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Abstract— Markov localization and its variants are widely
used for localization of mobile robots. These methods assume
Markov independence of observations, implying that observa-
tions made by a robot correspond to a static map. However,
in real human environments, observations include occlusions
due to unmapped objects like chairs and tables, and dynamic
objects like humans. We introduce an episodic non-Markov
localization algorithm that maintains estimates of the belief
over the trajectory of the robot while explicitly reasoning about
observations and their correlations arising from unmapped
static objects, moving objects, as well as objects from the
static map. Observations are classified as arising from long-
term features, short-term features, or dynamic features, which
correspond to mapped objects, unmapped static objects, and
unmapped dynamic objects respectively. By detecting time steps
along the robot’s trajectory where unmapped observations prior
to such time steps are unrelated to those afterwards, non-
Markov localization limits the history of observations and pose
estimates to “episodes” over which the belief is computed. We
demonstrate non-Markov localization in challenging real world
indoor and outdoor environments over multiple datasets, com-
paring it with alternative state-of-the-art approaches, showing
it to be robust as well as accurate.

I. INTRODUCTION

Human environments, particularly indoor ones, have el-
ements of permanence - the architectural structure of a
building is unlikely to change over time. However, such
environments also include movable and moving objects.
Movable objects like furniture and doors appear static, but
are likely to be moved around frequently.

Mobile robots in human environments commonly use
some variant of Markov localization [1] with a static map,
and localize in such environments by ignoring observations
that are hypothesized by means of various filters [1] to
be of unmapped objects. In environments with frequent
local changes like cafe seating areas, a large portion of
the observations will be of unmapped movable objects that
occlude features from the static map. The robot could use
these observations to refine its localization estimate and
lower its uncertainty, even if the objects are not part of the
robot’s static map.

Recognizing the importance of having a robot adapt to
changes in the environment while localizing itself, a number
of approaches have been proposed to either maintain up-to-
date maps of the environment [2] or to model the dynamics
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of the environment [3], [4], [5], [6]. However, to maintain an
up-to-date estimate or an accurate dynamic model of large
environments, a robot would have to frequently visit every
area of the environment periodically, which might not be
feasible in a large deployment environment.

In this paper, we introduce a localization algorithm that
explicitly reasons about observations of non-mapped objects
without having to maintain up-to-date estimates of the en-
vironment or even having to estimate the dynamics of the
environment. We call this non-Markov localization because
it relaxes the Markov assumption that observations are inde-
pendent given the map, which is the central assumption of
Markov localization. We represent the non-Markov nature
of the problem in a graphical representation called “Varying
Graphical Networks” (VGNs). Episodic non-Markov local-
ization maintains a belief of the history of pose estimates
of the robot over “episodes” of observations of unmapped
objects. For every timestep, it classifies observations into
those arising from Long Term Features (LTFs), Short Term
Features (STFs), or from Dynamic Features (DFs), corre-
sponding to mapped permanent features, unmapped static
objects, and unmapped moving objects, respectively. Obser-
vations made from LTFs are matched to a static map, while
observations from STFs are matched to observations from
STFs at different time steps. The belief is framed in terms
of a cost function over odometry observations, observations
of LTFs, and correlations between observations of STFs from
different time steps. The maximum likelihood estimate of the
belief is incrementally computed over successive steps as a
non-linear functional optimization over the cost function.

We present results from running non-Markov localization
on logs collected from our robot deployed in an indoor office
environment, as well as on two other standard datasets. We
compare the results from the standard datasets to three alter-
native approaches to robot localization in varying environ-
ments, including Dynamic Maps [3], Temporary Maps [4],
and Rao-Blackwellized Particle Filters with Dynamic Occu-
pancy Grid Maps [7]. We demonstrate that episodic non-
Markov localization is more accurate than alternative ap-
proaches, localizes the robot reliably in varying environments
without having to remap the environment over time.

II. BACKGROUND AND RELATED WORK

Suppose a robot makes observations of the environment,
s1:n and accumulates robot odometry u1:n over n time-steps
t1:n. We follow the convention that at time ti, observation
si is made, and odometry ui indicates relative motion of the
robot from timestep ti−1 to ti. Given a prior map of the



environment M , the problem of mobile robot localization is
then stated as estimating the probability distribution over the
robot pose at the latest time step xn, or the “belief” Bel,

Bel(xn) = P (xn|s1:n, u1:n, x0:n−1,M).

