ can be used in VI and if V 0 is a lower bound of V ∗, i.e.,

V 0(s) ≤ V ∗(s) for all s ∈ S, then V 0 is also known as an admissible heuristic. For any two
value functions V and V ′, we write V ≤ V ′ if V (s) ≤ V ′(s) for all s ∈ S; thus, V 0 is an
admissible heuristic if V 0 ≤ V ∗. Another important definition regarding value functions is
monotonicity :

Definition 4 (Monotonic Value Function). A value function V is monotonic if V ≤ BV .

The following well-known result is necessary in most of our proofs in this article

Theorem 1. Given an SSP S in which Assumption 1 holds, the operator B preserves
[Bertsekas and Tsitsiklis, 1996, Lemma 2.1]:

• admissibility: if V ≤ V ∗, then BkV ≤ V ∗ for k ∈ N∗; and

• monotonicity: if V ≤ BV , then V ≤ BkV for k ∈ N∗.

Another important concept for probabilistic planning is determinization, a relaxation
of a given probabilistic problem into a deterministic problem D = 〈S, s0,G,A

′〉. The set
A′ contains only deterministic actions represented as a = s → s′, i.e., a deterministically
transforms s into s′. Two common determinization procedures are (i) most-likely outcome,
in which A′ = {s → s′|∃a ∈ A s.t. s′ = argmaxs′′ P (s′′|s, a)} (breaking ties randomly); and
(ii) all-outcomes determinization, where A′ = {s→ s′|∃a ∈ A s.t. P (s′|s, a) > 0}.

2.2 Related Work

One direct extension of Value Iteration (VI) is Topological Value Iteration (TVI) [Dai and
Goldsmith, 2007]. TVI preprocesses the given SSP by performing a topological analysis
of S. The result of this analysis is a set of the strongly connected components (SCCs),
and TVI solves the SSP by applying VI on each SCC in reversed topological order. This

6

decomposition can speed up the search for optimal solutions when the original SSP can
be decomposed into several close-to-equal-size SCCs. In the worst case, when the SSP has
just one SCC, TVI performs worse than VI due to the overhead imposed by the topological
analysis.

To increase the chances that a problem will be decomposed in several close-to-equal-
size SCCs, Focused Topological Value Iteration (FTVI) [Dai et al., 2009] was introduced.
FTVI performs a best-first forward search in which a lower bound V for V ∗ is iteratively
improved and actions that are provably suboptimal are removed from the original SSP. Once
the R(S, V) is small, the search is stopped and the resulting SSP is solved using TVI and V .
Because the removed actions are always suboptimal, FTVI returns an optimal solution. In
the worst case, FTVI is equivalent to TVI as there is no guarantee that any action will be
removed from the original SSP.

Another extension of VI is Real Time Dynamic Programming (RTDP) [Barto et al.,
1995]. RTDP extends the asynchronous version of VI by using greedy search and sampling
to find the next state to perform a Bellman backup. In order to avoid being trapped in
loops and to find an optimal solution, RTDP updates its lower bound V (s) of V ∗(s) on
every state s visited during the search. If Assumption 1 holds for the given SSP, then
RTDP always finds an optimal solution after several search iterations (possibly infinitely
many); that is, RTDP is asymptotically optimal. Unlike VI, TVI, and FTVI that compute
complete policies, RTDP returns a closed policy (i.e., the returned policy might be partial).

Several extensions of RTDP have been proposed, and the first one is Labeled RTDP
(LRTDP) [Bonet and Geffner, 2003]. LRTDP introduces a labeling mechanism to find
states that have already converged and avoids exploring these converged states again. With
this technique, LRTDP provides an upper bound on the number of iterations necessary to
find an ε-consistent solution.

The following three algorithms also extend RTDP by maintaining a lower and an upper
bound V on V ∗ and providing different methods to direct the exploration of the state space:
Bounded RTDP (BRTDP) [McMahan et al., 2005], Focused RTDP (FRTDP) [Smith and
Simmons, 2006] and, Value of Perfect Information RTDP (VPI-RTDP) [Sanner et al., 2009].
The advantage of keeping an upper bound is that the exploration of the state space can be
biased toward states s in which the uncertainty about V ∗(s) is large, e.g., the gap between
V (s) and V (s) is large. This improved criterion to guide the search decreases the number
of Bellman backups required to find an ε-consistent solution; however, each iteration of
the search is considerably more expensive due to the maintenance of the upper bound V .
Although no clear dominance exists between RTDP and its extensions, empirically it has
been shown that in most problems, (i) RTDP is outperformed by all its extensions, and (ii)
VPI-RTDP outperforms BRTDP and FRTDP.

The extensions of RTDP mentioned so far are concerned with improving the convergence
of RTDP to an ε-consistent solution, and ReTrASE [Kolobov et al., 2009] extends RTDP
to improve its scalability. ReTrASE achieves this by projecting V into a lower dimensional
space. The set of basis functions used by ReTrASE is obtained by solving the all-outcomes
determinization of the original problem. Due to the lower dimensional representation, Re-
TrASE is nonoptimal.

A different approach for finding optimal solutions is Policy Iteration (PI) [Howard,
1960]. PI performs search in the policy space and iteratively improves the current policy

7

until no further improvement is possible, i.e., an optimal policy is found. Because PI was
originally designed for infinite-horizon MDPs, it returns a complete policy; therefore, when
applied to SSPs, PI does not take advantage of the initial state s0 to prune its search.
LAO* [Hansen and Zilberstein, 2001] can be seen as a version of PI that takes advantage
of s0 and computes optimal closed policies that are potentially not complete. Precisely,
LAO* computes an optimal closed policy for the sequence S0 ⊆ S1 ⊆ . . . Sk ⊆ S, where
S0 = {s0} and Si is generated by greedily expanding Si−1. LAO* stops when Sπ

∗ ⊆ Si;
therefore, the optimal closed policy for Sπ

∗
is also optimal for the original problem.

Improved LAO* (ILAO*) [Hansen and Zilberstein, 2001] enhances LAO* performance by
(i) increasing how many states are added to Si−1 to generate Si and (ii) performing single
Bellman Backups in a depth-first postorder traversal of Si instead of using PI or VI to
compute optimal solutions to Si. Learning Depth-First Search (LDFS) [Bonet and Geffner,
2006], when applied to SSPs, improves ILAO* by incorporating a labeling mechanism. This
labeling mechanism is similar to the mechanism employed by LRTDP and it labels states
already converged to avoid revisiting them during the search.

Another technique to solve probabilistic planning problems is replanning. One of the
simplest, yet powerful, replanners is FF-Replan [Yoon et al., 2007]. Given a state s (initially,
s equals s0), FF-Replan generates the all-outcomes determinization D of the problem and
uses the deterministic planner FF [Hoffmann and Nebel, 2001] to solve D from state s. If
and when the execution of the solution for D fails in the probabilistic environment, FF
is reinvoked to plan again from the failed state. FF-Replan was the winner of the first
International Probabilistic Planning Competition (IPPC) [Younes et al., 2005], in which
it outperformed the probabilistic planners due to their poor scalability. Despite its major
success, FF-Replan is nonoptimal and oblivious to probabilities and dead ends, leading to
poor performance in probabilistic interesting problems [Little and Thiébaux, 2007], e.g., the
triangle tire domain.

FF-Hindsight [Yoon et al., 2008] is a nonoptimal replanner that generalizes FF-Replan
based on hindsight optimization. Given a state s, FF-Hindsight performs the following three
steps: (i) it randomly generates a set of nonstationary deterministic problems D starting
from s; (ii) it uses FF to solve them; and (iii) it combines the cost of their solutions to
estimate the true cost of reaching a goal state from s. Each deterministic problem in D has
a fixed horizon and is generated by sampling one outcome of each probabilistic action for
each time step. This process reveals two major drawbacks of FF-Hindsight: (i) a bound
in the horizon size of the problem is needed in order to produce the relaxed problems;
and (ii) rare effects of actions might be ignored by the sampling procedure. While the
first drawback is intrinsic to the algorithm, a workaround to the second one is proposed
[Yoon et al., 2010] by always adding the all-outcomes determinization of the problem to D
and, therefore, ensuring that every effect of an action appears at least in one deterministic
problem in D.

Based on solution refinement, two other nonoptimal replanners were proposed: Envelope
Propagation (EP) [Dean et al., 1995] and Robust FF (RFF) [Teichteil-Koenigsbuch et al.,
2008]. In general terms, EP and RFF compute an initial partial policy π and iteratively
expand it to avoid replanning. EP prunes the state space S and represents the removed states
by a special meta-state out and the appropriate meta-actions to represent the transitions
from and to out. At each iteration, EP refines its approximation S′ of S by expanding

8

and then repruning S′. Repruning is necessary to avoid the convergence of S′ to S. This
repruning step is the main drawback of EP because low probability states are pruned and,
therefore ignored, and they can represent states that need to be avoided, e.g., high cost
states and dead ends. RFF, the winner of the third IPPC [Bryce and Buffet, 2008], uses
a different approach: an initial partial policy π is computed by solving the most-likely
outcome determinization of the original problem using FF and then the robustness of π is
iteratively improved. For RFF, robustness is defined as the probability of replanning: given
ρ ∈ [0, 1], RFF computes π such that the probability of replanning when executing π from
s0 is at most ρ.

An orthogonal direction from all other approaches mentioned so far is applied by t-look-
ahead [Pearl, 1985, Russel and Norvig, 2003], Upper Confidence bound for Trees (UCT)
[Kocsis and Szepesvári, 2006], and UCT-based planner (e.g., Prost [Keller and Eyerich,
2012]): they modify the problems’ horizon from indeterminate to finite and choose actions
greedily according to the solution of this new relaxed problem. t-look-ahead fixes the
horizon of the relaxed problem to t time steps and solves it using dynamic programming.
UCT approximates t-look-ahead by solving a series of multi-armed bandits problems where
each arm represents an action and a finite-horizon of t actions are considered. Sparse
sampling techniques are employed to efficiently solve this new problem and avoid actions
whose cost is far from the best one found so far.

In the context of motion planning, another relevant approach is Variable Level-of-detail
Motion Planner [Zickler and Veloso, 2010], in which poorly predictable physical interactions
are ignored (pruned) in the far future.

3. Short-Sighted Stochastic Shortest Path Problems

Depth-based short-sighted Stochastic Shortest Path Problems [Trevizan and Veloso, 2012a]
are a special case of SSPs in which the original problem is transformed into a smaller one by
(i) pruning the states that have zero probability of being reached using at most t actions;
(ii) adding artificial goal states; and (iii) incrementing the cost of reaching artificial goals
by a heuristic value to guide the search toward the goals of the original problem. In this
article, we refer to depth-based short-sighted Stochastic Shortest Path Problems as short-
sighted SSPs. Short-sighted SSPs are defined based on the action-distance between states
(Definition 5) and are formalized in Definition 6.

Definition 5 (δ(s, s′)). The nonsymmetric distance δ(s, s′) between two states s and s′ is

δ(s, s′) =

0 if s = s′

1 + min
a∈A

min
ŝ : P (ŝ|s,a)>0

δ(ŝ, s′) otherwise
.

δ(s, s′) is equivalent to the minimum number of actions necessary to reach s′ from s in the
all-outcomes determinization.

Definition 6 (Short-Sighted SSP). Given an SSP S = 〈S, s0,G,A, P, C〉, a state s ∈ S,
t ∈ N∗, and a heuristic H, the (s, t)-short-sighted SSP Ss,t = 〈Ss,t, s,Gs,t,A, P, Cs,t〉 associ-
ated with S is defined as

• Ss,t = {s′ ∈ S|δ(s, s′) ≤ t};

9

s
2

s
0

s
1

s
1
’ s

G

1−p

1−p

p

p

a
0

a
1

s
G

s
1
’

s
2

s
0

s
1
’ s

0

s
1

s
0

(a) (b)

Figure 2: (a) The (s0, 2)-short sighted SSP associated to the SSP in Figure 1. The set of
goal states Gs0,2 is {sG, s2} and s2 is an artificial goal. The cost function Cs0,2 is the same
as in the original SSP, except by Cs0,2(s1, a1, s2) = 1 + H(s2). (b) The 2-step look-ahead
search from s0 in the SSP from Figure 1.

• Gs,t = {s′ ∈ S|δ(s, s′) = t} ∪ (G ∩ Ss,t);

• Cs,t(s′, a, s′′) =

{
C(s′, a, s′′) +H(s′′) if s′′ ∈ Gs,t \ G
C(s′, a, s′′) otherwise

, ∀s′ ∈ Ss,t, s
′′ ∈ Ss,t, a ∈ A

For simplicity, when the heuristic H is not clear by context nor explicit then H(s) = 0 for
all s ∈ S.

Figure 2.(a) shows the (s0, 2)-short-sighted SSP associated with the example in Figure 1.
The state space Ss,t of (s, t)-short-sighted SSPs is a subset of the original state space in which
any state s′ ∈ Ss,t is reachable from s using at most t actions. Given a short-sighted SSP Ss,t,
we refer to the states s′ ∈ Gs,t \G as artificial goals, and we denote the set of artificial goals
by Ga; thus, Ga = Gs,t \ G. The key property of short-sighted SSPs that allows them to be
used for solving SSPs is given by the definition of Cs,t: every artificial goal state sa ∈ Ga
has its heuristic value H(sa) added to the cost of reaching sa. Therefore, the search for a
solution to short-sighted SSPs is guided toward the goal states of the original SSP, even if
such states are not in Ss,t.

Since short-sighted SSPs are also SSPs, the optimal value function for Ss,t, denoted
as V ∗Ss,t , is defined by (2). Although related, the V ∗Ss,t(s) and (BtH)(s), i.e., the t-look-
ahead value of s w.r.t. H, are not the same. Before we formally prove their differences,
consider the example depicted in Figure 1 for depth t = 2, p = 0.5, and the zero-heuristic
as H:

• The 2-look-ahead search from s0 – (B2H)(s0) – represents the minimum expected
cost of executing 2 actions in a row, so only trajectories of size 2 are considered. The
resulting value is (B2H)(s0) = 1.5 and is obtained by applying action a0 in both s0

and s′1. The search space considered to compute (B2H)(s0) in this example is depicted
in Figure 2.(b).

• The optimal value function for Ss0,2 on s0 – V ∗Ss0,2
(s0) – is defined as the minimum

expected cost to reach a goal state in Ss0,2 (Figure 2.(a)) from s0. So all possible

10

trajectories in Ss0,2 are considered, and the maximum length of these trajectories is
unbounded due to the loops generated by the policy in which action a0 is applied in
states s0 and s′1. In this example, V ∗Ss0,2

(s0) = 2 and the greedy policy w.r.t. V ∗Ss0,2
is

〈(s0, a1), (s1, a1)〉.

Precisely, the difference between the look-ahead and short-sighted SSPs is in how the original
SSP is relaxed: look-ahead changes the indefinite horizon of the original SSP to a finite
horizon; and short-sighted SSPs prune the state space of the original SSP without changing
the horizon.

To formally prove the relationship between V ∗Ss,t(s) and (BtH)(s), we introduce Bs,t,
the Bellman operator B applied to the short-sighted SSP Ss,t. To simplify our proofs, we
define (Bs,tV)(ŝ) to be equal to 0 if ŝ ∈ Gs,t and

(Bs,tV)(ŝ) = min
a∈A

∑
s′∈Ss,t\Ga

P (s′|ŝ, a)
[
Cs,t(ŝ, a, s

′) + V (s′)
]

+
∑
s′∈Ga

P (s′|ŝ, a)Cs,t(ŝ, a, s
′)

for all ŝ ∈ Ss,t \Gs,t. The only difference between the definitions of B and Bs,t is the explicit
treatment of the states sa ∈ Ga in the summation by Bs,t: V (sa) is not considered because
sa is an artificial goal of Ss,t. If V (sa) = 0 for all sa ∈ Ga, then BV = Bs,tV for Ss,t.
Lemmas 2 and 3 relate the operator B applied to an SSP S with operator Bs,t applied to
the (s, t)-short-sighted SSP Ss,t associated with S.

Lemma 2. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assumption 1, s ∈ S, t ∈ N∗
and a monotonic value function V for S, then (Bk

s,tV)(ŝ) = (BkV)(ŝ) for all ŝ ∈ Ss,t \ Ga
s.t. minsa∈Ga δ(ŝ, sa) ≥ k, where B and Bs,t represent, respectively, the Bellman operator
applied to S and Ss,t using V as heuristic.

