Y.Liu, R.Collins and W.E.Rothfus,
"Robust Midsagittal Plane Extraction from Normal and Pathological 3D
    Neuroradiology Images,"
IEEE Transactions on Medical Imaging, Vol. 20(3), March, 2001, pp.175-192.

Abstract

This paper focuses on extracting the ideal midsagittal plane (iMSP) from three-dimensional normal and pathological neuroimages. The main challenges in this work are the structural asymmetry that may exist in pathological brains, and the anisotropic, unevenly sampled image data that is common in clinical practice. We present an edge-based, cross-correlation approach that decomposes the plane fitting problem into discovery of two-dimensional symmetry axes on each slice, followed by a robust estimation of plane parameters. The algorithm's tolerance to brain asymmetries, input image offsets and image noise is quantitatively evaluated. We find that the algorithm can extract the iMSP from input 3D images with 1) large asymmetrical lesions; 2) arbitrary initial rotation offsets; 3) low signal-to-noise ratio or high bias field. The iMSP algorithm is compared with an approach based on maximization of mutual information registration, and is found to exhibit superior performance under adverse conditions. Finally, no statistically significant difference is found between the midsagitaal plane computed by the iMSP algorithm and that estimated by two trained neuroradiologists.

Full Paper

Click here for full paper (853183 bytes, pdf file, copyright IEEE).