Markov Localization [1] makes two independence assump-
tions in order to simplify the computation of the belief:

1) Markov independence of odometry: Given the esti-
mate of the robot pose xn−1 and the latest odometry
un, the estimate of xn is independent of past pose
estimates x0:n−2 and odometry u1:n−1.

2) Markov independence of observations: Given the es-
timate of robot pose xn, observation sn is independent
of past pose estimates x0:n−1, observations s1:n−1 and
odometry u1:n.

Using the Markov assumptions and applying Bayes rule,
the recursive update of the belief simplifies to (see [8] for a
complete derivation),

Bel(xn) =

ηP (sn|xn,M)

∫
P (xn|xn−1, un)Bel(xn−1)dxn−1,

where η is a normalizing constant.
In reality, neither the odometry nor the observations of a

robot deployed in a real environment are truly Markovian
in nature. In a human environment, observations made by
the robot include parts that do indeed correspond to the
map, but also include moving objects (e.g. humans and other
robots) and movable objects (e.g. tables, chairs, recycling
bins) that change locations on a daily basis. Since Markov
localization assumes that observations correspond only to
features from a static map, unexpected observations of static
objects are penalized at every step when the static objects
are observed. Alternatively, if unexpected observations are
explicitly removed from the computation of the belief [1],
then in areas with limited visibility of map features, the
uncertainty in the belief will grow over time due to the
absence of sensory feedback.

In recognition of these limitations, there has been some
work on localization and long-term mapping in dynamic en-
vironments. The approach of “Dynamic Maps” [3] maintains
a number of local maps over a number of time scales, and
during the localization step selects those local maps that best
agree with the observations. Dynamic Pose Graph SLAM [2]
maintains the latest estimate of the map of the environment
by saving a history of observations and selectively replacing
older observations with newer ones when they are contra-
dictory. Mapping with independent Markov chain occupancy
grids[6] models a dynamic environment as an occupancy grid
with associated Markov chains with every cell on the grid
to model the transition probabilities of transitioning from
unoccupied to occupied, and vice-versa. Rao-Blackwellized
Particle Filters with dynamic occupancy grids [7] model a
varying environment as an occupancy grid with an associated
Hidden Markov Model for every cell to model its transitions
between unoccupied and occupied.

As an alternative to estimating the complete state of a
varying environment, there have been a number of proposed
approaches to model each movable object separately in the
environment. The approach of hierarchical object maps [9]
assumes certain classes of shapes of objects, and matches
unmapped objects to them. Patch maps [5] maintains multi-
ple maps of the different possible states of the environment,
and as the robot localizes in the environment it reasons about
the probability of each local patch map as best representing
the state of the environment. For the specific problem of es-
timating the state of doors in the environment, one proposed
approach [10] relies on a hybrid vector - occupancy grid map
with the occupancy grid representing the static map and the
vector map representing the dynamic door states.

The approach of “Temporary Maps” [4] is similar to our
approach in that it considers environments where obser-
vations differ from a static map. Temporary Maps model
the effect of STFs by performing local SLAM, using the
LTFs as an initial estimate for the local map. Using these
locally static maps, the robot then localizes using a particle
filter. In contrast, our approach partitions the observations
into those caused by STFs and LTFs, and finds correlations
between STFs from different time steps. By considering LTF
observations separately from STF observations at every step,
our approach provides global location corrections based on
the LTF observations and the long-term map while simulta-
neously benefiting from the local corrections based on the
STF observations.

III. NON-MARKOV LOCALIZATION

In a human environment, observations are dependent not
only on the static map (LTFs) but also on unmapped static
objects (STFs) and moving objects (DFs). The STFs and DFs
introduce additional correlations between observations from
different timesteps. The classifications of observations into
LTFs, STFs and DFs, and the resulting correlations need to
be updated every time the belief is updated.

To represent the varying nature of this problem, we
introduce a new graphical model, the “Varying Graphical
Network” (VGN). As in a dynamic Bayesian network, a
VGN includes certain periodically repeating nodes and edges
that do not change with the belief. We term these the non-
varying nodes and edges. A VGN includes two additional
structural elements: varying nodes and varying edges. The
presence and structure of the varying nodes and varying
edges are not known a-priori, and are estimated jointly with
the belief. Since the estimates of the structure may change
with the belief, the structure is likely to change as new
observations become available.