Proof. See Appendix.

Lemma 3. Under the conditions of Lemma 2, (Bk
s,tV)(s) ≤ (BkV)(s) for all k ∈ N∗ and

ŝ ∈ Ss,t, where B and Bs,t represent, respectively, the Bellman operator applied to S and
Ss,t using V as heuristic.

Proof. See Appendix.

In Theorem 4, we prove that V ∗Ss,t(s) is a lower bound for V ∗(s) at least as tight as

(BtH)(s) if H is a monotonic lower bound on V ∗ and Assumption 1 holds for S. Corollary 5
shows that V ∗Ss,t(s) is always a tighter lower bound than (BtH)(s) if S has unavoidable loops

(Definition 7).

Theorem 4. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assumption 1, s ∈ S, t ∈ N∗
and a monotonic lower bound H for V ∗, then

(BtH)(s) ≤ V ∗Ss,t(s) ≤ V
∗(s).

Proof. By the definition of Ss,t, minsa∈Ga δ(s, sa) = t, thus by Lemma 2, we have that
(BtH)(s) = (Bt

s,tH)(s). Because H is monotonic and V ∗Ss,t(s) = (limk→∞B
k
s,tH)(s), then

(BtH)(s) ≤ V ∗Ss,t(s). By Lemma 3, we have that V ∗Ss,t(s) ≤ V
∗(s).

11

Definition 7 (Unavoidable Loops). An SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assump-
tion 1 has unavoidable loops if, for every optimal policy π∗ of S, the directed graph
G = (Sπ

∗
, E) contains at least one cycle, where E = {(s, s′)|P (s′|s, π∗(s)) > 0}.

Corollary 5. In Theorem 4, if the (s, t)-short-sighted SSP Ss,t has unavoidable loops (Def-
inition 7), then (BtH)(s) < V ∗Ss,t(s).

Proof. By definition, (BtH)(s) considers only trajectories of size at most t from s. Since
V ∗Ss,t(s) = limk→∞(Bk

s,tH)(s), then all possible trajectories on Ss,t are considered by V ∗Ss,t . By
assumption, Ss,t has unavoidable loops, so the maximum size of a trajectory generated by π∗s,t
is unbounded. As every trajectory has nonzero probability and nonzero cost by definition,
then (Bt

s,tH)(s) < V ∗Ss,t(s), and by Lemma 2, we have that (BtH)(s) < V ∗Ss,t(s).

Another important relationship between SSPs and short-sighted SSPs is through their
policies. To formalize this relationship, we first define the concept of t-closed policy w.r.t. s,
i.e., policies that can be executed from s independent of the probabilistic outcome of actions
for at least t actions without replanning:

Definition 8 (t-closed policy). A policy π for an SSP S = 〈S, s0,G,A, P, C〉 is t-closed
w.r.t. a state s ∈ S if, for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ t.

All the replanners reviewed on Section 2.2 compute 1-closed policies w.r.t. the current
state, i.e., there is no guarantee that the partial policy computed by them can be executed
for more than one action without replanning. Notice that when t → ∞, t-closed policies
w.r.t. s0 are equivalent to closed policies; Proposition 6 gives an upper bound on t for when
a t-closed policy w.r.t. s0 becomes a closed policy.

Proposition 6. Given an SSP S = 〈S, s0,G,A, P, C〉, for t ≥ |S|, every t-closed policy
w.r.t. s0 for S is also a closed policy for S.

Proof. Since π is t-closed w.r.t. s0 for t ≥ |S|, then for all s′ ∈ Rπ ∩ Sπ, δ(s0, s
′) ≥ |S|. By

the definition of Sπ, we have that all s′ ∈ Sπ is reachable from s0 when following π. Thus,
δ(s0, s

′) < |S| because there exists a trajectory from s0 to s′ that visits each state at most
once, i.e., that uses at most |S|−1 actions. Therefore, @s′ ∈ Sπ such that δ(s0, s

′) ≥ |S| and
Rπ ∩ Sπ = ∅.

Policies for SSPs and policies for their associated (s, t)-short-sighted SSPs are related
through the concept of t-closed policies w.r.t. s as follows:

Proposition 7. Given an SSP S = 〈S, s0,G,A, P, C〉, a state s ∈ S, and t ∈ N∗, then π is
a closed policy for Ss,t if and only if π is a t-closed policy w.r.t. s for S.

Proof. We assume that π is a closed policy for Ss,t, i.e., Rπs,t ∩ Sπs,t = ∅. For contradiction
purposes, suppose that there exists s′ ∈ Rπ ∩ Sπ such that δ(s, s′) < t. Because δ(s, s′) < t,
then s′ ∈ Ss,t; thus, s′ ∈ Sπs,t ⊆ Sπ and s′ ∈ Rπs,t ⊆ Rπ. This is a contradiction because
Rπs,t ∩ Sπs,t = ∅; therefore, for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ t, i.e., π is t-closed w.r.t. s for S.

Now, we assume that π is t-closed w.r.t. s for S, i.e., for all s′ ∈ Rπ ∩ Sπ, δ(s, s′) ≥ t.
By the definition of Ss,t, for all s′ ∈ Ss,t, δ(s, s

′) ≤ t. Thus, if s′ ∈ (Rπ ∩ Sπ) ∩ Ss,t,
then δ(s, s′) = t, i.e., s′ ∈ Gs,t \ G. Because Rπs,t ∩ Gs,t = ∅ by the definition of Rπ and
Sπs,t = Sπ ∩ Ss,t, then Rπs,t ∩ Sπs,t = ∅, i.e., π is closed for Ss,t.

12

1 SSiPP(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗ and ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 s← s0

5 while s 6∈ G do
6 Ss,t ← Generate-Short-Sighted-SSP(S, s, V , t)
7 (π∗Ss,t , V

∗
Ss,t)← Optimal-SSP-Solver(Ss,t, V , ε)

8 forall the s′ ∈ S
π∗Ss,t \ Gs,t do

9 V (s′)← V ∗Ss,t(s
′)

10 while s 6∈ Gs,t do
11 s← execute-action(π∗Ss,t(s))

12 return V

Algorithm 1: SSiPP algorithm [Trevizan and Veloso, 2012a]. Any SSP optimal solver
can be used as Optimal-SSP-Solver, e.g., value iteration and RTDP and, in practice,
Optimal-SSP-Solver returns an ε-consistent solution. Notice that V ∗Ss,t needs to be

defined only for the states reachable from s when following π∗Ss,t , i.e., for s′ ∈ S
π∗Ss,t .

4. Short-Sighted Probabilistic Planner

The Short-Sighted Probabilistic Planner (SSiPP) [Trevizan and Veloso, 2012a] is an algo-
rithm that solves SSPs based on short-sighted SSPs. SSiPP is presented in Algorithm 1
and consists of iteratively generating and solving short-sighted SSPs of the given SSP. Due
to the reduced size of the short-sighted problems, SSiPP computes the optimal solution for
each of them by calling the external procedure Optimal-SSP-Solver (line 7).1 There-
fore, SSiPP obtains a “fail-proof” solution, i.e., a closed policy for each short-sighted SSP
generated. Due to Proposition 7, each policy π∗Ss,t obtained in line 7 of Algorithm 1 is a
t-closed policy w.r.t. the current state s for original SSP S; therefore, π∗Ss,t can be simulated

or directly executed in the environment (line 11) for at least t steps before replanning is
needed, i.e., before another short-sighted SSP is generated and solved.

To illustrate the execution of SSiPP, consider as input the SSP S in Figure 1 for t = 2.
The first short-sighted SSP built by the algorithm is Ss0,2 (Figure 2.(a)), and there are only
two possible 2-closed policies for Ss0,2 that are proper: (i) π0 = {(s0, a0), (s′1, a0)}; and
(ii) π1 = {(s0, a1), (s1, a1)}. Depending on the value of k (the length of the chain in S) and
the heuristic H used, Optimal-SSP-Solver can return either π0 or π1. If the former is
returned, then the original SSP S is solved, because π0 is a closed policy for S. Instead,
if π1 is returned, then dk+1

2 e short-sighted SSPs, representing the 3-states subchains of

s0
a1−→ s1

a1−→ s2
a1−→ · · · a1−→ sG, are generated and solved.

SSiPP, as shown in Algorithm 1, only samples one trajectory of the SSP being solved
and is not guaranteed to obtain an optimal solution. Nonetheless, SSiPP can be used for
computing the optimal solutions by iteratively improving the current lower bound V until

1. In practice, Optimal-SSP-Solver stops when an ε-consistent value function is found.

13

1 Run-SSiPP-Until-Convergence(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic
for V ∗ and ε > 0)

2 begin
3 V ← Value function for S with default value given by H
4 while R(S, V) > ε do
5 V ← SSiPP(S, t,V , ε)

6 return V

Algorithm 2: Algorithm to compute an ε-consistent value function using SSiPP (Algo-
rithm 1).

convergence is reached. This approach is formalized by Run-SSiPP-Until-Convergence
(Algorithm 2).

In the remainder of this section, we prove that SSiPP performs Bellman backups (The-
orem 8); SSiPP terminates (Theorem 9); and Algorithm 2 is asymptotically optimal (The-
orem 10), that is, if the same problem is solved sufficiently many times by SSiPP, then an
optimal policy is found.

Theorem 8. Given an SSP S = 〈S, s0,G,A, P, C〉 such that Assumption 1 holds and a
monotonic lower bound H for V ∗, then the loop in line 8 of SSiPP (Algorithm 1) is equiv-

alent to applying at least one Bellman backup on V for every state s′ ∈ S
π∗Ss,t \ Gs,t.

Proof. Let Ŝ denote S
π∗Ss,t \ Gs,t. After the loop in line 8 is executed, for all s′ ∈ Ŝ, V (s′)

equals V ∗Ss,t(s
′) for all s′ ∈ Ŝ. Thus, we need to prove that (BV)(s′) ≤ V ∗Ss,t(s

′) ∀s′ ∈ Ŝ

since V is monotonic and admissible (Theorem 1). By the definition of short-sighted SSP
(Definition 6), every state s′ ∈ Ŝ is such that {s′′ ∈ S|P (s′′|s′, a) > 0,∀a ∈ A} ⊆ Ss,t, i.e.,

the states reached after applying an action in a state s′ ∈ Ŝ belong to Ss,t. Therefore,

(BV)(s′) = (Bs,tV)(s′) ∀s′ ∈ Ŝ, where Bs,t is the Bellman operator B for Ss,t. Since V is

monotonic and admissible, (Bs,tV)(s′) ≤ V ∗Ss,t(s
′). Therefore, (BV)(s′) ≤ V ∗Ss,t(s

′) ∀s′ ∈ Ŝ.

Theorem 9. SSiPP always terminates under the conditions of Theorem 8.

Proof. Suppose SSiPP does not terminate. Then there exists a trajectory T of infinite size
that can be generated by SSiPP, so there must be an infinite loop in T because S is finite
by definition. Since π∗Ss,t is proper for Ss,t, the loop encompassed by lines 10 and 11 always

terminates. Therefore the main loop (lines 5 to 11) is executed infinitely many times and
V (s) diverges. Because Assumption 1 holds for S, we have that V ∗(s) < ∞ for all s ∈ S.
This is a contradiction since SSiPP maintains V , initialized as H, admissible and monotonic
(Theorems 4 and 8), i.e., V (s) ≤ V ∗(s) for all s ∈ S.

Theorem 10. Given an SSP S = 〈S, s0,G,A, P, C〉 such that Assumption 1 holds, a mono-
tonic lower bound H for V ∗ and t ∈ N∗, then the sequence 〈V 0, V 1, · · · , V k〉, where V 0 = H
and V i = SSiPP(S, t, V i−1), converges to V ∗ as k →∞ for all s ∈ Sπ

∗
.

14

Proof. Let the sequence of states Hk = 〈s0, s1, s2, . . .〉 be the concatenation of the trajec-
tories T0, · · · , Tk of states visited by SSiPP when V i is computed for i ∈ {0, . . . , k}. By
Theorem 9, each Ti has finite size, so |Hk| is finite for k ∈ N. Because Assumption 1
holds for S, and H is admissible and monotonic, when k → ∞, we can construct an SSP
S∞ = 〈S∞, s0,G∞, A∞, P, C〉 such that [Barto et al., 1995, Theorem 3, p. 132]: S∞ ⊆ S
is the nonempty set of states that appear infinitely often in limk→∞Hk; G∞ ⊆ G is the
nonempty set of goal states that appear infinitely often in limk→∞Hk; and A∞ ⊆ A is
the set of actions a such that P (s′|s, a) = 0 for all s ∈ S∞ and s′ ∈ S \ S∞. Therefore,
there is a finite time step T such that the sequence H′ of states visited after time step T
contains only states in S∞. By Theorem 8, we know that at least one Bellman backup is
applied to sj for any time step j. Thus, after time step T , the sequence of Bellman backups
applied by SSiPP is equivalent to asynchronous value iteration on S∞, and V k(s) converges
to V ∗(s) for all s ∈ S∞ as k → ∞ [Bertsekas and Tsitsiklis, 1996, Proposition 2.2, p. 27].
Furthermore, Sπ

∗ ⊆ S∞ [Barto et al., 1995, Theorem 3].

4.1 Improving the convergence of SSiPP

SSiPP obtains the next state s′ from the current state s by either executing or sampling one
outcome of the optimal policy π∗Ss,t of the current short-sighted SSP (Algorithm 1 line 11).

This procedure is repeated until s′ is a goal state, either from the original SSP or an artificial
goal.

Real Time Dynamic Programming (RTDP) [Barto et al., 1995] employs a similar tech-
nique: the next state s′ is obtained by sampling an outcome of πV (s). The advantage of this
unbiased sampling procedure is that more likely states are updated more often. As noticed
in [Bonet and Geffner, 2003], the convergence of a given state s depends on all its reachable
successors, so unlikely successors should also be visited. As a result, for a given state s,
unbiased sampling might not update unlikely successors of s frequently, thus delaying the
overall convergence of V .

Labeled RTDP (LRTDP) [Bonet and Geffner, 2003] extends RTDP by tracking the
states that the estimate V of V ∗ has already converged and not visiting these states again.
To find and label the converged states, the procedure CheckSolved (Algorithm 3) is
introduced. Given a state s, CheckSolved searches for states s′ reachable from s when
following a greedy policy πV such that R(s′, V) > ε. If no such state s′ is found, then s

and all the states in Sπ
V

reachable from s have converged, and they are labeled as solved.
Alternatively, if there exists s′ reachable from s when following a greedy policy πV such
that R(s′, V) > ε, then a Bellman backup is applied on at least V (s′). A key property of
CheckSolved is that if V has not converged, then a call to CheckSolved either improves
V or labels a new state as solved:

Theorem 11 ([Bonet and Geffner, 2003, Theorem 4]). Given an SSP S = 〈S, s0,G,A, P, C〉
that satisfies Assumption 1, ε > 0, and a monotonic lower bound V for V ∗, then a
CheckSolved(S, s, V, solved, ε) call for s 6∈ solved that returns (solved′, V ′) either: labels
a state as solved (i.e., |solved′| > |solved|) or there exists s′ ∈ S such that V ′(s′)−V (s′) > ε.

Using the solved labels, the sampling procedure of LRTDP can be seen as a case of
rejection sampling: if the sampled successor s′ of s is marked as solved, restart the procedure

15

1 CheckSolved(SSP S = 〈S, s0,G,A, P, C〉, state s ∈ S, value function V , set of states
solved and ε > 0)

2 begin
3 conv ← true
4 open← Empty-Stack
5 closed← Empty-Stack
6 if s 6∈ solved then open.Push(s)
7 while not open.isEmpty() do
8 s← open.Pop()
9 closed.Push(s)

10 if s ∈ (G ∪ solved) then Continue
11 if R(s, V) > ε then
12 conv ← false
13 Continue

14 forall the s′ s.t. P (s′|s, πV (s)) > 0 do
15 if s′ 6∈ (solved ∪ open ∪ closed) then
16 open.Push(s′)

17 if conv = true then
18 forall the s′ ∈ closed do
19 solved← solved ∪ {s′}

20 else
21 while not closed.isEmpty() do
22 s← closed.Pop()
23 V (s)← (BV)(s)

24 return (solved, V)

Algorithm 3: CheckSolved from [Bonet and Geffner, 2003].

from the initial state s0; otherwise, use s′. This new sampling procedure gives LRTDP both
a better anytime performance and a faster convergence when compared to RTDP.

