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Abstract—In this paper we consider the problem of motion
planning for perception of a target position. A robot has to
move to a position from where it can sense the target, while
minimizing both motion and perception costs. The problem
of finding paths for robots executing perception tasks can be
solved optimally using informed search. In perception path
planning, the solution for the perception task considering a
straight line without obstacles is used as heuristic. In this
work, we propose a heuristic that can improve the search
efficiency. In order to improve the node expansion using a more
informed search, we use the robot Approximate Visibility Map
(A-VM), which is used as a representation of the observability
capability of a robot in a given environment. We show how
the critical points used in A-VM provide information on the
geometry of the environment, which can be used to improve
the heuristic, increasing the search efficiency. The critical
points allow a better estimation of the minimum motion and
perception cost for targets in non-traversable regions that
can only be sensed from further away. Finally, we show the
contributed heuristic dominates the common heuristic (based
on the euclidian distance), and present the results of the
performance increase in terms of node expansion.

Keywords-perception planning; visibility maps; improved
heuristics;

I. INTRODUCTION

In this work we deal with motion planning for perception
tasks, where both the motion and sensing costs have to be
considered in order to find an optimal path.

As we show in Figure 1, a path has motion cost costm,
proportional to the distance traveled, and a perception cost
costp, which is a function of the perceiving distance between
the goal position and the target. Here we assume the sensing
cost is a function of the minimum distance between the path
and the target. As a result, the final position, i.e., the goal
position, has the minimum distance to the target. The path
selection changes depending on the relative costs of motion
and perception, in order to minimize the overall cost.

Using an informed search algorithm, such as PA* [1], it
is possible to explore the space and find the optimal path
while reducing the number of expanded nodes compared to
breadth-first search. However, the basic algorithm searches
the environment without considering any information from
the world. As in the common motion planning problem with
A*, the heuristic in a certain node is determined using the
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Figure 1. The cost of a path is given by the sum of the motion cost
and the perception cost; an informed heuristic search can find the optimal
path; in this example, the target is inside an unreachable region, so there
is always a minimum perception distance independent of the optimal path.

solution for the straight line perception task between the
node and the target, without considering obstacles.

Here we contribute a new heuristic that can reduce the
number of expanded nodes when the perception target
location lies in non-traversable regions, where there is a
minimum perception distance. For that purpose, we use the
Approximate Visibility Map, a transformation on the original
map that can be used to solve the observability problem, i.e.,
determining which regions are visible by a circular robot
from any point reachable from the initial robot position.
The parameters of this transformation are the robot size and
maximum sensing range.

In the Approximate Visibility Map critical points are used
in order to estimate the visibility inside non-traversable
regions, while reducing the computation time compared to
the brute-force algorithm. In this work we prove the critical
points, by definition the points in the configuration space
that generate the frontiers of motion reachability, are the
closest to any target position inside unreachable regions.
Therefore, we use the distance from the target to each critical
point as an estimate of the minimum perception distance.
The distance to the critical point can be used to create an
admissible heuristic that outperforms the heuristic in PA*,
which is only a function of the distance between the current
node and the target. The critical point can also be used to
have an estimate of the minimum motion distance.



We present related work, then describe the new heuristic
used in the search algorithm of motion planning for percep-
tion tasks, proving it is admissible and dominant over the
basic heuristic, yielding a faster convergence to the optimal
path. We show some results on the increased efficiency in
terms of node expansion, and then present our conclusions
and future work directions.

II. RELATED WORK

Many robotic applications consider perception separately
from planning, with both being computed interleaved [2].
It has been used for tasks as varied as SLAM [3], robot
localization [4], in exploration to guide robots to unexplored
regions [5], and for object recognition [6].

However, perception got recently a more active role in
planning. An example is object detection, where the next
moves of the robot should be planned to maximize the
likelihood of correct object detection and classification [7],
[8]. In [9], probabilistic active perception is planned for
realistic environments, with arbitrary object positions.

Another class of problems for perception planning is the
inspection problem. In order to determine a path that can
sense multiple targets, a neural network approach was used
to solve the NP-hard Watchman Routing Problem. In order
to do so efficiently, a fast method was proposed to answer
visibility queries [10]. In that work, the solution is not
optimal due to the existence of multiple targets.