VGNs provide an accurate representation for non-Markov
localization. The presence of LTFs and their relations to the
map, and the correlations between successive poses of the
robot due to odometry observations are encoded by the non-
varying edges and nodes. The presence of STFs and DFs is
encoded by the presence of associated varying nodes. The
correlations between STFs observed at different timesteps



is encoded by the varying edges. Fig. 1 shows an example
instance of a VGN for non-Markov localization.

Fig. 1. An example instance of a Varying Graphical Network (VGN)
for non-Markov localization. The non-varying nodes and edges are denoted
with solid lines, and the varying nodes and edges with dashed lines. Due to
the presence of short term features (STFs) and dynamic features (DFs), the
structure is no longer periodic in nature. The exact structure of the graph
will depend on the STFs and DFs present.

The varying structure of the VGN, including the varying
nodes consisting of the STFs and DFs and the varying edges
indicating correlations between STFs and observations, is
not enumerable a priori since there is no way of predicting
beforehand the state of the unmapped static and dynamic
objects in an environment. The structure of the VGN is
dependent on the exact locations of the STFs, the trajectories
of the DFs, and from which poses of the robot’s trajectory
the STFs and DFs are visible. The STFs and DFs cannot,
in general, be added to the map since for any pose in the
world, the robot will encounter different STFs and DFs at
different times.

In order to explicitly account for the effect of the past
robot pose estimates x0:n on future observations and pose
estimates, we solve for the belief over the complete history
of robot poses, Bel(x0:n). The dimension of the state space
of the belief over the complete history of robot poses x0:n
is d(n + 1), where d is the dimension of the state space
of each pose xi. For ground robots, d = 3, corresponding
to the Cartesian coordinates of the robot location, and the
robot angle. Due to the prohibitively large state space, we
concentrate on evaluating the belief in the neighborhood of
its maximum likelihood estimate (MLE). The MLE of the
belief is given by x∗0:n such that

x∗0:n = arg max
x0:n

(Bel(x0:n)).

Since the VGN for non-Markov localization has no prede-
fined structure, it might seem that computation of the belief
would require storing the complete history of all states and
observations since the robot was turned on. However, in
practice this is not necessary, as we shall now show.

A. Episodes in Non-Markov Localization

Suppose there exists a time step ti such that all ob-
servations and state estimates made after ti, given xi, are

independent of all prior observations and state estimates:

P (x0:n|s1:n, u1:n,M) =

P (x0:i|s1:i, u1:i,M)× P (xi+1:n|si+1:n, ui+1:n, xi,M).

This conditional independence implies that there are no STF
observations after ti that correspond to STF observations
before ti. In such a case, the history of states and observa-
tions prior to ti, called the “episode” t0:i−1, can be discarded
when estimating Bel(xi:n) over the episode ti:n. We assume
such episode-boundary timesteps like ti exist, allowing real-
time non-Markov localization with limited computational
resources. Episode-boundary timesteps frequently occur in
practice when a robot either does not observe any STFs for
one or more timesteps, or if all the STFs prior to the episode-
boundary are unrelated to the STFs after, for example when a
robot leaves one room and enters another through a doorway.

Thus, the history of observations and state estimates of the
robot can be divided into multiple episodes such that only
observations and state estimates of the latest episode need
be considered to estimate the latest robot pose xn.

For the rest of this paper, to simplify notation, we will
refer to observations of LTFs, STFs, and DFs directly as
LTFs, STFs, and DFs, respectively, with the understanding
that henceforth they refer to the observations, not the actual
objects that cause them.

B. Classification of Observations

For every timestep, the structure of the VGN, based on the
classification of the observations into LTFs, STFs and DFs,
is re-evaluated prior to updating the MLE of the belief. In
this work the sensor we use is a laser rangefinder, so each
observation si is a set of ni 2D points si = {pij}j=1:ni]

observed by the robot. We represent the pose xi of the
robot on the map at timestep i as an affine transform Ti
that consists of a 2D rotation followed by a 2D translation.
Thus, for every 2D point pij observed by the robot in its own
reference frame, the corresponding location of the point in
the global reference frame of the map is given by Tipij . Each
point pij has to be classified as an LTF or as an STF or as
a DF, and depending on its classification, results in addition
of varying edges to the VGN for non-Markov localization.