Labeled-SSiPP (Algorithm 4) is an extension of Run-SSiPP-Until-Convergence
(Algorithm 2) that incorporates the labeling mechanism of LRTDP and uses the Check-
Solved procedure. Since the states marked as solved have already converged, there is no
need to further explore and update them; therefore, the solved states are also considered
as artificial goals for generated short-sighted SSPs (Algorithm 4 line 10). By adding the
solved states to the goal set of the generated short-sighted SSPs, any algorithm used as
Optimal-SSP-Solver (line 13) will implicitly take advantage of the labeling mechanism,
i.e., the search is stopped once a solved state is reached.

The simulation of the current short-sighted SSP (Algorithm 4 line 16) for Labeled-SSiPP
finishes when the state s is either (i) a goal state of the original problem, (ii) a solved state,
or (iii) an artificial goal. Only in the last case, the algorithm continues to generate short-
sighted SSPs. Thus, Labeled-SSiPP (as LRTDP) also employs rejection sampling: if a
solved state is sampled, then the search restarts from the initial s0.

16

1 Labeled-SSiPP(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗ and ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 solved← ∅
5 while s0 6∈ solved do
6 s← s0

7 visited← Empty-Stack
8 while s 6∈ (G ∪ solved) do
9 Ss,t ← Generate-Short-Sighted-SSP(S, s, V , t)

10 forall the s′ ∈ Ss,t do
11 if s′ ∈ solved then
12 Gs,t ← Gs,t ∪ {s′}

13 (π∗Ss,t , V
∗
Ss,t)← Optimal-SSP-Solver(Ss,t, V , ε)

14 forall the s′ ∈ S
π∗Ss,t \ Gs,t do

15 V (s′)← V ∗Ss,t(s
′)

16 while s 6∈ Gs,t do
17 visited.Push(s)
18 s← simulate-action(π∗Ss,t(s))

19 while not visited.isEmpty() do
20 s← visited.Pop()
21 (solved, V)← CheckSolved(S, s, V , solved, ε)
22 if s 6∈ solved then
23 break

24 return V

Algorithm 4: Labeled-SSiPP: Extension of SSiPP that incorporates the LRTDP la-
beling mechanism. In practice, Optimal-SSP-Solver returns an ε-consistent solution.
CheckSolved is presented in Algorithm 3.

Besides the empirical advantage of LRTDP over RTDP shown in [Bonet and Geffner,
2003], the labeling mechanism also allows to upper bound the maximum number of iterations
necessary for LRTDP to converge to the ε-consistent solution. This same upper bound holds
for Labeled-SSiPP:

Corollary 12. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assumption 1, ε > 0,
t ∈ N∗ and a monotonic lower bound H for V ∗, then Labeled-SSiPP (Algorithm 4) finds an
ε-consistent lower bound V after at most ε−1

∑
s∈S V

∗(s) − H(s) iterations of the loop in
line 5.

Proof. In each iteration of the loop in line 5 of Algorithm 4, CheckSolved is called for at
least one state ŝ 6∈ solved, since s0 6∈ solved. By Theorem 11, after CheckSolved is called
for ŝ, either (i) ŝ ∈ solved; or (ii) there exists s′ 6∈ solved reachable from ŝ when following a
greedy policy πV such that V (s′)− V old(s′) > ε, where V old denotes V before the Check-

17

Solved call. Thus, in the worst case, each CheckSolved call improves V for exactly one
state s′ 6∈ solved. Therefore, CheckSolved is called at most ε−1

∑
s∈S V

∗(s)−H(s) times
before s0 ∈ solved, which is the termination condition for the loop in line 5.

4.2 Combining SSiPP and FF

As shown in [Trevizan and Veloso, 2012a], SSiPP has good performance in probabilistic
interesting domains; however, SSiPP does not scale up as well as determinization-based
replanners such as FF-Replan for problems without dead ends in which many nonoptimal
solutions are available, such as blocks world. In this section, we show how to combine
the SSiPP and determinization to improve the scalability of SSiPP in such domains while
dropping SSiPP’s optimality guarantee.

Algorithm 5 shows SSSiPP-FF, an extension of SSiPP, that combines t-closed policies
and plans obtained through the determinization of the original SSP. The rationale behind
SSiPP-FF is to generate and solve short-sighted SSPs only in regions of the SSP in which
FF-Replan chooses a poor solution. These regions are found when the plan computed by
FF-Replan fails, e.g., due to its low probability of success.

Formally, after reaching an artificial goal s, SSiPP-FF computes a determinization D
of the original SSP; runs FF to solve D using s as initial state; and executes the returned
plan until failure (lines 12 to 17 in Algorithm 5). Any determinization can be used by
SSiPP-FF (line 13), and if the chosen determinization is stationary (e.g., all-outcomes and
most-likely determinization) then the deterministic representation of S can be precomputed
and reused in every iteration to generate D. Since SSiPP-FF does not assume any specific
behavior of FF, any deterministic planner can be used for solving D in line 14 instead of FF.

Besides taking advantage of potential nonoptimal solutions, SSiPP-FF also improves the
behavior of FF-Replan by not reaching avoidable dead ends in the generated short-sighted
SSPs. Formally, suppose that a short-sighted SSP Ss,t generated in line 6 of Algorithm 5
has an avoidable dead end (i.e., there exists at least one proper policy π for Ss,t) thus
sd 6∈ Sπs,t for all dead end states sd ∈ Ss,t. Since an optimal policy π∗Ss,t is computed for Ss,t
(line 7), then π∗Ss,t is one of the existing proper policies by the definition of optimal policies;
therefore, the avoidable dead ends are not reached by executing π∗Ss,t . The guarantee of not
reaching avoidable dead ends is not particular from SSiPP-FF; instead, this guarantee is
inherited from SSiPP.

We finish this section by showing a series of problems in which SSiPP-FF avoids all
dead ends while determinization approaches based on the shortest distance to the goal
(e.g., FF-Replan) reach a dead end with probability exponentially large in the problem size.

Example 1 (Jumping Chain). For k ∈ N∗, the k-th jumping chain problem has 3k+1 states:
S = {s0, s1, · · · , s2k, r1, r2, · · · , rk}. The initial state is s0 and the goal set is G = {s2k}.
Two actions are available, aW (walk) and aJ (jump), and their costs are, respectively,
1 and 3, independent of the current and resulting state. The walk action is deterministic:
P (si+1|si, aW) = 1 for all i, P (si−1|ri, aW) = 1 for i odd; and P (ri|ri, aW) = 1 for i even.
When the jump action is applied to si, for i even, the resulting state is si+2 with probability
0.75 and ri+1 with probability 0.25; if i is odd, then aJ does not change the current state,
i.e., P (si|si, aJ) = 1. For the states ri, aJ is such that P (ri|ri, sJ) = 1 for even i, and for

18

1 SSiPP-FF(SSP S = 〈S, s0,G,A, P, C〉, t ∈ N∗, H a heuristic for V ∗, ε > 0)
2 begin
3 V ← Value function for S with default value given by H
4 s← s0

5 while s 6∈ G do
6 Ss,t ← Generate-Short-Sighted-SSP(S, s, V , t)
7 (π∗Ss,t , V

∗
Ss,t)← Optimal-SSP-Solver(Ss,t, V , ε)

8 forall the s′ ∈ S
π∗Ss,t \ Gs,t do

9 V (s′)← V ∗Ss,t(s
′)

10 while s 6∈ Gs,t do
11 s← execute-action(π∗Ss,t(s))

12 if s 6∈ G then
13 D ← Determinize(S)
14 〈s1, a1, s2, . . . , ak−1, sk〉 ← CallFF(D, s)
15 for i ∈ {1, . . . , k − 1} do
16 if s 6= si then break
17 s← execute-action(ai)

18 return V

Algorithm 5: SSiPP-FF: Extension of SSiPP that incorporates determinizations to
efficiently obtain a nonoptimal solution.

odd i, P (si+1|ri, sJ) = 0.75 and P (ri+1|ri, sJ) = 0.25. For all i even, ri is a dead end. The
jumping chain problem for k = 3 is depicted in Figure 3.

In the jumping chain problems, FF-Replan using both the most-likely outcomes and
all-outcomes determinization are equivalent because the low probability effect of jump, i.e.,
move to a state ri, is less helpful than its most-likely effect. When in a state ri, for i odd,
FF-Replan never chooses the action walk because (i) walk results in a state further away
from the goal, and (ii) jump has a nonzero probability to reach a state in which the goal is
still achievable. Therefore, the solutions obtained by FF-Replan have a nonzero probability
of reaching a dead end, i.e., a state ri for i even. Formally, the probability of FF-Replan
reaching the goal for the k-th jumping chain problem is (2p− p2)k for p = 0.75.

Alternatively, SSiPP-FF always reaches the goal for t ∈ N∗ and the following trivial
extension of the zero-heuristic: hd(s) = ∞ if P (s|s, a) = 1 for all a ∈ A and hd(s) = 0
otherwise. Formally, a dead end ri (for i even) can only be reached when aJ is applied
in ri−1, and to show that SSiPP-FF never reaches ri, we need to show that (i) π∗Ss,t generated

on line 7 never applies aJ on ri; and (ii) if ri ∈ Gs,t, then π∗Ss,t does not reach ri since the

determinization part of SSiPP-FF (line 14) would apply aJ . The former case is true since
π∗Ss,t is an optimal policy and hd(si−1) = 0 < hd(ri+1) = ∞; therefore, π∗Ss,t(ri) = aW .

In the latter case, if ri ∈ Gs,t, then {si, si+1} ⊂ Gs,t. Since hd(ri) = hd(si) = hd(si+1) = 0
and C(si−1, aW , si) = 1 < C(si−1, aJ , ·) = 3, then π∗Ss,t(si−1) = aW and the value of s in
line 14 of SSiPP-FF is si+1. Therefore, SSiPP-FF using hd always reaches the goal for

19

s
0

s
4

s
5

s
6

s
1

s
2

s
3

a
w

a
J

1 3 5
r r r

2 4 6
r

 .25

.75

.75

.25

.75 .75

.25 .25

.25.25

.75 .75

r r

Figure 3: Representation of the jumping chain problem (Example 1) for k = 3. The initial
state is s0, the goal set is G = {s6}. Actions aW and aJ have cost 1 and 3 respectively.

t ∈ N∗. SSiPP-FF can obtain a speedup over SSiPP in the jumping chain problems if the
determinization solution can be efficiently obtained.

5. Experiments

We present two sets of experiments to compare (i) the convergence time of SSiPP (us-
ing Algorithm 2) and Labeled-SSiPP (Section 5.2); and (ii) the performance of SSiPP,
Labeled-SSiPP, and SSiPP-FF in the settings of the International Probabilistic Planning
Competition (IPPC) [Younes et al., 2005, Bonet and Givan, 2007, Bryce and Buffet, 2008]
(Section 5.3). The domains used in both experiments are described in Section 5.1.

For all experiments, SSiPP, Labeled-SSiPP, and SSiPP-FF use LRTDP [Bonet and
Geffner, 2003] as Optimal-SSP-Solver to find 10−4-consistent solutions for the short-
sighted SSPs.

5.1 Domains and Problems

We present the four domains from IPPC’08 [Bryce and Buffet, 2008], which we use in our
experiments.2 The first two domains, probabilistic blocks world (Section 5.1.1) and zeno
travel (Section 5.1.2), are probabilistic extensions of their deterministic counterparts. Tri-
angle tire world (Section 5.1.3) and exploding blocks world (Section 5.1.4) are probabilistic
interesting problems [Little and Thiébaux, 2007], i.e., problems in which approaches that
oversimplify the probabilistic structure of the actions perform poorly.

5.1.1 Probabilistic Blocks World

The probabilistic blocks world is an extension of the well-known blocks world in which the
actions pick-up and put-on-block can fail with probability 1/4. If and when these actions
fail, the target block is dropped on the table. For instance, pick-up A from B results in
block A being on the table with probability 1/4. The action pick-up-from-table also fails
with probability 1/4, in which case nothing happens, i.e., the target block remains on the
table. Lastly, the action put-down deterministically puts the block being held on the table.

This probabilistic version of blocks world also contains three new actions that allow
towers of two blocks to be manipulated: pick-tower, put-tower-on-block, and put-tower-
down. While action put-tower-down deterministically puts the tower still assembled on the

2. All problems from IPPC’08 are available at http://ippc-2008.loria.fr/wiki/index.php/Results.

html

20

http://ippc-2008.loria.fr/wiki/index.php/Results.html
http://ippc-2008.loria.fr/wiki/index.php/Results.html

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of blocks 5 10 14 18
Cost of pick-up 1 2 2 3 1 2 2 4 1 2 2 4 1 2 4
Cost of pick-up-from-table 1 2 3 2 1 2 3 3 1 2 3 3 1 2 3

Table 1: Number of blocks and the cost of actions pick-up and pick-up-from-table for each
of the 15 problems considered from the probabilistic blocks world.

table, the other two actions are probabilistic and fail with probability 9/10. The current
state is not changed when pick-tower fails and put-tower-on-block fails by dropping the
tower on the table (the dropped tower remains built).

Since every action in the probabilistic blocks world is reversible, the goal is always
reachable from any state; therefore, Assumption 1 holds for all problems in this domain.
The actions put-on-block, put-down, pick-tower, put-tower-on-block, and put-tower-down
have cost 1. In order to explore the trade-offs between putting a block on top of other
blocks versus putting a block on the table and picking up a single block versus a tower
of blocks, the cost of pick-up and pick-up-from-table actions is different for each problem.
Table 1 shows the total number of blocks and the cost of both pick-up and pick-up-from-table
actions for the 15 problems considered. In all the considered problems, the goal statement
contains all the blocks. In the remainder of this article, we refer to the probabilistic blocks
worlds as blocks world.

5.1.2 Zeno Travel

The zeno travel domain is a logistic domain in which a given number of people need to
be transported from their initial locations to their destinations using a fleet of airplanes.
Moreover, the level of fuel of each airplane is also modeled, so there is a need to plan to
refuel.

The available actions in this domain are boarding, debarking, refueling, flying (at regular
speed), and zooming (flying at a faster speed). Each action has a random duration modeled
by a geometrically distributed random variable with probability p; the expected duration of
each action (i.e., the average number of time steps necessary to succeed) is 1/p. To ensure the
geometric duration of the available actions, they are represented by a two-step procedure,
e.g., start-boarding and finish-boarding, in which the first step is always deterministic and
the second step succeeds with probability p. The value of p is 1/2, 1/4, 1/7, 1/25, and 1/15
for boarding, debarking, refueling, flying, and zooming, respectively.

The cost of all actions is 1 except for flying and zooming, which have costs 10 and
25, respectively. Although the fuel requirement for flying and zooming is the same, their
expected costs differ due to their different costs and success probabilities: 250 for flying and
375 for zooming.

As in the blocks world domain, Assumption 1 holds for all problems in the zeno travel
domain. Table 2 shows the number of persons, cities, and airplanes for each of the 15
problems considered. In all the considered problems, the fuel level of each airplane is
discretized into 5 categories: empty, 1/4, 1/2, 3/4, and full.

21

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cities 4 5 5 6 6 7 7 8 9 10 11 13 14 15 20
Persons 2 2 5 2 5 10 5 5 10 5 10 5 10 10 10
Airplanes 2 2 3 2 3 6 3 3 6 3 6 3 6 6 6

Table 2: Number of cities, persons and airplanes for each of the 15 problems considered of
the zeno travel domain.

Figure 4: Roadmap of the triangle tire world problems of size 1, 2 and 3. Circles (squares)
represent locations in which there is one (no) spare tire available. In the initial state the
car is at l0 and the tire is not flat; the goal is to reach location lG. The shades of gray
represent, for each location l, maxπ P (car reaches l and the tire is not flat when following
the policy π from s0).

5.1.3 Triangle Tire World

The triangle tire world [Little and Thiébaux, 2007] is a probabilistically interesting domain
in which a car has to travel between locations to reach a goal location from its initial location.
Every time the car moves between locations, a flat tire happens with probability 0.5. The
car carries only one spare tire, which can be used at any time to fix a flat tire. Once the
spare tire is used, a new one can be loaded into the car; however, only some locations have
an available new tire to be loaded. The actions load-tire and change-tire are deterministic.