PA*, a heuristic search, was proposed to solve the motion
planning problem for perception of a target position in 2D
gridmaps, given motion and perception costs [1].

It was also proposed in the past that robots maintain
reachabilities and visibilities information, both of a robot
and a human partner in a shared workspace. However, it
uses non-mobile robotic platforms [11]. Visibility graphs are
considered in [12], but the focus is on generating points
for a patrolling motion plan. Moreover, it assumes vectorial
obstacles, so visibility can easily be calculated using ray
casting at the extremes of lines.

Morphological operations have also been used in robotics
to determine the actuation space of a robot [13], which is
later used to coordinate multi-robot teams. In our work we
use a similar technique, but we can determine visibility for
a sensing range bigger than robot size. We use the idea of
critical points to increase the efficiency of computation, and
also as a tool to improve the heuristic of PA*.

III. BACKGROUND

In this section we will summarize our previous tech-
nique on informed heuristic search for optimal perception
planning. We will also show how to use morphological
operations in order to build approximate visibility maps. The
visibility maps can then be used to obtain information that,
when considered in the heuristic of perception planning, can
improve the search efficiency.

A. Optimal Perception Planning

PA* is a heuristic search for motion planning that returns
the optimal path to perceive a target, considering both
motion and perception cost [1]. Given a path ρ, the overall
cost is given by

cost(ρ) = costm(ρ) + λcostp(ρ, T ) (1)

where costm(ρ) is proportional to the path size, and
costp(ρ, T ) is a function of the minimum distance between
the path and target T . We assume the perception cost is
function of the minimum sensing distance from the path.
The parameter λ is a weight parameter that trades-off motion
and perception cost in the overall cost function.

As in the A* algorithm, the total cost estimate is given the
sum of g(S, n), the path distance from the starting position
S to the current node n, and h(n, T ), a heuristic of both the
motion and perception costs from n to T .

f(n) = g(S, n) + h(n, T ) (2)

If the heuristic used is admissible, i.e., always less or equal
than the true value, then the path returned is guaranteed to
be optimal. Therefore, the choice for the heuristic is based
on the euclidean distance between the current node and the
target, without considering any obstacles.

h(n, T ) = min
q

(
||n− q||+ λcp(||q − T ||)

)
(3)

We assume that from position n the robot can still
approach the target by moving to other location q, from
where it senses the target. There is a trade-off between
the possible increase of motion cost, and the decrease of
perception cost. We take the distance between points n and
q, ||n− q||, as the approaching cost.

We proved that if cp is an increasing function with a
maximum sensing range, then the optimal point q∗ lies in
the straight line between n and T , as shown in Figure 2.
The perception cost function cp can be any monotonically
increasing function, allowing flexibility to represent the cost
of multiple perception models.

T
n •

q||n− q|| cp(||q − T ||)

Figure 2. Given a robot at position n and a perception target T in a
scenario without obstacles, the optimal sensing goal position lies in the
straight line connecting those two points.

For any specific perception cost, it is possible to find the
optimal sensing position q∗ as a function of the distance
||n − T ||. And with q∗ known before-hand, the heuristic h
is only a function of n and T , and easy to use during search.

We give two examples for the function cp, where the
perception cost is either a linear or quadratic function



of the distance to the target. In our model we assume
circular omnidirectional sensing, with a limited range rp.
The heuristic h(n, T ) can then be determined easily for each
specific perception cost functions.

We define the optimal sensing distance as d∗ = ||q∗−T ||.
In the linear case, where cp(||q − T ||) = ||q − T ||, there

are two cases for the optimal distance d∗:
• λ < 1: Cost of motion is greater than cost of sensing,

so robot minimizes motion by sensing form as far apart
as possible (limited by maximum sensing range rp);

• λ ≥ 1: Cost of sensing is greater than cost of motion,
so robot moves as close to the target as possible.

