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ABSTRACT So we were presented with interesting and useful new ctgdem

this evaluation. This paper presents an overview of ounisffto
This paper describes the CMU Sphinx-3 system, and the caafigu address these challenges.

tion we used for the 1996 DARPA (Hub-4) evaluation. The model

structure, acoustic modeling, language modeling, lexivadieling, System Overview

and system structure are summarized. We also discuss tlegi-exp

mental results obtained with this system on the most recARPA  The Sphinx-3 system is our new, flexible, hidden Markov medel

evaluation, and some subsequentresults are also discussed based speech recognition system. Its components can be-confi
ured at run-time along the spectrum of semi- to fully-contins

Motivation operation. We designed each component to do one thing vea# h

very few hard-wired limitations, and interface easily thetcom-

Past efforts on speechrecognition have focused on clead,gal-  ponents. This has allowed easy and very flexible systemulesig
ity speechin friendly environments, and DARPA evaluatimnsast

years have followed this agenda. While one must walk befaee o For this evaluation, we ran a senonically clustered [1], tori-

can run, we have, as a community, developed our technology tensity, fully-continuous system. The acoustic model waiséd

the point where we can handle large vocabulary dictatioh wall  on the Wall Street Journal corpus and adapted to a subseeof th

spontaneous speech fairly well. 1996 Hub-4 broadcast news training data in a supervised erann
then adapted toward the test data in an unsupervised mahiner.

The evaluations have tracked thiS, with the introducticst Wal’ |anguage model was trained on the Broadcast News corpus. The

of so-called “found” speech, recorded off the air from comei®  |exicon was chosen from the most common words in this corpus,

broadcasts. For the 1996 Hub-4 evaluation we have contimued to be of a size that balances the trade-off between |eavingyvo

this Vein, Widening our horizons to include the addltlonﬁﬂ(djlty out-of-vocabu|ary’ and introducing extra confusable vgor&ome

of television news broadcasts, as well as multiple radig@ms.  common acronyms and phrases grouped into lexical units alsce

This offered data containing many interesting effectshaagspon-  added as lexical units. Several types of filled pauses wecenabd-
taneous speech, speech over wide- and narrow-band chamkls eled explicitly.

other common degradations, and non-native speakers, dsasvel

read, clean speech. It also confronted us with the diffieslof The different models that the system used will be descriteed, n
broadcast speech, including dynamic range compressiopeaid  followed by the overall recognition system architectumed &nally
limiting, speech-over-music and speech-over-speechsticopro-  a discussion of results.

duction effects.

. _ _ _ Acoustic Modeling
This evaluation also offered the chance to refine automagjmen-

tation techniques, and to compare the automatic segmemti&ti  Model Structure and Base Training: The Sphinx-3 system is a

human-transcribed segmentation. The segmentation proslen  Hidden Markov Model-based speech recognition system. Vak e

important one. If speech systems are to be employed in redtiw uation system used 6000 senonically-tied states [1], eansisting

settings such as these, they cannot depend on pre-markas-ac®f a mixture of 16 diagonal-covariance Gaussian densities.

tic and linguistic boundaries. Requiring human formattofgn-

put data obviates many advantages of mechanical trariscjpind At the time, we did not feel that there was enough training éatm

there are simply too many broadcasts to consider this oedotig-  the 1996 Hub-4 data collection effort to train our modelscadsely.

term. We also felt that we had neither the personnel to preparecgarifi
training data, nor the time to find an appropriate operativigtfor
our system on the smaller amount of data that this effort ebakve
yielded. Instead we chose to employ an adapted-trainingpapp.



Two sets of acoustic models were trained: one for wide-badhitihw For a more detailed discussion of our current adaptatidmiieces,
data, and one for narrow-bandwidthd. telephone) data. Both of see [7].

these models were mixed-gender. We had originally plannedée
three different models for full-bandwidth data: male-qrigmale-
only, and mixed-gender. However, tests on the developreshset
showed no advantage to the split-gender techniques ondagseso
we used only the mixed-gender model for wide-bandwidth iapu

Lexical Modeling

The recognition vocabulary consisted of the most frequér@@

words of the Broadcast News corpus, supplemented by some 200

multi-word phrases and some 150 acronyms. The vocabulagy si

The wide bandwidth acoustic model was constructed of twtspar was initially based on our experience with speech systenmsutA

context-dependent (CD) phonemes, and context-indepei@8n  sequent careful analysis of the trade-off between outstbulary

phonemes including noise phones. CD phonemes (triphorerg) w rate vs. acoustic confusability showed that our choice wasra

mapped into 6000 senones. These were first trained on the Wgdod one [10].