The roads between locations are one-way only, and the roadmap is represented as a
directed graph in the shape of an equilateral triangle. Each problem in the triangle tire
world is represented by a number n ∈ N∗ corresponding to the roadmap size. Figure 4
illustrates the roadmap for the problems 1, 2, and 3 of the triangle tire world. The initial and
goal locations, l0 and lG, respectively, are in two different vertices of the roadmap, and their
configuration is such that (i) the shortest path policy from l0 and lG has probability 0.52n−1

of reaching the goal; and (ii) the only proper policy (and therefore the optimal policy) is
the policy that takes the longest path. Assumption 1 does not hold for the triangle tire
world problems: there exist states that do not have a proper policy starting from them
(e.g., states in which the car is in the shortest path from l0 to lG). Since there exists one
proper policy from s0, then the triangle tire world problems contain avoidable dead ends.

22

Problem # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of blocks 5 6 7 8 9 10 11 12 13 14 15 16 17
Blocks in the goal 2 3 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 3: Number of blocks and blocks in the goal statement for each of the 15 problems
considered from the exploding blocks world.

In the IPPC’08, problems 11 to 15 are instances of a similar domain, the rectangle tire
world. For our experiments, we only consider the triangle tire world, and the problem
number corresponds to the parameter n of the triangle tire world problem.

5.1.4 Exploding Blocks World

The exploding blocks world is a probabilistic extension of the deterministic blocks world
in which blocks can explode and destroy other blocks or the table. Once a block or the
table is destroyed, nothing can be placed on them, and destroyed blocks cannot be moved.
Therefore, it is possible to reach dead ends in the exploding blocks world. Moreover, not all
problems in the exploding blocks world domain have a proper policy, i.e., these problems
might have unavoidable dead ends.

All actions available in the exploding blocks world, pick-up, pick-up-from-table, put-
down, and put-on-block, have the same effects as their counterparts in the deterministic
blocks world. Pick-up and pick-up-from-table have the extra precondition that the block
being picked up is not destroyed. Actions put-down and put-on-block have the probabilistic
side effect of detonating the block being held and destroying the table or the block below
with probability 2/5 and 1/10, respectively. Once a block is detonated, it can be safely
moved, i.e., a denoted block cannot destroy other blocks or the table.

The IPPC’08 encoding of the exploding blocks world has a flaw in which a block can
be placed on top of itself [Little and Thiébaux, 2007]. This flaw allows planners to safely
discard blocks not needed in the goal because after placing a block B on top of itself, (i)
no block is being held (the planner is free to pick up another block), and (ii) only B might
be destroyed, thus preserving the other blocks and the table. We consider the fixed version
of the IPPC’08 exploding blocks world, in which the action put-on-block has the additional
precondition that the destination block is not the same as the block being held; precisely,
we added the precondition (not (= ?b1 ?b2)) to put-on-block(?b1 ?b2).

Table 3 shows the total number of blocks and blocks in the goal statement for the 15
problems considered from the exploding blocks world domain. In the considered problems,
all actions have cost 1.

5.2 Convergence Experiments

In the following experiments, we compare the time necessary for LRTDP [Bonet and
Geffner, 2003], Focused Topological Value Iteration (FTVI) [Dai et al., 2009], SSiPP, and
Labeled-SSiPP to compute ε-consistent solutions. We use Algorithm 2 to obtain ε-consistent
solutions using SSiPP. SSiPP-FF is not considered because it has no convergence guaran-
tee. For the experiments in Section 5.2.1, we use the domains from IPPC’08 (reviewed

23

in Section 5.1), and in Section 5.2.2, we use the racetrack domain, a common domain to
compare optimal probabilistic planners.

5.2.1 Problems from the International Probabilistic Planning Competition

In this experiment, we compare the time to converge to an ε-consistent solution for the
problems in the IPPC’08. Although Assumption 1 does not hold for the triangle tire world
(Section 5.1.3), all problems in this domain are such that (i) they have avoidable dead
ends, and (ii) these dead ends are states in which no action is available. Therefore, all the
considered planners can trivially detect when a dead end sd is reached, in which case V (sd)
is updated to infinity, and the search is restarted. For this experiment, the value assigned
to V (sd) is 105; this value is large enough because V ∗(s0) < 12n for the triangle tire world
problem of size n. Problems from the exploding blocks world domain are not considered
because there is no guarantee they have a proper policy.

This experiment was conducted on a 2.4-GHz machine with 16 cores running a 64-bit
version of Linux. The time and memory limit enforced for each planner was 2 hours and
5 GB, respectively. For SSiPP and Labeled-SSiPP, we considered t ∈ {2, 4, 8, 16, 32}. The
admissible heuristic used by all the planners is the classical planning heuristic hmax applied
to the all-outcomes determinization [Teichteil-Königsbuch et al., 2011].

Table 4 presents the results of this experiment as the average and 95% confidence interval
of the convergence time for 50 runs of each planner parametrization. From the 15 problems
of each domain, we only present the results in which at least one planner converged to an
ε-consistent solution. The problems 5′ to 8′ for blocks world are problems with 8 blocks
obtained by removing blocks b9 and b10 from the original IPPC’08 problems 5 to 8. We
generated these problems since no planner converged for problems 5 to 8 and problems 1
to 4 are too small (convergence is reached in about 1 second).

The performance difference between SSiPP and Labeled-SSiPP is not significant for
small problems: blocks world 1 to 4, triangle tire world problems 1 and 2, and zeno travel
problem 1 and 2. For the triangle tire world problems 3 and 4, t = 32 is large enough that
an ε-consistent solution is found using a single short-sighted SSP, so the performance of
SSiPP and Labeled-SSiPP for t = 32 is equivalent to the LRTDP performance. For the
same problems, when t < 32, Labeled-SSiPP converges using between 6% to 32% of the
convergence time of SSiPP for the value of t.

In the triangle tire world, the best parametrization of Labeled-SSiPP is not able to
outperform LRTDP (the best planner in this domain) due to the overhead of building the
short-sighted SSPs. This issue is specific to the triangle tire domain, since there is only
one proper policy; therefore, a planner that prunes improper policies can efficiently focus
its search on the single optimal policy of the triangle tire world problems. For instance,
the (s0, 16)-short-sighted SSP Ss0,16 associated with problem 4 of the triangle tire world
contains 124436 states, and Ss0,16 is generated and solved on every iteration of line 5 of
Labeled-SSiPP (Algorithm 4), even after inferring that Ss0,16 also contains only one proper
policy. This issue can be overcome by using trajectory-based short-sighted SSPs [Trevizan
and Veloso, 2012b].

For the larger problems of the blocks world (5′ to 8′), Labeled-SSiPP obtains a major
improvement over the considered planners and converged in at most 0.93, 0.80, and 0.26 of

24

B
lo
ck
s
W
o
rl
d

P
ro
b
le
m

1
2

3
4

5
’

6
’

7
’

8
’

SSiPP
2

1
.1
1
±
0
.0

1
.2
3
±
0
.1

1
.4
4
±
0
.1

1
.1
5
±
0
.0

2
6
8
9
.2
±
6
6
.9

3
0
1
8
.8
±
3
9
.6

3
2
7
8
.5
±
6
0
.3

3
7
5
8
.2
±
7
2
.3

4
0
.7
8
±
0
.0

0
.8
2
±
0
.0

1
.0
1
±
0
.0

0
.8
4
±
0
.0

2
5
2
5
.8
±
5
4
.8

2
8
8
3
.7
±
4
9
.7

3
0
4
4
.5
±
4
6
.1

3
2
3
7
.7
±
5
0
.4

8
0
.3
7
±
0
.0

0
.5
3
±
0
.0

0
.8
8
±
0
.1

0
.4
6
±
0
.0

3
2
4
3
.3
±
6
9
.1

3
5
5
0
.1
±
6
6
.8

3
5
8
6
.9
±
7
7
.3

3
5
9
7
.1
±
5
1
.4

1
6

0
.2
2
±
0
.0

0
.2
9
±
0
.0

0
.2
9
±
0
.0

0
.2
7
±
0
.0

5
8
1
.6
±
7
.4

6
6
5
.0
±
8
.3

7
0
1
.6
±
9
.1

7
2
6
.7
±
1
1
.1

3
2

0
.2
3
±
0
.0

0
.2
6
±
0
.0

0
.2
8
±
0
.0

0
.2
7
±
0
.0

6
9
9
.4
±
1
1
.1

8
4
0
.8
±
1
1
.1

8
7
7
.5
±
1
4
.2

9
6
8
.5
±
1
6
.8

L-SSiPP

2
1
.0
3
±
0
.0

1
.1
5
±
0
.0

1
.3
0
±
0
.0

1
.1
2
±
0
.0

2
3
8
5
.9
±
1
8
.8

2
7
7
6
.7
±
2
1
.9

2
9
7
3
.7
±
2
9
.2

3
2
7
5
.1
±
2
8
.9

4
0
.8
2
±
0
.0

0
.8
8
±
0
.0

1
.0
0
±
0
.0

0
.8
5
±
0
.0

2
3
4
6
.8
±
2
3
.1

2
6
1
7
.2
±
2
0
.8

2
8
4
7
.3
±
2
7
.2

2
9
7
2
.5
±
2
8
.2

8
0
.3
9
±
0
.0

0
.5
4
±
0
.0

0
.7
7
±
0
.0

0
.4
1
±
0
.0

2
8
9
3
.6
±
2
9
.3

3
3
8
0
.7
±
4
6
.1

3
0
5
1
.6
±
5
4
.8

3
3
3
2
.1
±
4
8
.8

1
6

0
.2
6
±
0
.0

0
.3
0
±
0
.0

0
.2
8
±
0
.0

0
.2
7
±
0
.0

5
0
8
.7
±
4
.2

5
9
0
.6
±
3
.3

6
5
0
.0
±
5
.9

6
7
2
.3
±
6
.0

3
2

0
.2
2
±
0
.0

0
.2
7
±
0
.0

0
.3
0
±
0
.0

0
.2
6
±
0
.0

6
9
1
.0
±
5
.4

8
0
8
.7
±
4
.0

8
5
1
.8
±
7
.7

9
7
0
.9
±
9
.7

L
R
T
D
P

0
.2
3
±
0
.0

0
.2
8
±
0
.0

0
.3
0
±
0
.0

0
.2
6
±
0
.0

6
3
9
.6
±
4
.9

7
5
8
.7
±
4
.4

8
1
3
.1
±
6
.5

9
1
5
.0
±
7
.5

F
T
V
I

0
.7
1
±
0
.0

0
.8
8
±
0
.0

1
.0
2
±
0
.0

0
.9
7
±
0
.0

-
2
3
0
2
.7
±
2
1
.0

2
5
5
3
.9
±
3
2
.0

3
0
8
1
.0
±
3
4
.1

T
ri
a
n
g
le

T
ir
e
W
o
rl
d

Z
en

o
T
ra
v
el

P
ro
b
le
m

1
2

3
4

5
1

2
4

SSiPP

2
0
.0
3
±
0
.0

0
.8
2
±
0
.1

2
8
.6
±
5
.3

7
0
5
.7
±
4
9
.1

-
1
3
2
5
.8
±
5
1
.6

1
3
6
7
.3
±
3
1
.1

-
4

0
.0
3
±
0
.0

0
.4
8
±
0
.1

2
3
.5
±
2
.1

4
6
7
.7
±
3
5
.6

-
5
5
9
.8
±
2
4
.0

8
3
7
.6
±
2
7
.5

-
8

0
.0
2
±
0
.0

0
.5
6
±
0
.1

3
0
.3
±
5
.0

6
0
1
.6
±
6
4
.3

-
1
9
7
.9
±
8
.7

3
0
3
.3
±
2
2
.2

-
1
6

0
.0
2
±
0
.0

0
.0
4
±
0
.0

6
4
.3
±
7
.6

-
-

3
4
.0
±
1
.2

4
5
.7
±
0
.8

-
3
2

0
.0
2
±
0
.0

0
.0
4
±
0
.0

0
.5
1
±
0
.0

1
3
.2
±
0
.4

-
2
1
7
.7
±
7
.6

2
5
5
.5
±
5
.2

-

L-SSiPP

2
0
.0
3
±
0
.0

0
.3
3
±
0
.0

6
.7
7
±
0
.2

2
2
7
.6
±
7
.8

-
1
5
8
9
.7
±
4
5
.9

1
9
2
1
.7
±
4
1
.6

-
4

0
.0
2
±
0
.0

0
.1
5
±
0
.0

2
.7
7
±
0
.1

1
1
4
.3
±
8
.3

-
5
7
1
.4
±
2
4
.0

8
2
6
.0
±
2
1
.2

-
8

0
.0
2
±
0
.0

0
.1
4
±
0
.0

2
.0
8
±
0
.2

7
9
.1
±
8
.8

-
2
1
0
.8
±
1
2
.3

2
9
5
.4
±
1
7
.8

-
1
6

0
.0
2
±
0
.0

0
.0
5
±
0
.0

3
.6
8
±
0
.1

2
9
7
.2
±
1
8
.2

3
7
8
0
.0
±
5
0
.4

3
3
.5
±
0
.6

4
5
.4
±
1
.6

-
3
2

0
.0
2
±
0
.0

0
.0
5
±
0
.0

0
.5
0
±
0
.0

1
2
.4
±
0
.1

-
2
1
0
.6
±
7
.2

2
4
7
.8
±
4
.4

5
3
7
0
.2
±
9
3
.2

L
R
T
D
P

0
.0
2
±
0
.0

0
.0
4
±
0
.0

0
.3
3
±
0
.0

8
.4
5
±
0
.0

3
9
1
.2
±
4
.4

5
9
1
.9
±
1
5
.1

1
3
9
1
.8
±
1
9
.6

-

F
T
V
I

0
.0
3
±
0
.0

0
.1
1
±
0
.0

2
.3
1
±
0
.1

6
9
.7
±
0
.4

3
0
1
4
.7
±
3
8
.8

-
-

-

T
a
b

le
4
:

A
v
er

ag
e

an
d

95
%

co
n

fi
d

en
ce

in
te

rv
al

of
th

e
ti

m
e,

in
se

co
n

d
s,

to
co

n
ve

rg
e

to
an

ε-
co

n
si

st
en

t
so

lu
ti

on
u

si
n

g
ε

=
10
−

4
.

If
co

n
ve

rg
en

ce
is

n
o
t

re
ac

h
ed

,
th

en
‘-

’
is

sh
ow

n
.

B
es

t
p

er
fo

rm
an

ce
ov

er
al

l
p

la
n

n
er

s
(c

ol
u

m
n

)
is

sh
ow

n
in

b
ol

d
fo

n
t.
h

m
a
x

h
eu

ri
st

ic
w

as
u

se
d

b
y

al
l

p
la

n
n

er
s.

P
ro

b
le

m
s

5
′

to
8
′

of
b

lo
ck

s
w

or
ld

ar
e

th
e

IP
P

C
’0

8
p

ro
b

le
m

s
5

to
8

w
it

h
ou

t
b

lo
ck

s
b9

an
d
b1

0.

25

Figure 5: Shape of the racetracks used. Each cell represents a possible position of the car.
The initial position and the goal positions are, respectively, the marked cells in the bottom
and top of each track.

the time necessary for SSiPP, LRTDP, and FTVI to converge, respectively. Lastly, in the
zeno travel domain, SSiPP and Labeled-SSiPP obtain a similar performance in the small
problems (problems 1 and 2) and converge in at most 0.06 of the LRTDP convergence time.
FTVI fails to converge in all the problems from the zeno travel domain, and Labeled SSiPP
for t = 32 is the only planner able to converge for problem 4 of the zeno travel domain.

5.2.2 Racetrack problems

The goal of a problem in the racetrack domain [Barto et al., 1995, Bonet and Geffner, 2003]
is to move a car from its initial location to one of the goal locations while minimizing the
expected cost of travel. A state in the racetrack domain is the tuple (x, y, vx, vy, b) in which

• x and y are the positions of the car in the given 2-D grid (track);

• vx and vy are the velocities in each dimension; and

• b is a binary variable that is true if the car is broken.

At each time step, the position (x, y) of the car is updated by adding its current speed
(vx, vy) to the respective dimension. Acceleration actions, represented by pairs (ax, ay) ∈
{−1, 0, 1}2 and denoting the instantaneous acceleration in each direction, are available to
control the car’s velocity. The acceleration actions can fail with probability 0.1, in which
case the car’s velocity is not changed.

If the car attempts to leave the race track, then it is placed in the last valid position
before exiting the track, its velocity in both directions is set to zero, and it is marked as
broken, i.e., b is set to true. The special action fix-car is used to fix the car (i.e., set b to
false). The cost of fix-car is 50 while the acceleration actions have cost 1.