1) Classification of LTFs: We use a vector map [11]
representation M = {lk}k=1:m for the permanent map,
consisting of a set of m line segments lk. To evaluate which
of the observed points pik are LTFs, an analytic ray cast [11]
is performed from the latest MLE of xi. The result of the
analytic ray cast is a mapping from pij → lj ∈M , indicating
that the line segment lj from map M is the most line in the
map to be observed by the point pij . Let dist(p, l) denote
the perpendicular distance of point p from the line segment
l where both p and l are in the reference frame of the map.
The observation likelihood P (pij |Ti,M) of the point pij is
then given by

P (pij |xi,M) = exp

(
−

dist(Tip
i
j , lj)

2

Σs

)
,



where Σs is the scalar variance of observations, which
depends on the accuracy of the sensor used. Thus, given the
location of the observed points in the reference frame of the
map, observations are classified as LTFs if the observation
likelihood of the point given the map is greater than a
threshold, P (pij |xi,M) > εLTF. Observed points pij that
satisfy this condition are classified as LTFs, and those that do
not are classified as non-LTFs. The set LTFi ⊆ si denotes
the set of points in si that have been classified as LTFs, and
LTFi the set of points that have been classified as non-LTFs.
The sets LTFi and LTFi are thus given by

LTFi =
{
pij ∈ si|P (pij |xi,M) > εLTF

}
,

LTFi = si \ LTFi.

2) Classification of STFs: Observed points that are clas-
sified as non-LTFs could potentially be STFs. To check if
an observed point pij ∈ LTFi is an STF, it is compared to
all non-LTF points observed prior to timestep i to check if
they correspond to observations of the same point. Given a
point pij ∈ LTFi observed at timestep i and another point
plk ∈ LTFl observed at a previous timestep l, the probability
that both the observations correspond to the same point is
given by the STF observation likelihood function,

P (pij , p
l
k|xi, xl) = exp

(
−
||Tipij − Tlplk||2

Σs

)
where Σs is the scalar variance of observations. Therefore,
a non-LTF point pij ∈ LTFi is classified as an STF if there
exists a point plk ∈ LTFl from a timestep l, l < i such that
P (pij , p

l
k|xi, xl) > εSTF:

STFi =
{
pij ∈ LTFi|∃plk ∈ LTFl : P (pij , p

l
k|xi, xl) > εSTF

}
.

To speed up the correspondence check, points pij ∈ si from
every observation si are stored in KD-trees [12]. The STF
observation likelihood function for a pair of matching STF
observations pij and plk introduces a correlation between
observations si and sl since pij ∈ si and plk ∈ sl. For
every such pair of matching STF observations, the VGN
of non-Markov localization thus includes a varying node
representing the unmapped static object observed as STFs
at different timesteps, and a pair of varying edges joining
the varying node and each of the observations si and sl.

3) Classification of DFs: Observations that are classified
as neither LTFs nor STFs correspond to objects that were
observed at one particular location for only one particular
timestep, and were not observed at any other timestep at
the same location. This implies that these objects are not
static, and hence their observations are classified as DFs,
DFi = si \ LTFi \ STFi. In this work, we do not actively
track DFs, so the correlations between observations due to
DFs are not used to further refine the belief.

IV. COST FUNCTION REPRESENTATION OF BELIEF

To simplify the estimation of the MLE of the belief, we
convert the belief from a probability distribution representa-
tion to a cost function representation C such that

Bel(x0:n) = P (x0:n|s1:n, u1:n,M)

= exp(−C(x0:n|s1:n, u1:n,M)).

The computation of a single cost function over all states
and observations is still intractable, so we split up the
cost function C into multiple “sub-cost functions” C =∑i=n

i=0 ci where each sub-cost function ci depends only on
a subset di of the set of states and observations, di ⊆
{x0:i, s1:i, u1:i,M}. The subset di includes observations
(and the corresponding pose estimates) from previous time
steps that are estimated to be related to si due to STF
observations. di also includes si, xi and the map, required
for computation of the cost due to LTF observations LTFi.
The form of the total cost function in terms of each sub-cost
function ci and their data subsets di is given by, C(x0:n) =∑i=n

i=0 ci(xi|di). This expansion is equivalent to the chain
rule expansion of the expression of the belief, where each
sub-cost function ci corresponds to a conditionally indepen-
dent factor P (xi|di) in the belief. Using this expansion, the
MLE can be estimated by non-linear optimization of the cost
function:

x∗0:n = arg max
x0:n

(Bel(x0:n)) = arg min
x0:n

[
i=n∑
i=0

ci(xi|di)

]
With this formalization, we now have a framework for the

non-Markov localization algorithm, outlined by Algorithm 1.
When new data becomes available at tn, for each timestep
i ∈ [1, n], set LTFi is found by comparing observations
to the map M . Set STFi is computed from the remaining
observed points by finding matching points Ri from prior
observations Si, transformed by their respective poses X ′i
in Xi. The data subset di is thus expressed as the union
of the observations and pose estimates from timestep i, and
observations and pose estimates from prior timesteps that
are matched to STFi. The sub-cost function ci is computed
based on di and added to C. Non-linear optimization is
run over cost function C to yield the latest MLE, until
convergence.