The optimal sensing distance d∗ for linear perception is:

d∗ =

{
rp λ < 1

0 λ ≥ 1
(4)

With a quadratic sensing cost, cp(||q − T ||) = ||q − T ||2,
we can solve for q∗ using equation 3. Ideally the robot would
move to a fixed distance 1/(2λ) of the target to sense it
optimally. The sensing distance d∗ also depends on rp:

d∗ =

{
1
2λ 1/(2λ) ≤ rp
rp 1/(2λ) > rp

(5)

This optimal distance d∗ can now be used in the heuristic:

h(n, T ) =

{
(||n− T || − d∗) + λcp(d

∗) ||n− T || ≥ d∗

λcp(||n− T ||) ||n− T || < d∗

(6)

B. Approximate Visibility Maps

We assume robots have a circular shape, and a maximum
sensing range, rp. The goal of visibility maps is to efficiently
determine the observability of a robot in a certain environ-
ment, i.e., determine what regions can be sensed from any
point that is reachable from the initial robot position. The
algorithm is a function of robot size and sensing range. We
show in Figure 3 a simulated environment with obstacles,
and the Approximate Visibility Map (A-VM).

(a) Map (b) A-VM

Figure 3. Given a black and white gridmap, an omnidirectional circular
robot (green), and a sensing range (green circumference), the A-VM
determines what can be sensed from reachable positions.

We use morphological operations, which can be applied
on images using a structuring element with a given shape.

Here the structuring element R is a circle representing a
circular robot. The domain is a grid of positions G. The input
is a black and white binary image representing the map, with
M being the set containing the positions that correspond
to obstacles. The morphological operation dilation on the
obstacle set M by R is

M ⊕R =
⋃
r∈R

Mr (7)

where Mr = {z ∈ G | z = m + r,m ∈ M}, i.e., the
translation of M by r over the grid G.

When applying the dilation operation to black points in
the image, the algorithm inflates the obstacles of the map
by the robot size, achieving the configuration space.

Cfree = {z ∈ G | z /∈M ⊕R} (8)

Given the free configuration space Cfree, it is possible
to find the points that are reachable from the initial robot
position S.

Reach(S) = {z ∈ Cfree | z connected to S} (9)

The partial morphological closing applies the second mor-
phological operation only to the reachable set, Reach(S),
instead of Cfree. Morphological closing is the combination
of a dilation operation followed by an erosion. Dilation and
erosion are dual operations. In order to apply the closing
operation to the obstacles, we apply an erosion to the dilated
obstacles. But being dual operations, the partial morpholog-
ical closing of obstacles is equivalent to the dilation of the
reachable space:

A(S) = Reach(S)⊕R (10)

The actuation space, A(S), can be seen as a first approx-
imation of the visibility map, if the maximum sensing range
considered is less than the robot size (Figure 4).

From A(S), it is possible to define the unreachable
regions, i.e., regions that are not reachable to the robot body,
and thus cannot be actuated.

U(S) = {z ∈ G | z /∈ A(S) ∧ z /∈M} (11)

U(S) is then divided in a set of different disconnected
components U l(S). The separation of the unreachable re-
gions of the actuation space in disconnected parts is useful,
allowing to determine visibility independently (Figure 4).
Each region U l(S) has their unique openings to the actuation
space, from where visibility inside U l(S) is possible. These
openings are the frontiers, defined as the points of the
unreachable space that connect with A(S):

F l(S) = {z ∈ U l(S) | ∃z′ : z′ is adjacent to z∧z′ ∈ A(S)}
(12)



F l(S) might be composed of multiple disconnected fron-
tiers, so F li(S) represents the multiple components of the
frontier of region U l(S).

When determining visibility for sensing range greater than
robot size, it is necessary to find points that have line of sight
inside of U l(S) through some F li(S). There are multiple
candidate points, and all of them have to be in Reach(S),
the feasible positions for the robot center position. All those
points should be considered for the true visibility map.

Because the brute-force solution is computational expen-
sive, we proposed an alternative, where the visibility inside
unreachable regions is considered only from one point of
the reachable space for each frontier F li(S) (see Figure 4).

As only one point is being used, the final visibility map
is an approximation of the ground-truth. In order to obtain
a better approximation, the point chosen has to maximize
the expected visibility inside the unreachable region. That
is accomplished by choosing a point close to the frontier,
as being closer is equivalent to having a deeper and wider
expected visibility inside U l(S), maximizing the expected
visibility area. In order to find this critical point, c∗li(S), the
sum of the distance to all frontier points is minimized:

c∗li(S) = argmin
z∈Reach(S)

∑
ζ∈F li(S)

‖z − ζ‖2 (13)

Ray casting is used to test visibility inside unreachable re-
gions from the critical point, in order to consider occlusions,
resulting in the Approximate Visibility Map.