We consider six racetracks in this experiment: ring-small, ring-large, square-small,
square-large, y-small, and y-large. The shape of each track is depicted in Figure 5, and
Table 5 presents their corresponding |S|, ratio of relevant states (Sπ

∗
/S), largest value of t,

tmax, such that π∗s0,tmax
is not closed for the original SSP, and V ∗(s0).

26

problem |S| % rel. tmax V ∗(s0) hmin(s0) time hmin(s0)

ring-s 4776 12.91 74 21.85 12.00 0.451

ring-l 75364 14.34 869 36.23 24.00 32.056

square-s 42396 2.01 71 18.26 11.00 14.209

square-l 193756 0.75 272 22.26 13.00 145.616

y-small 101481 10.57 114 29.01 18.00 32.367

y-large 300460 9.42 155 32.81 21.00 211.891

Table 5: Description of each racetrack used: size, ratio Sπ
∗
/S, tmax, V ∗(s0), value of the

min-min heuristic for s0 (hmin(s0)) and time in seconds to compute hmin(s0).

The admissible heuristic used by all the planners is the min-min heuristic hmin, and
hmin(s) equals the cost of the optimal plan for reaching a goal state from s in the all-
outcomes determinization. Therefore, hmin can be computed by the following fixed-point
equations:

hmin(s) =

0 if s ∈ G

min
a∈A

min
s′ : P (s′|s,a)>0

[
C(s, a, s′) + hmin(s′)

]
otherwise

, ∀s ∈ S.

This experiment was conducted on a 3.07-GHz machine with 4 cores running a 32-bit
version of Linux. A time limit of 2 hours and 4 GB of memory were applied to each
planner. For SSiPP and Labeled-SSiPP, we considered t ∈ {4, 8, 16, . . . , 1024}. FTVI is not
considered in this experiment because the implementation of FTVI we had access to is not
compatible with the encoding of the racetrack problems. Table 6 presents the results as the
average and 95% confidence interval for 10 runs of each planner parametrization.

The performance of SSiPP, Labeled-SSiPP, and LRTDP is similar for t > tmax in all
problems because LRTDP is used as Optimal-SSP-Solver, and tmax is such that Ss0,t
contains all the states necessary to find the optimal solution. The performance improvement
of Labeled-SSiPP over SSiPP is more evident for smaller values of t, and as t approaches
tmax, it decreases until both Labeled-SSiPP and SSiPP converge to the LRTDP performance.

For the square and y tracks, the best performance is obtained by Labeled-SSiPP for
t, either 64 (small tracks) or 128 (large tracks), both values smaller than tmax for their
respective problems. While this improvement obtained by Labeled-SSiPP is in the inter-
section of the 95% confidence interval for the y tracks, it is statistically significant for
the square tracks, especially for the large instance: 612.78± 30.44 (Labeled-SSiPP) versus
702.42±12.82 (LRTDP). This difference in performance is because an optimal policy in the
square-large track reaches only 0.75% of the state space (Table 5). Therefore, both SSiPP
and Labeled-SSiPP take advantage of the short-sighted search to prune useless states earlier
in the search, resulting in a better performance than LRTDP for t ∈ {32, 64, 128, 256}.

5.3 International Probabilistic Planning Competition

In this section, we compare the performance of the following planners to obtain (suboptimal)
solutions under a 20-minute time limit:

27

t
R

in
g-S

m
all

R
in

g-L
arge

S
q
u

are-S
m

all
S

q
u

are-L
arge

Y
-S

m
all

Y
-L

arge

SSiPP

4
2
3
.5

0±
8
.53

2
5
59.16±

849
.09

27
.44±

2.61
799.11±

32.47
1762

.18±
74.32

4086.53±
235.65

8
7
.3

9±
2
.73

745.52±
341

.51
30
.26±

3.71
844.18±

53.86
777

.99±
58.12

3848.75±
227.40

1
6

0
.64±

0
.0

2
6
1
2.99±

261
.53

18
.66±

2.22
811.27±

59.39
861

.17±
94.57

3517.13±
215.14

32
0
.6

0±
0
.02

64.10±
10.47

17.88±
1.99

693.18±
19.56

57
.03±

1
.29

2987.81±
207.47

6
4

0
.5

9±
0
.0

2
62.86±

6
.88

17
.56±

0.55
642.28±

12.60
57
.25±

1
.84

320.75±
9.57

1
28

0
.6

1±
0.01

63.05±
7
.15

17
.44±

0.59
631.89±

31.89
55
.46±

1
.06

315.68±
9.29

25
6

0
.61±

0.0
1

6
4.25±

0
.89

17
.65±

0.66
639.51±

15.21
55
.86±

1
.49

319.14±
9.10

5
12

0
.6

1±
0.02

61.42±
2
.09

18
.35±

0.58
690.73±

12.25
55
.79±

2
.78

321.48±
9.90

102
4

0
.61±

0.0
1

5
8.39±

2
.40

18
.08±

0.49
698.33±

16.90
55
.78±

1
.98

320.68±
8.22

Labeled SSiPP

4
1
.8

5±
0
.08

3
63.65±

11.57
24.63±

1.02
763.56±

47.25
425

.42±
67.67

2810.27±
77.66

8
1
.8

9±
0
.13

463.31±
38.67

25.87±
2.29

810.44±
94.35

368
.43±

74.90
2858.96±

68.47
16

0
.6

5±
0
.03

4
29.95±

28.96
18.66±

0.50
737.46±

96.43
302

.97±
35.40

2700.81±
69.44

3
2

0
.60±

0.02
60.89±

3
.67

17
.84±

0.36
654.30±

40.81
56
.65±

2
.22

319.30±
9.74

64
0
.6

1±
0.0

1
6
0.08±

3
.12

1
6
.1

5±
0
.2

5
631.78±

39.42
5
1
.6

1±
2
.6

8
311.44±

8.26
12

8
0
.61±

0
.0

2
5
9.89±

3
.14

16
.72±

0.35
6
1
2
.7

8±
3
0
.4

4
55.60±

2
.17

3
0
7
.4

5±
5
.6

6
25

6
0
.61±

0
.0

2
5
8.05±

3
.23

17
.97±

0.72
623.85±

12.58
56
.58±

2
.34

316.56±
7.55

51
2

0
.61±

0
.0

1
5
7.20±

3
.49

18
.65±

0.50
703.21±

10.46
55
.99±

2
.50

319.94±
7.29

10
2
4

0
.6

1±
0
.01

58.74±
3
.88

18
.98±

0.53
701.63±

11.95
55
.66±

1
.93

319.71±
8.62

L
R

T
D

P
0
.5

9±
0
.0

2
5
5
.8

1±
2
.9

2
18.60±

0.84
702.42±

12.82
54
.00±

2
.20

319.08±
8.35

T
ab

le
6:

A
v
era

ge
a
n

d
9
5%

co
n

fi
d

en
ce

in
terval

of
th

e
tim

e,
in

secon
d

s,
to

con
verge

to
an

ε-con
sisten

t
solu

tion
u

sin
g
ε

=
10
−

4.
If

co
n
verg

en
ce

is
n

o
t

rea
ch

ed
,

th
en

‘-’
is

sh
ow

n
.

B
est

p
erform

an
ce

ov
er

all
p

lan
n
ers

(colu
m

n
)

is
sh

ow
n

in
b

old
fon

t.
T

h
e

m
in

-m
in

h
eu

ristic
w

as
u

sed
b
y

all
p

lan
n

ers.

28

• FF-Replan [Yoon et al., 2007] (winner of IPPC’04)

• Robust-FF [Teichteil-Koenigsbuch et al., 2008] (winner of IPPC’08)

• HMDPP [Keyder and Geffner, 2008]

• ReTrASE [Kolobov et al., 2009]

• SSiPP

• Labeled-SSiPP

• SSiPP-FF.

For this experiment, we use the 15 problems from IPPC’08 of each domain as described in
Section 5.1. We present the methodology used in this experiment in Section 5.3.1 and how
to choose the value of t and heuristic for SSiPP, Labeled-SSiPP, and SSiPP-FF in Section
5.3.2. Section 5.3.3 presents the results of this experiment.

5.3.1 Methodology

We use a methodology similar to that used for the IPPCs, in which there is a time limit
for each individual problem: a planner has 20 minutes to compute a policy and simulate
the computed policy 50 times from the initial state s0. A round is each simulation from s0

of the same problem, and rounds are simulated in a client/server approach using MDPSIM
[Younes et al., 2005], an SSP (and MDP) simulator. Planners send actions to be simulated
to MDPSIM, which internally simulates the received actions and returns the resulting state.
Every round terminates when either (i) the goal is reached; (ii) an invalid action (e.g., not
applicable in the current state) is sent to MDPSIM; (iii) 2000 actions have been submitted
to MDPSIM; or (iv) the planner explicitly gives up from the round (e.g., because the planner
is trapped in a dead end). A round is considered successful if the goal is reached; otherwise,
it is declared to be a failed round. Notice that planners are allowed to change their policies
at any time, i.e., during a round or in between rounds. Therefore, the knowledge obtained
from one round (e.g., the lower bound on V ∗(s0)) can be used to solve subsequent rounds.

A run is the sequence of rounds simulated by a planner for a given problem, and the
previous IPPCs evaluate planners based on a single run per problem. Due to the stochastic
nature of SSPs, the outcome of a single run depends on the random seed used in the
initialization of both the planner and MDPSIM. To evaluate planners more accurately, we
execute 50 runs for each problem and planner. Therefore, in this section, the performance
of a planner in a given problem is estimated by 2500 rounds generated by 50 potentially
different policies computed by the same planner. Our approach (50 runs of 50 rounds each)
is not equivalent to the execution of one run of 2500 rounds because a planner might be
guided toward bad decisions due to the outcomes of the probabilistic actions and not have
enough time to revise such decisions. Alternatively, by simulating several runs, there is a
small probability that this misguidance will happen in all runs.

To respect the 20-minute time limit, SSiPP, Labeled-SSiPP, and SSiPP-FF solve rounds
internally for 15 minutes and then start solving rounds through MDPSIM. For SSiPP and
SSiPP-FF, a round is solved internally by calling Algorithms 1 and 5, respectively, and the
obtained lower bound V in round r is used as the heuristic for round r+ 1. The same effect
is obtained for Labeled-SSiPP by adding a 15-minute time limit in line 5 of Algorithm 4.

29

The IPPCs also enforce that planners should not have free parameters, i.e., the only
input for each planner is the problem to be solved. Therefore, all parameters of a planner,
such as the value of t and heuristic for SSiPP, must be fixed a priori or automatically derived.
Because of this rule, all the non-SSiPP planners considered do not have parameters. In the
IPPC’08, two different parametrizations were fixed for Robust-FF, but we consider only the
RFF-PG parametrization as it obtained the best performance in IPPC’08 for the considered
problems [Bryce and Buffet, 2008]. Section 5.3.2 describes the two different methods we
employed to obtain the parametrizations for SSiPP, Labeled-SSiPP, and SSiPP-FF.

5.3.2 Choosing the value of t and heuristic for SSiPP-based planners

To choose a fixed parametrization for SSiPP, Labeled-SSiPP, and SSiPP-FF, i.e., a value of
t and a heuristic, we perform a round-robin tournament between different parametrizations
of each planner. The round-robin tournament consists of comparing the performance of
different parametrizations of a planner in the 15 final problems from IPPC’06 for blocks
world, zeno travel, and exploding blocks world. No problem from the triangle tire world
is used for training as they are deterministically generated, i.e., any triangle tire world
problem of size 1 to 15 would be exactly the same as the problems in the main experiment.
We refer to these 45 problems as the set of training problems J.

Formally, given a planner X and a set of parametrizations K = {k1, . . . , kn} for X, we
solve all problems in J using the same methodology as described in Section 5.3.1. We denote
as c(ki, p) the number of rounds of the problem p ∈ J in which X, using parametrization
ki ∈ K, reached the goal. The function m(ki, kj) represents the comparison (or match)
between ki and kj , and m(ki, kj) equals 1 if∣∣∣{p ∈ P|c(ki, p) > c(kj , p)}

∣∣∣ > ∣∣∣{p ∈ P|c(ki, p) < c(kj , p)}
∣∣∣

(i.e., if ki outperforms kj in most problems) and 0 otherwise. The tournament winner
is the parametrization k that outperforms the majority of other parametrizations in K:
k = argmaxki∈K

∑
kj 6=ki m(ki, kj).

For SSiPP and Labeled-SSiPP, the set of considered parametrizations K is the cross
product of T = {2, 3, 4, . . . , 10} and the following set H of heuristics:

• zero-heuristic: h0(s) = 0 for all s ∈ S

• FF-heuristic: hff(s) equals the cost of the plan returned by the deterministic planner
FF [Hoffmann and Nebel, 2001] to reach a goal state from the current state s in the
all-outcomes determinization

• hmax and hadd applied to the all-outcomes determinization of the original problem
[Teichteil-Königsbuch et al., 2011].

For SSiPP-FF, the determinization type is also a parameter, and its set of considered
parametrizations K equals T×H×{most-likely outcome, all-outcomes}. The parametrization
that won the round-robin tournament for each SSiPP-based planner in their respective set
of considered parameters K is t = 3 and hadd for SSiPP; t = 6 and hadd for Labeled-SSiPP;
and t = 3, hadd and the all-outcomes determinization for SSiPP-FF. We refer to these
parametrizations as SSiPPt, Labeled-SSiPPt, and SSiPP-FFt.

30

Blocks Zeno Triangle Exploding
World Travel Tire W. Blocks W.

FF-Replan 13 15 0 1
Robust-FF 8 0 4 1
HMDPP 4 2 13 1
ReTrASE 8 n.a. 4 2
SSiPPt 4 0 1 2
SSiPPr 4 2 2 9
L-SSiPPt 5 2 2 2
L-SSiPPr 5 2 2 3
SSiPP-FFt 8 11 0 2
SSiPP-FFr 8 13 0 7

Table 7: Number of problems per domain in which a given planner has the best coverage.
ReTrASE does not support the zeno travel problems (n.a.).

We also consider an approach in which the value of t is randomly selected for SSiPP,
Labeled-SSiPP, and SSiPP-FF. Formally, before calling Generate-Short-Sighted-SSP
in Algorithms 1, 4, and 5, we select t at random from {2, 3, 4, . . . , 10}. Therefore, different
values of t might be used for solving a given problem. For this approach, we use hadd

as a heuristic for all the SSiPP-based planners and the all-outcomes determinization for
SSiPP-FF. And to avoid generating large short-sighted SSPs, we stop Generate-Short-
Sighted-SSP after 15 seconds or if |Ss,t| > 105. When Generate-Short-Sighted-SSP
is interrupted, the states that could not be explored are marked as artificial goals. We refer
to these parametrizations as SSiPPr, Labeled-SSiPPr, and SSiPP-FFr.

5.3.3 Results

The experiment in this section was conducted on a 2.4-GHz machine with 16 cores running
a 64-bit version of Linux. Table 7 presents the summary of the results as the number of
problems in which a given planner has the best coverage, i.e., it solved more rounds than
the other planners. The detailed results are presented in Tables 8 and 9 as the coverage
and 95% confidence interval obtained by each planner in each problem, and in Tables 10
and 11 as the average and 95% confidence interval for the obtained cost over the successful
rounds for each problem.