Algorithm 1 Non-Markov Localization
1: procedure NONMARKOVLOCALIZATION(X,S,U,M )
2: while X not converged do
3: C ← 0
4: for i = 1 to n do
5: Xi ← {x0:i ⊂ X}
6: Si ← {s1:i ⊂ S}
7: Compute LTFi ⊆ si given xi,M
8: Compute STFi ⊆ LTFi, Ri ⊆ Si and

X ′i ⊆ Xi

9: di ← LTFi

⋃
STFi

⋃
Ri

⋃
X ′i
⋃
{xi−1, xi, ui}

10: C ← C + ci(di)
11: end for
12: X ← arg minX [C]
13: end while
14: return X
15: end procedure



The sub-cost functions ci are computed and stored as
function objects [13], not as function values, thus allowing
the arg min over C to be computed in real time by non-
linear optimization of cost functions expressed as function
objects [14]. Since the optimizer performs algorithmic dif-
ferentiation [15] of the function objects, it provides the
same accuracy as symbolic optimization, with much lower
computational requirements.

The computation of the sub-cost function ci is based on
sub-cost functions due to odometry coi as well as perceptual
observations, csi such that ci = coi + csi . The odometry sub-
cost function coi is given by

coi = (xi − xi−1 − ui)
T Σ−1o (xi − xi−1 − ui)

where xi denotes the vector representation of pose xi, and
Σo is the covariance on odometry based on the motion model
of the robot.

The sub-cost function based on perceptual observations,
csi depends on the observation si made at timestep ti, and
its relations to the LTFs from map M as well as relations
to previous observations s1:i−1 based on STF observations.
The sub-cost function cji for an observation point pij that is
classified as an LTF is given by taking the negative of the
logarithm of the LTF observation likelihood function:

cji = − log(P (pij |xi,M)) =
dist(Tip

i
j , lj)

2

Σs
.

Similarly, the sub-cost function cji for an observation point
pij that is classified as an STF, with an associated STF
observation point plk from a previous timestep l is given by
taking the negative of the logarithm of the STF observation
likelihood function:

cji = − log(P (pij , p
l
k|xi, xl)) =

||Tipij − Tlplk||2

Σs

Once the cost sub-functions C =
∑i=n

i=1 ci have been
computed, the pose estimates X are optimized by non-linear
optimization of C to compute the MLE of the belief.

V. RESULTS

We present two sets of experiments to evaluate the perfor-
mance of episodic non-Markov localization and compare it
with alternative approaches to robot localization in varying
environments.

A. Comparison With Temporary Maps and RBPFs with
Dynamic Occupancy Grid Maps

We compared localization using our approach to localiza-
tion using Temporary Maps [4] and RBPFs with dynamic
occupancy grids [7] by running episodic non-Markov local-
ization on the Freiburg-Parkinglot dataset collected on an
outdoor robot driven around a parking lot at University of
Freiburg [7]. This dataset consists of 12 runs in an outdoor
parking lot over the course of the day totaling over 5.8 km

The authors would like to thank Gian Diego Tipaldi and Daniel Meyer-
Delius for sharing the Freiburg-Parkinglot dataset, and Tom Duckett for
sharing the Örebro-Longterm dataset.