(a) Unreachable Regions (b) Critical Point

Figure 4. In (a) we show A(S) in white, in pink multiple disconnected
unreachable regions, and in blue an example of one disconnected unreach-
able region U l(S); in (b) we highlight one disconnected region, showing
in dark blue the frontier points F li(S), and in red the critical point c∗li(S);
the points from the reachable set are shown in green; light blue represents
the expected visibility from the critical point, through the frontier, into the
unreachable region, before accounting for occlusions.

IV. PERCEPTION PLANNING WITH A-VM

In this section we show that with an initial fixed cost
of building the Approximate Visibility Map (A-VM), it is
possible to use the critical points from the A-VM to improve
the search heuristic of PA*.

The visibility map gives information on the feasibility
of perception, while not giving any information about the
positions from where points can be perceived. Nevertheless,

the transformation provides structured information about the
environment, and it is possible to separate grid points into
three categories:

1) Reachable Space: points that can be reached by the
robot center, Reach(S);

2) Actuation Space: points that can be “touched” by the
robot body, A(S);

3) Unreachable Regions: points the robot cannot cover
with its body and motion only, because they lie in
positions not traversable by the robot, U(S).

Only points in the unreachable regions have some infor-
mation about a possible position from where they can be
sensed, because they have associated a critical point. The
distance between a target in region U l(S) and a critical point
c∗li(S) can be used as a better estimate of the perception
distance in the heuristic for perception planning. Therefore,
we will focus our discussion only to points that belong to
the Unreachable Regions.

Considering the base heuristic of PA*, independently of
the perception cost function, we know it is associated with
the cost of moving to a better sensing position and perceiving
the target from there. We also know that the heuristic does
not consider obstacles, and the best sensing position lies in
the straight line between the current node n and the target T .
We assume we can solve the heuristic minimization problem
(equation 3) for a specific cost function cp, and find the
optimal sensing distance d∗. Assuming 0 ≤ d∗ ≤ ||n− T ||,
the heuristic can be given as

h(n, T ) = ||n− T || − d∗ + λcp(d
∗) (14)

The visibility map gives information about the minimum
sensing distance from any point in the reachable space to a
point in the unreachable region, which can be used in the
heuristic instead of the optimal sensing distance d∗ given
by the straight line solution. When using the Approximate
Visibility Map, and being the distance from T ∈ U l(S) to
critical point dcli(T ) = ||T − c∗li(S)||, the heuristic becomes:

h1(n, T ) = ||n− T || − dcl (T ) + λcp(d
c
l (T )) (15)

where dcl (T ) = min
i
dcli(T ) ≥ d∗. Here we are not

considering the possibility that dcl is bigger than rp. In that
case, the point would not be visible. If ||n − T || < dcl (T ),
then h1(n, T ) = λcp(d

c
l (T )). In order to use this heuristic as

admissible and guarantee an optimal path, we only need to
prove the distance from T to any other point in the reachable
space is bigger than dcl (T ).

Theorem 1. Distance of points inside unreachable regions
to the critical point is minimal in comparison to distance to
any other point in the Reachable Space.

Proof: We assume only one critical point and fron-
tier, for sake of simplicity. As shown in Figure 5, we



consider only the frontier extremes, the two obstacles at
points O1(0,−ζ) and O2(0, ζ), with ζ < R, being R the
robot radius. The frontier is between those two obstacles.
If the robot starts at some point with x > 0, then the
unreachable region consists of points with x ≤ 0. Following
this description, the critical point results as the point that is
at R distance from both obstacles, (

√
R2 − ζ2, 0). For any

point (a, b), with a < 0, the distance to the critical point has
to be the minimum distance between (a, b) and any point in
the reachable space, (α′, β′), with α′ > 0. As we can see
in Figure 5, for any point (α′, β′) there is a point (α, β) in
the border of reachability that has lower distance to (a, b).
And the distance between (a, b) and (α, β) is given by

d2 = (γ +R cos θ)2 + (R sin θ)2

= γ2 +R2 cos2 θ + 2γR cos θ +R2 sin2 θ

= γ2 +R2 + 2γR cos θ (16)

As we can see from the equation, the distance is mini-
mized increasing the angle θ, and the angle θ is maximized
at the critical point. Thus, we prove the distance to any
unreachable point is minimized by the critical point.
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Figure 5. Given two obstacles at positions (0, ζ) and (0,−ζ), the set of
points in the reachable space that can sense the point (a, b) is represented
with the filled region; the critical point (

√
R2 − ζ2,0) is the point with

the minimum distance to any (a, b) in the unreachable region.