SSiPP-FFt and SSiPP-FFr successfully take advantage of determinizations and improve
the coverage obtained by SSiPP and Labeled-SSiPP in the domains without dead ends, i.e.,
blocks world and zeno travel. In particular, both parametrizations of SSiPP-FF, together
with FF-Replan, are the only planners able to solve the medium and large problems of the
zeno travel domain. SSiPP-FF also improves the performance of FF-Replan for problems
with dead ends. In the triangle tire world, a problem designed to penalize determinization
approaches, FF-Replan, SSiPP-FFt, and SSiPP-FFr solve instances up to numbers 5, 7, and
9, respectively; moreover, the coverage of SSiPP-FFr is more than the double of the coverage
of FF-Replan for problems 1 to 5. In the exploding blocks world, the combination of SSiPP
and determinizations is especially useful for large instances: SSiPP-FFr is the planner
with the best coverage for the 5 largest problems in this domain. The solution quality of

31

P
rob

.
F

F
R

ep
la

n
R

F
F

H
M

D
P

P
R

eT
rA

S
E

S
S
iP

P
t

S
S
iP

P
r

L
-S

S
iP

P
t

L
-S

S
iP

P
r

S
S
iP

P
-F

F
t

S
S
iP

P
-F

F
r

Blocks World

1
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

2
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

3
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

4
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

5
1
.0

0
0±

0
.0

0
0

0.9
92±

0
.00

3
-

1
.0

0
0±

0
.0

0
0

0
.957±

0.007
0.649±

0
.021

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

6
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

-
1
.0

0
0±

0
.0

0
0

0
.964±

0.007
0.286±

0
.020

0
.342±

0.016
0
.295±

0
.029

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

7
1
.0

0
0±

0
.0

0
0

0.984±
0
.00

4
-

1
.0

0
0±

0
.0

0
0

0
.059±

0.009
0
.074±

0
.018

0
.117±

0.011
0
.099±

0
.020

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

8
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

-
1
.0

0
0±

0
.0

0
0

0
.132±

0.012
0
.204±

0
.025

0
.173±

0.013
0
.127±

0
.022

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

9
0
.9

9
9±

0
.0

0
2

0.987±
0
.00

4
-

0.870±
0
.013

0
.443±

0.018
0
.186±

0
.025

0.061±
0.008

0
.040±

0
.013

0.7
61±

0.0
15

0
.5

07±
0
.02

0
10

0.999±
0.001

1
.0

0
0±

0
.0

0
0

-
0
.883±

0
.013

0.002±
0.001

-
0.003±

0.002
0
.001±

0
.001

0.7
61±

0
.0

15
0
.5

33±
0.02

1
11

0
.9

9
8±

0
.0

0
2

0
.9

95±
0
.00

2
-

0
.881±

0
.013

-
-

-
-

0.7
64±

0
.01

4
0
.47

5±
0.01

6
12

0.99
8±

0.00
2

1
.0

0
0±

0
.0

0
0

-
0
.925±

0.010
0.003±

0
.002

0
.006±

0.005
-

-
0.8

21±
0
.0

13
0
.5

19±
0.0

21
13

0
.8

4
7±

0
.0

1
6

-
-

-
-

-
-

-
0.0

67±
0
.0

09
0
.0

08±
0.0

06
14

0
.8

6
7±

0
.0

1
5

-
-

-
-

-
-

-
0.0

89±
0
.0

10
0
.0

10±
0.0

06
15

0
.8

8
6±

0
.0

1
4

-
-

-
-

-
-

-
0.0

62±
0
.0

08
0
.0

07±
0.0

05

Zeno Travel

1
1
.0

0
0±

0
.0

0
0

0.17
5±

0
.0

13
1
.0

0
0±

0
.0

0
0

n
.a

.
0
.017±

0.005
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

2
1
.0

0
0±

0
.0

0
0

0.0
81±

0
.01

0
1
.0

0
0±

0
.0

0
0

n
.a

.
0
.100±

0.011
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

3
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

4
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

5
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

6
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

7
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

8
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

9
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

10
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

11
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
0.2

61±
0
.0

15
0
.4

69±
0.02

8
12

1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
1
.0

0
0±

0
.0

0
0

1
.0

0
0±

0
.0

0
0

13
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
0.4

43±
0
.0

18
1
.0

0
0±

0
.0

0
0

14
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
0.2

69±
0
.0

15
1
.0

0
0±

0
.0

0
0

15
1
.0

0
0±

0
.0

0
0

-
-

n
.a

.
-

-
-

-
-

0.74
0±

0.02
8

T
a
b

le
8:

R
ou

n
d

ed
coverag

e
a
n

d
9
5
%

con
fi

d
en

ce
in

tern
al

for
th

e
B

lo
ck

s
W

orld
an

d
Z

en
o

W
orld

in
th

e
ex

p
erim

en
t

of
S

ection
5.3.

B
est

coverag
e

fo
r

ea
ch

p
rob

lem
(row

)
is

sh
ow

n
in

b
old

.
If

n
o

rou
n

d
is

solved
,

i.e.,
zero

coverage,
th

en
‘-’

is
sh

ow
n

.
R

eT
rA

S
E

d
o
es

n
o
t

su
p

p
o
rt

th
e

zen
o

travel
p

rob
lem

s
(n

.a
.).

32

P
ro

b
.

F
F

R
ep

la
n

R
F

F
H

M
D

P
P

R
eT

rA
S
E

S
S
iP

P
t

S
S
iP

P
r

L
-S

S
iP

P
t

L
-S

S
iP

P
r

S
S
iP

P
-F

F
t

S
S
iP

P
-F

F
r

TriangleTireWorld

1
0
.4

80
±

0.
01

9
1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

0.
7
4
7
±

0
.0

1
5

0
.9

6
9
±

0.
0
1
1

2
0
.1

22
±

0.
01

2
1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

0.
85

7
±

0.
01

2
1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

0.
1
2
0
±

0
.0

1
2

0
.7

7
4
±

0.
0
2
7

3
0
.0

36
±

0.
00

7
1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

0
.9

75
±

0
.0

06
0.

56
4
±

0
.0

18
0
.6

5
3
±

0.
0
32

0.
81

5±
0
.0

1
4

0
.8

17
±

0.
02

5
0.

0
3
6±

0
.0

0
6

0
.3

2
2
±

0.
0
3
0

4
0
.0

10
±

0
.0

04
1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

0
.9

64
±

0.
00

7
0.

28
0±

0
.0

16
0
.2

8
7
±

0.
0
31

0.
66

1±
0
.0

1
6

0
.6

59
±

0.
0
3
0

0
.0

1
1±

0
.0

0
4

0
.1

4
1
±

0.
0
2
2

5
0
.0

01
±

0
.0

01
0
.9

36
±

0.
00

9
1
.0

0
0
±

0
.0

0
0

0
.8

95
±

0.
01

2
0
.1

59
±

0
.0

13
0
.1

14
±

0.
02

2
0
.4

79
±

0
.0

1
7

0.
52

5
±

0.
0
3
4

0
.0

0
1±

0
.0

0
1

0.
0
6
3
±

0.
0
1
5

6
-

0.
85

7
±

0.
01

5
1
.0

0
0
±

0
.0

0
0

0
.9

01
±

0.
01

2
0
.1

27
±

0
.0

12
0.

0
84
±

0.
0
17

0
.1

4
6
±

0
.0

1
3

0.
10

1
±

0.
02

0
0
.0

0
1
±

0
.0

0
1

0.
0
1
9
±

0
.0

0
9

7
-

0.
31

9
±

0.
01

6
1
.0

0
0
±

0
.0

0
0

0.
86

6
±

0.
01

3
0
.1

16
±

0
.0

11
0.

07
3
±

0
.0

17
0
.0

3
3
±

0.
0
06

0.
02

9±
0
.0

1
1

0
.0

0
1
±

0.
0
01

0.
0
0
1±

0
.0

0
1

8
-

0.
12

9
±

0
.0

12
1
.0

0
0
±

0
.0

0
0

0.
88

0±
0
.0

13
0
.0

62
±

0.
00

9
0.

0
46
±

0
.0

15
0
.0

21
±

0.
00

5
0
.0

22
±

0
.0

1
0

-
0.

0
0
2±

0
.0

0
1

9
-

0.
05

8±
0
.0

08
1
.0

0
0
±

0
.0

0
0

0.
80

0±
0
.0

16
0
.0

23
±

0.
00

5
0
.0

2
5±

0
.0

11
0
.0

1
2
±

0.
00

4
0
.0

14
±

0
.0

0
8

-
0.

0
0
1±

0
.0

0
1

10
-

0.
05

4±
0
.0

08
1
.0

0
0
±

0
.0

0
0

0.
73

1±
0
.0

17
0
.0

11
±

0.
00

4
0
.0

1
3±

0
.0

07
0.

00
5
±

0.
00

2
0
.0

04
±

0
.0

0
2

-
-

11
-

0.
01

5±
0
.0

04
1
.0

0
0
±

0
.0

0
0

0.
77

5±
0
.0

16
0.

00
6
±

0.
00

3
0
.0

0
3±

0
.0

02
0.

00
1
±

0.
00

1
-

-
-

12
-

0.
00

3±
0
.0

02
1
.0

0
0
±

0
.0

0
0

0.
51

0±
0
.0

20
0.

00
3
±

0.
00

1
0
.0

04
±

0
.0

02
-

-
-

-
13

-
0.

01
0±

0
.0

04
0
.6

6
3
±

0
.0

1
9

0
.3

48
±

0
.0

19
0.

00
1
±

0.
00

1
0
.0

01
±

0
.0

01
-

-
-

-
14

-
0.

00
4
±

0
.0

02
-

0
.3

6
7
±

0
.0

1
9

0.
00

1
±

0.
00

1
0
.0

0
1
±

0
.0

0
1

-
-

-
-

15
-

0.
00

9
±

0
.0

03
-

0
.2

6
0
±

0
.0

1
7

-
-

-
-

-
-

ExplodingBlocksWorld

1
0
.3

58
±

0.
01

8
0
.5

80
±

0
.0

17
0.

59
9
±

0.
0
19

0
.9

04
±

0
.0

12
0.

90
7
±

0.
01

0
0
.8

93
±

0
.0

19
0.

90
1
±

0
.0

1
1

0
.9

0
9
±

0
.0

1
9

0.
8
9
6±

0
.0

11
0
.8

9
1
±

0.
0
2
0

2
0
.2

18
±

0.
01

6
0
.2

17
±

0
.0

14
0.

35
8
±

0
.0

19
0
.3

59
±

0.
01

9
0.

37
8±

0
.0

17
0
.3

8
3
±

0
.0

3
2

0.
35

1±
0
.0

17
0
.3

76
±

0.
03

2
0
.2

2
0±

0
.0

1
4

0
.2

8
3
±

0.
0
2
9

3
0
.3

59
±

0
.0

18
0
.3

63
±

0.
01

7
0.

36
5±

0
.0

19
0
.3

88
±

0.
01

9
-

0
.4

6
7
±

0
.0

3
2

0.
40

1±
0
.0

1
6

0.
41

2
±

0.
0
3
2

0
.3

4
7±

0
.0

1
8

0.
3
4
6
±

0.
0
3
1

4
0
.5

34
±

0
.0

19
0
.5

33
±

0.
01

8
0
.3

63
±

0
.0

19
0.

40
2
±

0.
01

9
0
.5

34
±

0
.0

18
0
.5

6
2
±

0
.0

3
5

0
.4

84
±

0
.0

17
0.

4
81
±

0.
0
3
4

0
.3

4
1
±

0
.0

17
0.

3
2
8
±

0
.0

3
1

5
1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

6
0
.8

98
±

0
.0

11
0.

90
4
±

0.
01

0
0
.1

73
±

0
.0

15
0.

53
2
±

0.
02

0
0
.9

20
±

0
.0

10
0
.9

4
0
±

0
.0

1
6

0
.9

18
±

0
.0

10
0.

9
11
±

0
.0

1
9

0
.8

9
8
±

0.
0
1
0

0.
9
2
6±

0
.0

1
7

7
0
.9

96
±

0
.0

02
0.

60
8
±

0
.0

17
-

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

1
.0

0
0
±

0
.0

0
0

8
0
.1

31
±

0
.0

13
0.

13
3
±

0
.0

12
0
.0

01
±

0.
00

1
0.

22
3±

0
.0

16
0
.4

53
±

0.
01

8
0
.4

5
5
±

0
.0

3
5

0
.4

12
±

0.
01

7
0.

3
73
±

0
.0

2
5

0
.1

9
9
±

0.
0
1
3

0
.1

9
5±

0
.0

1
3

9
0
.0

73
±

0.
01

0
0.

10
1±

0
.0

11
-

0.
19

4±
0
.0

15
0
.7

97
±

0.
01

4
0
.8

2
7
±

0
.0

2
3

0
.7

95
±

0.
01

4
0
.8

16
±

0
.0

2
6

0.
1
2
9
±

0.
0
1
2

0
.1

5
9±

0
.0

2
3

10
0.

00
8
±

0.
00

3
0
.0

07
±

0
.0

03
-

0.
03

9±
0
.0

08
0
.1

16
±

0.
02

1
0
.1

8
9
±

0
.0

1
4

0
.0

12
±

0.
00

4
-

0.
0
1
2
±

0.
0
0
4

0
.0

2
0
±

0
.0

0
9

11
0.

07
9
±

0.
01

0
0
.0

59
±

0
.0

08
-

0
.0

18
±

0
.0

05
-

-
-

-
0.

0
4
4
±

0.
0
0
7

0
.0

8
6
±

0
.0

1
7

12
0.

00
8
±

0.
00

3
0
.0

14
±

0
.0

04
-

-
-

-
-

-
0.

0
0
8
±

0
.0

0
3

0
.0

2
1
±

0
.0

0
6

13
0.

11
0
±

0.
01

2
0
.1

21
±

0
.0

11
-

0
.0

59
±

0
.0

09
0.

18
2
±

0
.0

14
0
.0

7
9
±

0.
0
17

0.
00

7±
0
.0

0
3

0
.0

0
6
±

0.
0
0
5

0.
0
3
8±

0
.0

0
7

0
.2

0
5
±

0
.0

1
2

14
0.

02
6
±

0
.0

06
0
.0

26
±

0.
00

6
-

-
-

-
-

-
0.

0
2
9±

0
.0

0
6

0
.0

4
7
±

0
.0

1
4

15
0.

12
9
±

0
.0

13
0
.0

58
±

0.
00

8
-

0
.0

07
±

0.
00

3
-

-
-

-
0.

0
7
6±

0
.0

0
9

0
.2

0
1
±

0
.0

2
5

T
a
b

le
9
:

R
o
u

n
d

ed
co

ve
ra

g
e

an
d

9
5%

co
n

fi
d

en
ce

in
te

rn
al

fo
r

th
e

T
ri

an
gl

e
T

ir
e

W
or

ld
an

d
E

x
p

lo
d

in
g

B
lo

ck
s

W
or

ld
in

th
e

ex
p

er
im

en
t

of
S

ec
ti

on
5.

3.
B

es
t

co
ve

ra
g
e

fo
r

ea
ch

p
ro

b
le

m
(r

ow
)

is
sh

ow
n

in
b

ol
d

.
If

n
o

ro
u

n
d

is
so

lv
ed

,
i.

e.
,

ze
ro

co
ve

ra
ge

,
th

en
‘-

’
is

sh
ow

n
.

33

P
ro

b
lem

F
F

-R
ep

la
n

R
F

F
H

M
D

P
P

R
eT

rA
S
E

S
S
iP

P
t

S
S
iP

P
r

L
-S

S
iP

P
t

L
-S

S
iP

P
r

S
S
iP

P
-F

F
t

S
S
iP

P
-F

F
r

Blocks World

1
21.5±

0.2
2
1
.8±

0.1
17
.0±

0.1
17
.0±

0
.1

17
.0±

0.1
17
.0±

0.2
16
.9±

0
.1

16
.8±

0.2
31
.8±

4
.0

1
7.1±

0.2
2

1
1.6±

0.1
11
.8±

0.1
9
.1±

0.1
9
.1±

0
.1

9
.1±

0.1
9
.0±

0.2
9
.1±

0
.1

9
.3±

0.2
21
.6±

1
.5

9.2±
0.1

3
18.7±

0.2
20
.4±

0.2
15
.6±

0.2
16
.4±

0
.2

15
.6±

0.2
15
.6±

0.3
15
.6±

0
.2

15
.8±

0.3
30
.6±

2
.6

1
6.0±

0
.3

4
16.1±

0.2
1
5
.5±

0.1
11
.1±

0.1
11
.1±

0
.1

11
.1±

0.1
1
1
.1±

0
.1

11
.1±

0
.1

11
.1±

0.2
33
.9±

1
.9

11.2±
0
.1

5
8
7.3±

0.9
4
8
.5±

0.2
-

50
.8±

0
.6

3
5
.5±

0.3
38
.4±

0
.9

3
5
.9±

0
.3

3
6
.8±

0.6
81
.1±

2
.8

51.1±
1
.7

6
2
9.1±

0.2
27
.0±

0.1
-

19
.2±

0
.1

18
.5±

0.1
23
.1±

0
.7

25
.2±

0
.5

24
.8±

0.9
27
.6±

0
.5

2
6.6±

0
.7

7
45.0±

0.4
40
.4±

0
.3

-
31
.9±

0
.3

38
.5±

1.8
56
.5±

7
.6

46
.6±

2
.7

48
.6±

4.1
51
.2±

1
.3

48.1±
1
.7

8
7
2.9±

0.6
6
8
.5±

0
.3

-
45
.8±

0
.3

57
.4±

1.5
61
.0±

2
.6

64
.2±

2.7
71
.0±

6.4
62
.8±

1
.1

71.3±
2
.2

9
327.3±

36.3
38
.4±

0
.2

-
53
.7±

1
.1

46
.4±

0.5
44
.6±

1
.1

44
.2±

1.3
52
.2±

3.5
25

6
.1±

13
.3

165.0±
2
9.8

10
8
5.1±

7.5
2
1
.4±

0
.1

-
23
.3±

0
.2

21
.8±

1.9
-

2
3
.1±

2.3
2
5
.0±

in
f

7
6.6±

2
.7

48.8±
6
.2

1
1

1
47.0±

14.1
31
.9±

0
.3

-
37
.1±

0
.4

-
-

-
-

141
.5±

4
.6

102.9±
1
6.8

12
23

5.7±
2
1.2

5
3
.8±

0
.3

-
56
.2±

0
.6

59
.5±

13.7
78
.0±

7
.6

-
-

153.6±
4
.9

1
25.2±

2
1.8

1
3

1
74

4.7±
9
2.0

-
-

-
-

-
-

-
42

3
.3±

46
.4

164.2±
2
2.6

1
4

4
35.0±

2
1.7

-
-

-
-

-
-

-
104

.1±
7
.6

60.5±
1
1.4

15
1
1
25.4±

55.5
-

-
-

-
-

-
-

2
88
.8±

24
.5

147.9±
2
7.7

Zeno Travel

1
792.1±

2
2.8

46
4
2
.6±

3
1
1.8

505
.4±

13.7
n

.a
.