Run Length MCL-GT MCL-S MCL-TM RBPF EnML
01 503.33 0.04 0.18 0.25 0.09 0.015
02 497.74 0.03 0.18 0.16 0.08 0.018
03 496.25 0.04 0.09 0.63 0.05 0.016
04 487.80 0.02 0.08 0.63 0.04 0.018
05 494.78 0.02 0.06 0.51 0.03 0.024
06 489.89 0.02 0.09 0.21 0.02 0.024
07 488.10 0.02 0.07 0.44 0.03 0.023
08 488.39 0.02 0.09 0.59 0.02 0.022
09 479.84 0.02 0.07 0.49 0.03 0.026
10 484.06 0.02 0.09 0.32 0.03 0.036
11 484.88 0.03 0.10 0.47 0.05 0.037
12 479.97 0.03 0.15 0.23 0.06 0.048

Total 5875.0 0.03 0.10 0.41 0.04 0.025

TABLE I
LOCALIZATION SQUARED ERRORS (m2) FOR THE

FREIBURG-PARKINGLOT DATASET

traversed and presents a challenging environment where there
are very few permanent features and many changes over
the course of the day due to the arrival and departure of
cars in the lot. For every run, a ground truth estimate was
determined independently of the other runs by running static
SLAM offline with manual corrections. To run episodic non-
Markov localization on the Freiburg-Parkinglot dataset we
extracted the dominant linear features from the results of
running SLAM on run 01 of the dataset. This map was then
used as the static map for all subsequent runs.

As a baseline, the ground truth maps for each of the
runs were used along with Monte-Carlo Localization to
localize the robot for every run. Table I lists the errors
in localization with respect to ground truth for localization
using the baseline (MCL-GT), Monte-Carlo Localization
using a static map (MCL-S), Temporary Maps [4] (MCL-
TM), RBPFs with dynamic occupancy grids [7] (RBPF),
and episodic non-Markov localization (EnML). The entries
for MCL-GT, MCL-S, MCL-TM and RBPF are reproduced
from the results of [7]. Episodic non-Markov localization
has smaller localization errors for every run compared to
the other online algorithm including MCL-S, MCL-TM and
RBPF and even outperforms the Monte-Carlo Localization
baseline (MCL-GT) for some of the runs. Furthermore,
as a deterministic algorithm, our approach does not have
any variance in localization over different runs with the
same log, unlike the stochastic algorithms(MCL-S, MCL-
TM, RBPF) which exhibit variance across trials [7]. Fig. 2
shows the trajectory of the robot during run 11 of the
Freiburg-Parkinglot dataset, as estimated by episodic non-
Markov localization and compared to ground truth.

Fig. 3 shows two selected snapshots of episodic non-
Markov localization running on the Freiburg-Parkinglot
dataset. The snapshots show the classification of the ob-
servations as originating from LTFs, STFs and DFs. The
snapshots demonstrate episodic non-Markov localization cor-
rectly identifying the parked cars as STFs and the pedestrian
and moving car as DFs.

B. Comparison With Dynamic Maps

We ran episodic non-Markov localization on the Örebro-
Longterm dataset, which has previously been used to em-



Fig. 2. The trajectory of the robot during run 11 of the Freiburg-Parkinglot
dataset, as estimated by episodic non-Markov localization (red trace), and
compared to ground truth (dashed black trace). The LTFs, STFs and DFs
classified by episodic non-Markov localization are drawn as orange, purple,
and green points, respectively.

(a) (b)

Fig. 3. Non-Markov localization on run 12 of the Freiburg-Parkinglot
dataset showing a) a pedestrian and b) a moving car in the parking lot
amidst static parked cars. LTFs are plotted in orange, STFs in purple, and
DFs in green. The robot’s location is shown by the orange marker and its
trajectory as grey lines. Both images are 35m wide.

pirically evaluate localization using Dynamic Maps [3], and
Dynamic Pose Graph SLAM [2]. This dataset was collected
over a span of five weeks by driving a robot around an office-
like environment, covering a total distance of 9.6 km.

As in the previous experiment, we estimated the static
long-term map by running SLAM on the first run. Fig. 4
shows the traces of the robot as estimated using episodic non-
Markov localization over all the runs. Despite the changes
in the environment over the five-week period, our approach
was successfully able to localize the robot without having to
maintain up-to-date maps of the environment. This experi-
ment demonstrates that even in a varying environment, using
only a static map of LTFs, episodic non-Markov localization
is successfully able to localize a robot without having to
maintain maps of the exact state of the environment.

VI. CONCLUSION

We introduced episodic non-Markov localization, that
classifies observations into long-term, short-term and dy-

Fig. 4. Combined traces of localization using episodic non-Markov
localization on all runs of the Orëbro-Longterm dataset. The traces are
color-coded by time, from blue (oldest) to red (newest).

namic features. The short-term features provide local cor-
rections to the belief, while the long-term features provide
global corrections. We presented experimental results from
running episodic non-Markov localization, including com-
parisons on two standard datasets demonstrating its accuracy
and robustness.
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