However, it is still possible to improve the proposed
heuristic. Instead of using the critical point to have only
a lower bound estimate on the perception distance, we can
use it to estimate a lower bound for motion cost as well.

We assume the optimal sensing distance d∗ is lower than
the distance to the critical point, dcli, thus, from any position
with line of sight to the target, the robot will move to a point
as close as possible, i.e., a border of the reachable space.
Therefore, we know that the minimum motion cost will be
the distance between the current node n and the closest point
in the border of the Reachable Space. From Figure 5, we
can see that in the worst case scenario, the distance between
the critical point and any other point of the Reachable Space
border, with line of sight to the target, is 2R. Therefore, we
can have a new estimate for an admissible heuristic:

h2(n, T ) = min
i

(
||n− c∗li(S)|| − 2R+ λcp(d

c
li(T ))

)
(17)

In case d∗ > dcli(T ), we can update the heuristic to
consider δ = max(d∗ − dcli(T ), 0).

h2(n, T ) = min
i

(
||n−c∗li(S)||−2R−δ+λcp(dcli(T )+δ)

)
(18)

Finally, the first heuristic h1 might be a better estimate in
cases there is line of sight between n and T , so in order to
always use the best heuristic, we choose the one closest to
the true value, considering they are both admissible.

hAVM (n, T ) = max(h1(n, T ), h2(n, T )) (19)

Theorem 2. Heuristic using Approximate Visibility Map
dominates original heuristic in PA*.

Proof: The original heuristic h(n, T ) in PA* is always
less than the real cost, because it uses the optimal solution
for the euclidean distance without any obstacles, assuming
optimal motion and perception distances. The first heuristic
using the A-VM, h1(n, T ), uses the same straight line
assumption, but replaces the perception and motion costs
by better estimates. Thus the estimate h1(n, T ) is always
greater or equal than h(n, T ), because we proved the sensing
distance to the critical point is the minimal perception
distance. Therefore, h(n, T ) ≤ hAVM (n, T ). And because
hAVM (n, T ) is admissible, it is also dominant over h(n, T ).

V. RESULTS

We tested in a simulated map the performance of our
proposed algorithm with a dominant heuristic (PA-VM),
against the original PA* heuristic. We compared the number
of expanded nodes, presenting the results in Figure 6. We
analyzed the change in efficiency with changes of the weight
parameter λ, with 7 values ranging between 0.008 and
125. We set 8 different initial robot positions distributed



uniformly in the reachable space, and 25 different target
positions, also uniformly distributed, resulting in 1400 dif-
ferent search instances over the range of λ. Because the only
difference is for points in U(S), we only tested targets in the
unreachable regions. We show in Figure 6 that for λ greater
than one (small optimal sensing distances d∗), there is a great
improvement in the average number of nodes expanded, with
our method expanding only 35% of nodes expanded by PA*.
The results depend highly on the environment topology,
having a high variance. Depending on the target position,
the node expansion percentage can change from almost 0
to 90%, for large λ. Even for low λ, where both heuristics
have similar average results, there were some instances with
a gain of 50% in the number of nodes expanded.

λ

Figure 6. Comparison of average number of nodes expanded by PA* and
PA* with Visibility Maps (PA-VM) as a function of λ, for both linear and
quadratic perception cost function.

VI. CONCLUSIONS

We reviewed both PA* and Approximate Visibility Map
algorithms. The first is an informed search method to find
optimal paths for perception tasks. The latter is a map
transformation that represents the observable regions in a
2D environment by a given robot. We showed how the
added information about the structure of environment can be
used to improve the heuristic, resulting in a reduced search,
expanding less nodes. We used the critical points from the
Approximate Visibility Map to create better estimates of the
motion and perception costs, while proving they can be used
as an admissible and dominant heuristic compared to the
one proposed for PA*. In this work we considered circular
robots, with motion and perception cost functions that are
rotation invariant. In the future we would like to consider
more complex motion and perception cost functions for any-
shape non-holonomic robots.
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