49
8
.6±

96.5
521

.0±
30.3

503
.4±

11.6
507

.1±
24.2

6
42
.2±

15.8
700.4±

3
0.7

2
865.2±

2
1.4

3
5
56
.9±

1
87.2

49
0
.2±

13.2
n

.a
.

496
.1±

41.6
6
14
.5±

39.2
4
94
.1±

1
1.3

496
.2±

23.3
74

8
.9±

17.1
751.9±

30.5
3

16
1
5.1±

3
2.6

-
-

n
.a

.
-

-
-

-
1427

.0±
24.5

1490.2±
4
7.7

4
107

2.3±
2
4.8

-
-

n
.a

.
-

-
-

-
9
76
.7±

19.1
991.1±

3
6.6

5
1
79

6.5±
31
.7

-
-

n
.a

.
-

-
-

-
1446

.6±
25.1

143
8.0±

4
4.9

6
3
449.8±

4
8
.5

-
-

n
.a

.
-

-
-

-
2946

.7±
34.4

2984.2±
6
0.7

7
2
1
32.0±

3
5
.7

-
-

n
.a

.
-

-
-

-
182

2
.6±

2
6.0

1
956.3±

5
0.3

8
19

7
3.0±

3
5
.1

-
-

n
.a

.
-

-
-

-
1797

.6±
27.2

1609.4±
5
0.1

9
32

8
2.0±

48
.7

-
-

n
.a

.
-

-
-

-
2
827

.6±
38.6

2626.7±
5
7.8

1
0

176
1.6±

34
.6

-
-

n
.a

.
-

-
-

-
1452

.9±
23.4

14
58.5±

4
4.8

1
1

3
3
91.7±

4
8
.7

-
-

n
.a

.
-

-
-

-
449

0
.4±

8
8.4

4
527.3±

8
8.3

12
22

8
3.9±

3
6
.0

-
-

n
.a

.
-

-
-

-
19

77
.9±

28.4
2037.3±

6
4.3

1
3

4
159.6±

55
.6

-
-

n
.a

.
-

-
-

-
4496

.0±
68.9

3441.4±
7
0.9

14
3
9
97.1±

5
0
.5

-
-

n
.a

.
-

-
-

-
3728

.2±
75.3

32
43.7±

6
7.3

15
435

0.2±
55
.0

-
-

n
.a

.
-

-
-

-
-

504
9.6±

9
8.0

T
a
b

le
1
0
:

R
ou

n
d

ed
average

a
n

d
95%

con
fi

d
en

ce
in

terval
for

th
e

ob
tain

ed
cost

over
su

ccessfu
l

rou
n
d

s
for

th
e

B
lo

ck
s

W
orld

an
d

Z
en

o
W

o
rld

in
th

e
ex

p
erim

en
t

of
S

ectio
n

5.3.
If

n
o

rou
n

d
is

solved
,

th
en

‘-’
is

sh
ow

n
;

if
ex

actly
on

e
rou

n
d

is
solved

,
th

en
in

f
is

sh
ow

n
in

th
e

95%
co

n
fi

d
en

ce
in

terval.
R

eT
rA

S
E

d
o
es

n
ot

su
p

p
ort

th
e

zen
o

travel
p

rob
lem

s
(n

.a
.).

34

P
ro

b
le

m
F

F
-R

ep
la

n
R

F
F

H
M

D
P

P
R

eT
rA

S
E

S
S
iP

P
t

S
S
iP

P
r

L
-S

S
iP

P
t

L
-S

S
iP

P
r

S
S
iP

P
-F

F
t

S
S
iP

P
-F

F
r

TriangleTireWorld
1

2
.0
±

0
.0

6
.3
±

0
.1

6
.2
±

0.
1

6
.7
±

0.
1

6
.8
±

0.
1

6.
7±

0
.2

6.
8
±

0.
1

6.
8
±

0.
2

4
.7
±

0.
0

6
.0
±

0.
1

2
4
.0
±

0
.0

11
.8
±

0
.1

11
.8
±

0.
1

13
.8
±

0.
1

12
.5
±

0.
1

12
.8
±

0
.2

1
2.

9
±

0.
1

13
.1
±

0.
2

7
.0
±

0.
0

11
.2
±

0.
2

3
6
.0
±

0
.0

19
.2
±

0
.1

19
.3
±

0.
1

21
.7
±

0.
2

20
.8
±

0.
2

20
.2
±

0
.3

20
.4
±

0.
1

2
0.

7
±

0.
3

9
.0
±

0.
0

1
8
.1
±

0.
5

4
8
.0
±

0
.0

27
.0
±

0
.1

27
.1
±

0.
1

28
.6
±

0.
2

29
.8
±

0.
3

29
.7
±

0
.5

2
8.

2
±

0.
2

28
.2
±

0.
3

11
.0
±

0.
0

23
.4
±

0.
7

5
10
.0
±

0
.0

35
.0
±

0
.1

35
.2
±

0.
2

37
.5
±

0.
2

39
.8
±

0.
4

38
.6
±

0
.8

36
.1
±

0.
2

36
.1
±

0.
4

13
.0
±

0.
0

2
7
.6
±

1.
3

6
-

45
.4
±

0
.3

42
.9
±

0.
2

45
.3
±

0.
2

50
.4
±

0.
4

4
8.

7±
1
.0

4
5.

7
±

0.
4

45
.5
±

1.
0

1
5
.0
±

0.
0

28
.8
±

2.
5

7
-

53
.6
±

0
.4

50
.8
±

0.
2

54
.1
±

0.
2

60
.7
±

0.
5

60
.1
±

1
.1

57
.3
±

0.
8

5
8.

5
±

1.
6

17
.0
±
in
f

2
4.

0
±
in
f

8
-

63
.8
±

0.
6

59
.2
±

0
.2

61
.9
±

0.
3

75
.4
±

0.
8

68
.8
±

2
.0

70
.2
±

1
.0

70
.4
±

1.
9

-
42
.0
±

11
.8

9
-

72
.7
±

0.
9

66
.9
±

0
.2

69
.4
±

0.
3

8
9
.2
±

1.
3

8
0.

7
±

2
.3

8
2.

6±
1
.4

84
.2
±

3.
1

-
32
.0
±
in
f

10
-

83
.7
±

1.
0

75
.0
±

0
.2

7
8
.0
±

0.
3

10
3
.5
±

1.
4

9
4.

1
±

1
.9

9
2.

9±
2
.0

92
.7
±

3.
6

-
-

11
-

93
.4
±

1.
9

82
.9
±

0
.2

86
.0
±

0.
3

1
17
.3
±

2.
1

1
08
.7
±

3
.6

10
2.

5±
1
.0

-
-

-
12

-
10

3
.9
±

2.
9

91
.2
±

0
.3

93
.8
±

0.
4

12
8
.9
±

2.
9

12
5.

3
±

0
.7

-
-

-
-

13
-

11
3
.6
±

2.
6

99
.1
±

0
.3

10
1
.9
±

0.
5

13
7
.8
±

5.
7

1
28
.0
±
in
f

-
-

-
-

14
-

12
1
.5
±

5.
2

-
1
10
.0
±

0.
5

15
5
.0
±

1.
1

15
7.

0
±

1
.1

-
-

-
-

15
-

13
1
.2
±

3.
9

-
11

7.
8
±

0.
6

-
-

-
-

-
-

ExplodingBlocksWorld

1
8
.0
±

0
.0

8
.0
±

0
.0

10
.2
±

0.
0

1
0
.0
±

0.
0

1
0
.0
±

0.
0

1
0.

0±
0
.0

10
.0
±

0.
0

1
0.

0
±

0.
0

1
0
.0
±

0.
0

10
.0
±

0.
0

2
12
.9
±

0
.1

12
.0
±

0
.0

12
.0
±

0.
0

12
.0
±

0.
0

12
.0
±

0.
0

12
.0
±

0
.0

1
2.

0
±

0.
0

12
.0
±

0.
0

12
.0
±

0.
0

15
.5
±

0.
2

3
10
.0
±

0
.0

10
.0
±

0
.0

10
.0
±

0.
0

28
.5
±

0.
9

-
30
.6
±

2
.3

30
.4
±

1.
1

3
0.

2
±

1.
7

12
.0
±

0.
0

2
1
.0
±

1.
5

4
15
.4
±

0
.1

15
.4
±

0
.1

14
.0
±

0.
0

14
.6
±

0.
1

15
.3
±

0.
1

15
.4
±

0
.2

1
5.

4
±

0.
1

15
.5
±

0.
2

15
.4
±

0.
1

15
.4
±

0.
2

5
6
.8
±

0
.0

6
.0
±

0
.0

6
.0
±

0.
0

6
.0
±

0.
0

6
.0
±

0.
0

6.
0±

0
.0

6.
0
±

0.
0

6.
0
±

0.
0

6
.2
±

0.
0

6
.0
±

0.
0

6
13
.9
±

0
.1

14
.0
±

0
.1

14
.7
±

0.
1

1
3
.2
±

0.
1

1
3
.4
±

0.
1

1
3.

5±
0
.1

13
.4
±

0.
1

1
3.

3
±

0.
1

1
4
.9
±

0.
1

13
.8
±

0.
1

7
15
.8
±

0
.0

12
.0
±

0
.0

-
1
2.

6
±

0.
0

12
.0
±

0.
0

1
2.

4±
0
.1

1
2.

0
±

0.
0

12
.2
±

0.
0

1
3
.2
±

0.
0

14
.0
±

0.
2

8
27
.2
±

0
.4

24
.0
±

0
.0

34
.0
±

0.
0

48
.0
±

1.
7

28
.1
±

0.
0

28
.1
±

0
.1

28
.7
±

0.
1

39
.0
±

0.
6

32
.9
±

0.
5

4
0
.5
±

3.
4

9
26
.0
±

0
.0

27
.5
±

0
.3

-
64
.0
±

2.
4

44
.1
±

0.
8

44
.8
±

1
.4

43
.7
±

0.
7

4
4.

4
±

1.
4

50
.1
±

2.
0

4
8
.4
±

2.
7

10
35
.0
±

0
.5

36
.0
±

0
.0

-
78
.1
±

6.
3

6
2
.5
±

3.
9

6
0.

8±
1
.9

6
3.

9
±

6.
2

-
34
.8
±

0.
3

42
.8
±

4.
9

11
30
.0
±

0
.0

32
.1
±

0
.1

-
5
7.

6
±

5.
4

-
-

-
-

4
7
.5
±

1.
8

44
.5
±

1.
9

12
38
.8
±

0
.4

38
.0
±

0
.0

-
-

-
-

-
-

44
.3
±

1.
8

44
.0
±

1.
0

13
44
.6
±

0
.7

47
.3
±

0
.6

-
77
.6
±

3.
9

53
.3
±

1.
3

44
.8
±

1
.5

46
.7
±

1.
6

5
4.

0
±

7.
5

81
.4
±

4.
2

10
0
.4
±

8.
5

14
37
.0
±

0
.3

51
.0
±

0
.9

-
-

-
-

-
-

4
0.

9
±

0.
6

6
7
.2
±

6.
2

15
42
.7
±

0
.4

40
.9
±

0
.6

-
1
13
.0
±

1
6.

3
-

-
-

-
53
.8
±

1.
5

70
.8
±

3.
9

T
ab

le
1
1:

R
ou

n
d

ed
av

er
a
ge

an
d

9
5%

co
n

fi
d

en
ce

in
te

rv
al

fo
r

th
e

ob
ta

in
ed

co
st

ov
er

su
cc

es
sf

u
l

ro
u

n
d

s
fo

r
th

e
T

ri
an

gl
e

T
ir

e
W

or
ld

an
d

E
x
p

lo
d

in
g

B
lo

ck
s

W
or

ld
in

th
e

ex
p

er
im

en
t

of
S

ec
ti

on
5.

3.
If

n
o

ro
u

n
d

is
so

lv
ed

,
th

en
‘-

’
is

sh
ow

n
;

if
ex

ac
tl

y
on

e
ro

u
n

d
is

so
lv

ed
,

th
en

in
f

is
sh

ow
n

in
th

e
9
5%

co
n

fi
d

en
ce

in
te

rv
al

.

35

Problem SSiPP L-SSiPP SSiPP-FF

T
ri
a
n
g
le

T
ir
e
W

o
rl
d

1 1.000±0.000 1.000±0.000 1.000±0.000
2 1.000±0.000 1.000±0.000 1.000±0.000
3 0.997±0.004 1.000±0.000 0.533±0.010
4 0.977±0.012 1.000±0.000 0.162±0.019
5 0.963±0.015 1.000±0.000 0.082±0.012
6 0.950±0.017 1.000±0.000 0.049±0.017
7 0.913±0.013 1.000±0.000 0.023±0.012
8 0.870±0.017 0.868±0.013 0.015±0.010
9 0.882±0.016 0.798±0.017 0.003±0.003
10 0.842±0.015 0.767±0.012 -
11 0.773±0.015 0.717±0.012 -
12 0.738±0.016 0.633±0.013 -
13 0.717±0.018 0.595±0.014 -
14 0.685±0.016 0.518±0.016 -
15 0.617±0.016 0.422±0.019 -

Table 12: Rounded coverage and 95% confidence interval for the triangle tire world using
t = 8 and the zero-heuristic for SSiPP, Labeled-SSiPP and SSiPP-FF. For SSiPP-FF, the
all-outcomes determinization is used. Best coverage for each problem (row), with respect
to the results in Tables 8 and 9, are shown in bold. If no round is solved, then ‘-’ is shown

FF-Replan is also improved by SSiPP-FF. For instance, in zeno travel problems in which
the SSiPP-FF obtained coverage 1, the solutions found by SSiPP-FFr and SSiPP-FFt have
an average cost between 0.80 and 0.92 of the FF-Replan solution’s average cost.

Labeled-SSiPP performs well on small problems, obtaining good coverage and solu-
tions with a low average cost; however it fails to scale up to large problems. Possible
reasons for not scaling up include (i) the bias for exploration over exploitation employed by
Labeled-SSiPP to speed up the convergence and (ii) the overhead added by the procedure
CheckSolved.

All SSiPP-based planners perform well in the exploding blocks world: SSiPPr had the
best coverage in 9 of the problems; SSiPP-FFr had the best coverage in the 5 largest prob-
lems; and, for all the considered problems in the exploding blocks world, an SSiPP-based
planner had the best coverage.

The performance in the triangle tire world problems is dominated by HMDPP. In this
domain, the chosen parametrizations of SSiPP, Labeled-SSiPP, and SSiPP-FF do not per-
form as well as HMDPP or ReTrASE because their parametrizations use hadd as a heuristic.
hadd in the triangle tire world guides the planners toward dead ends, and the SSiPP-based
planners manage to avoid only the dead ends visible inside the short-sighted SSPs. As
shown in [Trevizan and Veloso, 2012a], SSiPP performs the best in the triangle tire domain
when the zero-heuristic is used. Table 12 shows the performance of SSiPP, Labeled-SSiPP,
and SSiPP-FF using the parametrization t = 8 and the zero-heuristic (for SSiPP-FF, the
all-outcomes determinization is used). For these parametrizations, the coverage obtained
by SSiPP, Labeled-SSiPP, and SSiPP-FF is significantly improved: Labeled-SSiPP solved
all rounds for problems 1 to 7, and SSiPP had the best coverage for the 3 largest problems
compared to all considered planners.

36

6. Conclusion

In this article, we introduced the concept of short-sighted probabilistic planning through
depth-based short-sighted SSPs, a special case of SSPs in which every state has a nonzero
probability of being reached using at most t actions. Short-sighted probabilistic planning is
a general technique that is used directly by the Short-Sighted Probabilistic Planner (SSiPP)
algorithm. We also presented how to combine short-sighted probabilistic planning with two
other techniques for probabilistic planning – labeling and determinizations – resulting in
two new probabilistic planners, Labeled-SSiPP and SSiPP-FF, respectively.

The goal of Labeled-SSiPP is to improve the convergence time of SSiPP to the ε-consistent
solution. This improvement is achieved by adding the labeling mechanism used by LRTDP.
Moreover, Labeled-SSiPP takes advantage of states labeled as solved to prune the generated
short-sighted SSPs as an ε-consistent solution from these labeled states is already known.
For Labeled-SSiPP, we proved an upper bound on the number of iterations necessary to
converge to an ε-consistent solution. On the empirical side, we showed that Labeled-SSiPP,
using LRTDP as an underlying SSP solver, outperforms SSiPP, LRTDP, and FTVI on
problems from the International Probabilistic Planning Competition (IPPC) and in control
problems with a low percentage of relevant states.

We also introduced another probabilistic planner, SSiPP-FF, which combines short-
sighted probabilistic planning and determinizations to compute suboptimal solutions more
efficiently. The empirical results obtained show that SSiPP-FF successfully combines the
behavior of SSiPP and FF-Replan through high coverage in problems without dead ends
and a significant improvement the coverage of FF-Replan in problems with dead ends. The
results also show that SSiPP and SSiPP-FF consistently outperform the other planners in
all the problems of the exploding blocks world, a probabilistic interesting domain.

Our empirical results also show that SSiPP and its extensions have a state-of-the-art per-
formance when the value of t is randomly selected for each depth-based short-sighted SSP.
Because depth-based short-sighted SSPs can exploit the underlying structure of the prob-
lem through the parameter t, the performance of SSiPP and its extensions can be further
improved by optimizing the value of t for the domain of the problem or for the problem
being solved.

In the future, we plan to explore different methods to automatically adapt the value of t
for a given problem, e.g., to model the problem of finding the best t as a multi-armed bandit
problem. Our ongoing research agenda also includes (i) exploring different underlying SSP
solvers for SSiPP (e.g., ILAO* [Hansen and Zilberstein, 2001]); (ii) combining SSiPP and
Robust-FF; and (iii) exploring efficient methods to prune the generated short-sighted SSPs.

Acknowledgments

We thank the reviewers for their helpful comments. The first author was partly supported
by São Paulo Research Foundation (FAPESP) under grant 2013/11724-0. This research
was further sponsored by DARPA under agreement FA8750-12-2-0291, and by the National
Science Foundation under award NSF IIS-1012733. The views and conclusions contained
herein are those of the authors only.

37

Appendix A. Proof of Lemmas 2 and 3

Lemma 2. Given an SSP S = 〈S, s0,G,A, P, C〉 that satisfies Assumption 1, s ∈ S, t ∈ N∗
and a monotonic value function V for S, then (Bk

s,tV)(ŝ) = (BkV)(ŝ) for all ŝ ∈ Ss,t \ Ga
s.t. minsa∈Ga δ(ŝ, sa) ≥ k, where B and Bs,t represent, respectively, the Bellman operator
applied to S and Ss,t using V as heuristic.

Proof. If ŝ ∈ Ss,t ∩ G, then (Bk
s,tV)(ŝ) = (BkV)(ŝ) = 0 for all k ∈ N∗ by the definitions of

B and Bs,t. Otherwise, ŝ ∈ Ss,t \ Gs,t, therefore 1 ≤ k ≤ t. We prove this case by induction
on k:

• If k = 1, then by the definition of short-sighted SSPs (Definition 6), we can replace
Cs,t by C in (Bs,tV)(ŝ) as follows:

(Bs,tV)(ŝ) = min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a)
[
Cs,t(ŝ, a, s

′) + V (s′)
]

+
∑
s′∈Ga

P (s′|ŝ, a)Cs,t(ŝ, a, s
′)

= min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + V (s′)

]
+
∑
s′∈Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + V (s′)

]
= min

a

∑
s′∈Ss,t

P (s′|ŝ, a)
[
C(ŝ, a, s′) + V (s′)

]
.

Since minsa∈Ga δ(ŝ, sa) ≥ 1, then {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t and the
previous sum over Ss,t equals the same sum over S. Therefore (Bs,tV)(ŝ) = (BV)(ŝ).

• Assume, as induction step, that this Lemma holds for k ∈ {1, · · · , c} where c < t. For
k = c+ 1, since minsa∈Ga δ(ŝ, sa) ≥ c+1 > 1, then {s′ ∈ Ga|P (s′|ŝ, a) > 0, ∀a ∈ A} = ∅.
Thus,

(Bs,t(B
cV))(ŝ) = min

a

∑
s′∈Ss,t

P (s′|ŝ, a)
[
Cs,t(ŝ, a, s

′) + (BcV)(s′)
]

= min
a

∑
s′∈Ss,t

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (BcV)(s′)

]
.

Since c+ 1 ≤ t and ŝ ∈ Ss,t \ Gs,t, then {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t and we
can expand the previous sum from s′ ∈ Ss,t to s′ ∈ S, i.e.,∑
s′∈Ss,t

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (BcV)(s′)

]
=
∑
s′∈S

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (BcV)(s′)

]
.

Therefore (Bc+1
s,t V)(ŝ) = (Bs,t(B

cV))(ŝ) = (Bc+1V)(ŝ)

Lemma 3. Under the conditions of Lemma 2, (Bk
s,tV)(s) ≤ (BkV)(s) for all k ∈ N∗ and

ŝ ∈ Ss,t, where B and Bs,t represent, respectively, the Bellman operator applied to S and
Ss,t using V as heuristic.

38

Proof. By the definitions of B and Bs,t, we have the following trivial cases: (i) if ŝ ∈ Ss,t ∩ G,
then (Bk

s,tV)(ŝ) = (BkV)(ŝ) = 0; and (ii) if ŝ ∈ Ga, then (Bk
s,tV)(ŝ) = 0 ≤ (BkV)(ŝ). Thus,

for the rest of this proof, we consider that ŝ ∈ Ss,t \ Gs,t.
Let m denote minsa∈Ga δ(ŝ, sa). If m ≥ k, then (Bk

s,tV)(s) = (BkV)(s) by Lemma 2.
We prove the other case, i.e., m < k, by induction on i = k −m:

• If i = 1, then (Bk
s,tV)(ŝ) = (Bs,t(B

k−1
s,t V))(ŝ) = (Bs,t(B

m
s,tV))(ŝ) thus, by Lemma 2,

(Bk
s,tV)(ŝ) = (Bs,t(B

mV))(ŝ)

= min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (BmV)(s′)

]
+
∑
s′∈Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + V (s′)

]
≤ min

a

∑
s′∈Ss,t

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (BmV)(s′)

]
,

where the last derivation is valid because V is monotonic by assumption. Since
ŝ ∈ Ss,t \ Gs,t, then {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t and we can expand the
last sum over S. Therefore, (Bk

s,tV)(ŝ) = (Bs,t(B
mV))(ŝ) ≤ (BkV)(ŝ).

• Assume, as induction step, that it holds for i ∈ {1, . . . , c}. Then, for i = c + 1, i.e.,
k = m+ c+ 1, we have that

(Bk
s,tV)(ŝ) = (Bs,t(B

m+c
s,t V))(ŝ)

= min
a

∑
s′∈Ss,t\Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (Bm+c

s,t V)(s′)
]

+
∑
s′∈Ga

P (s′|ŝ, a)
[
C(ŝ, a, s′) + V (s′)

]
.

Since V is monotonic, we have that V (s′) ≤ (Bk+1V)(s′) for all s′ ∈ S. Also, by the
induction assumption, (Bm+c

s,t V)(s′) ≤ (Bm+cV)(s′). Thus,

(Bk
s,tV)(ŝ) ≤ min

a

∑
s′∈Ss,t

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (Bm+cV)(s′)

]
= min

a

∑
s′∈S

P (s′|ŝ, a)
[
C(ŝ, a, s′) + (Bm+cV)(s′)

]
,

because {s′ ∈ S|P (s′|ŝ, a) > 0, ∀a ∈ A} ⊆ Ss,t. Therefore (Bk
s,tV)(ŝ) ≤ (BkV)(ŝ).

References

[Barto et al., 1995] Barto, A., Bradtke, S., and Singh, S. (1995). Learning to act using
real-time dynamic programming. Artificial Intelligence, 72(1-2):81–138.

39

[Bertsekas, 1995] Bertsekas, D. (1995). Dynamic Programming and Optimal Control.
Athena Scientific.

[Bertsekas and Tsitsiklis, 1991] Bertsekas, D. and Tsitsiklis, J. (1991). An analysis of
stochastic shortest path problems. Mathematics of Operations Research, 16(3):580–595.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. and Tsitsiklis, J. N. (1996). Neuro-Dynamic
Programming. Athena Scientific.

[Bonet and Geffner, 2003] Bonet, B. and Geffner, H. (2003). Labeled RTDP: Improving the
convergence of real-time dynamic programming. In Proceedings of the 13th International
Conference on Automated Planning and Scheduling (ICAPS’03).

[Bonet and Geffner, 2006] Bonet, B. and Geffner, H. (2006). Learning Depth-First Search:
A unified approach to heuristic search in deterministic and non-deterministic settings,
and its application to MDPs. In Proceedings of the 16th International Conference on
Automated Planning and Scheduling (ICAPS’06).

[Bonet and Givan, 2007] Bonet, B. and Givan, R. (2007). 2th International Probabilis-
tic Planning Competition (IPPC-ICAPS’06). http://www.ldc.usb.ve/~bonet/ipc5/

(accessed on Dec 13, 2011).

[Bryce and Buffet, 2008] Bryce, D. and Buffet, O. (2008). 6th International Planning Com-
petition: Uncertainty Track. In 3rd International Probabilistic Planning Competition
(IPPC-ICAPS’08).

[Dai and Goldsmith, 2007] Dai, P. and Goldsmith, J. (2007). Topological value iteration
algorithm for markov decision processes. In 20th International Joint Conference on Ar-
tificial Intelligence, IJCAI.

[Dai et al., 2009] Dai, P., Mausam, and Weld, D. S. (2009). Focused Topological Value
Iteration. In Int. Conf. on Automated Planning and Scheduling (ICAPS).

[Dean et al., 1995] Dean, T., Kaelbling, L., Kirman, J., and Nicholson, A. (1995). Planning
under time constraints in stochastic domains. Artificial Intelligence, 76(1-2):35–74.

[Hansen and Zilberstein, 2001] Hansen, E. and Zilberstein, S. (2001). LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial Intelligence, 129(1):35–62.

[Hoffmann and Nebel, 2001] Hoffmann, J. and Nebel, B. (2001). The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial Intelligence Research,
14(1):253–302.

[Howard, 1960] Howard, R. (1960). Dynamic Programming and Markov Processes. MIT
Press.

[Keller and Eyerich, 2012] Keller, T. and Eyerich, P. (2012). Probabilistic planning based
on uct. In Proc. of 22nd Int. Joint Conference on Automated Planning and Scheduling
(ICAPS).

40

http://www.ldc.usb.ve/~bonet/ipc5/

[Keyder and Geffner, 2008] Keyder, E. and Geffner, H. (2008). The HMDP planner for
planning with probabilities. 3rd International Probabilistic Planning Competition (IPPC-
ICAPS’08), 8.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-
Carlo Planning. In Proceedings of the European Conference on Machine Learning
(ECML’06).

[Kolobov et al., 2009] Kolobov, A., Mausam, and Weld, D. S. (2009). ReTrASE: Inte-
grating Paradigms for Approximate Probabilistic Planning. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence (IJCAI’09).

[Little and Thiébaux, 2007] Little, I. and Thiébaux, S. (2007). Probabilistic planning vs
replanning. In Proceedings of ICAPS Workshop on IPC: Past, Present and Future.

[McMahan et al., 2005] McMahan, H., Likhachev, M., and Gordon, G. (2005). Bounded
real-time dynamic programming: RTDP with monotone upper bounds and performance
guarantees. In Proceedings of the 22nd International Conference on Machine Learning
(ICML’05).

[Pearl, 1985] Pearl, J. (1985). Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, Menlo Park, California.

[Puterman, 1994] Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc.

[Russel and Norvig, 2003] Russel, S. J. and Norvig, P. (2003). Artificial Intelligence - a
modern approach. Prentice Hall series in Artificial Intelligence. Prentice Hall, second
edition.

[Sanner et al., 2009] Sanner, S., Goetschalckx, R., Driessens, K., and Shani, G. (2009).
Bayesian real-time dynamic programming. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI’09).

[Smith and Simmons, 2006] Smith, T. and Simmons, R. G. (2006). Focused Real-Time
Dynamic Programming for MDPs: Squeezing More Out of a Heuristic. In Proceedings of
the 21st National Conference on Artificial Intelligence (AAAI’06).

[Teichteil-Koenigsbuch et al., 2008] Teichteil-Koenigsbuch, F., Infantes, G., and Kuter, U.
(2008). RFF: A robust, FF-based mdp planning algorithm for generating policies with
low probability of failure. 3rd International Planning Competition (IPPC-ICAPS’08).

[Teichteil-Königsbuch et al., 2011] Teichteil-Königsbuch, F., Vidal, V., and Infantes, G.
(2011). Extending classical planning heuristics to probabilistic planning with dead-ends.
In Proc. of the 26th Nat. Conf. on Artificial Intelligence(AAAI).

[Trevizan and Veloso, 2012a] Trevizan, F. W. and Veloso, M. M. (2012a). Short-sighted
stochastic shortest path problems. In Twenty-Second International Conference on Auto-
mated Planning and Scheduling (ICAPS).

41

[Trevizan and Veloso, 2012b] Trevizan, F. W. and Veloso, M. M. (2012b). Trajectory-Based
Short-Sighted Probabilistic Planning. In Advances in Neural Information Processing
Systems (NIPS).

[Yoon et al., 2007] Yoon, S., Fern, A., and Givan, R. (2007). FF-Replan: A baseline for
probabilistic planning. In Proceedings of the 17th International Conference on Automated
Planning and Scheduling (ICAPS’07).

[Yoon et al., 2008] Yoon, S., Fern, A., Givan, R., and Kambhampati, S. (2008). Proba-
bilistic planning via determinization in hindsight. In Proceedings of the 23rd National
Conference on Artificial Intelligence (AAAI’08).

[Yoon et al., 2010] Yoon, S., Ruml, W., Benton, J., and Do, M. B. (2010). Improving
Determinization in Hindsight for Online Probabilistic Planning. In Proceedings of the
20th International Conference on Automated Planning and Scheduling (ICAPS’10).

[Younes et al., 2005] Younes, H., Littman, M., Weissman, D., and Asmuth, J. (2005). The
first probabilistic track of the international planning competition. Journal of Artificial
Intelligence Research, 24(1):851–887.

[Zickler and Veloso, 2010] Zickler, S. and Veloso, M. (2010). Variable Level-Of-Detail Mo-
tion Planning in Environments with Poorly Predictable Bodies. In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI’10).

42

	Introduction
	Background and Related Work
	Stochastic Shortest Path Problem
	Related Work

	Short-Sighted Stochastic Shortest Path Problems
	Short-Sighted Probabilistic Planner
	Improving the convergence of SSiPP
	Combining SSiPP and FF

	Experiments
	Domains and Problems
	Probabilistic Blocks World
	Zeno Travel
	Triangle Tire World
	Exploding Blocks World

	Convergence Experiments
	Problems from the International Probabilistic Planning Competition
	Racetrack problems

	International Probabilistic Planning Competition
	Methodology
	Choosing the value of t and heuristic for SSiPP-based planners
	Results

	Conclusion
	Proof of Lemmas 2 and 3