SI-284 training set, and then adapted in a supervised maniee

acoustics of the portions of the 1996 training data that weaeked ~The phrases were selected by hand after observing recogeiti

as either the clean, read (FO) or clean, spontaneous (Filjtmms.  rors among the acoustic training data. Many of these errerew

The CI portion of the model consisted of 52 Cl phones and siseno  attributed to incorrect pronunciation rules. In these sapeonun-

phones, including\H, UH, andUM. These were trained on the FOQ ciations were manually chosen from a set of possibilitieplied

and F1 portions of the training data. Each phone or triphoae w by the data. This technique was also used to select alteeryarid-

represented as a 5-state HMM; each tied state was a mixturé of nunciations for words in spontaneous speech. The acronjims c

densities. sen were the most frequent ones in the Broadcast News campds,
accounted for more than 90% of the acronym tokens in that cor-

The narrow bandwidth acoustic model was first trained on WSgus [10].

SI-321 with reduced bandwidth. This model was then adajted t

the (1 hour) subset of the 1996 training data that we idedtéie

speech over a telephone channel, using the classifier Heddre-

low. The labeling of this subset was then hand-refined poitratin-  Two language models were used in our system: one to guide the

ing. This acoustic model was structured as 6000 senonitially decoder in the actual recognition passes, and a differamjel one

states mapped into triphones, plus 52 context-indepemdanrtes for rescoring the N-best output hypotheses.

and 3 noise phones (including silence). Each phone or tiplizas

represented as a 5-state HMM; each tied state was a mixturé of The decoder used a Katz-smoothed trigram language modlisTh

densities. a fairly standard language model, much like those which lhaemn
used in the DARPA speech recognition community for the past s

The choice of which model to use for each segment was made in teral years. As a space optimization, singleton trigramskagihms

preprocessing step of decoding, described below. were excluded from this model. As a new feature, this languag

model incorporated cross-boundary trigrams.
Acoustic Adaptation: Model parameters were adapted using a

Language Modeling

transformation of the mean vectors based on linear regrneg4i.
This adaptation was used in two ways. Initially, modelsieai on

As far as language modeling is concerned, there are twoiltigu
problems introduced by segmenting data. One is that siingeik-

SI-284 were adapted in a supervised manner to some of the 1986 utterances can be sliced into several pieces. Conteawéveral

Hub-4 training data as described above. This supervisquotatitzn

linguistic utterances can be packed together into the sameastic

showed a 7% relative improvement on the clean, read (FOjoport segment. In order to address the latter problem in this gy,siee
of the 1996 Hub-4 development test set, though only a 2% iwgpro included extra trigrams in our language model training towsate

ment on the whole set. This was a somewhat smaller improvemetnmarked utterance-boundaries [10].

than we had hoped for; we think that this was due to using omy o
regression class, rather than several [3].

During recognition, the above models were also adapted nan
supervised manner using the initial pass recognition tesut the
preprocessing step (below) sub-segments were clustecendicy
to acoustic similarity. For each cluster, all the resultsrits con-
stituent sub-segments were used jointly to adapt the aicoust-
els. The adapted models were used during the final recogpitiss.

In the last recognition pass we generated a set of N-besthgpes
in order to apply rescoring [9]. This allowed us to do two fet&-

ing things. The first was to optimize the language model wedghl

insertion penalty for the purpose of rescoring automdsicaking

Powell’s algorithm [8]. While this is a simple techniquewibuld

be difficult to overstate its usefulness. The weights foldmguage
score as well as the word insertion penalty were optimizeden
velopment test data.

This process gave us roughly 4-5% relative improvement en th

evaluation conditions. We used only a single iteration cfuper-
vised adaptation; initial testing showed that multipledtsns did
not further improve the recognition accuracy.

The second was to use a different, physically larger languaodel
for rescoring than could be used inside the decoder. Forahis
guage model, we included even singleton events, and apalied
modified Knesser-Ney smoothing. We first investigated usiffg

gram language model. While early tests employing this |aiggu



model reduced the net word error rate, latter tests usingra ma- vided by LDC that mapped to either the FO or F1 focus condition
ture acoustic model gave about the same results for therii-gral  The HBW model contained 8 densities and was trained usind-han
3-gram language models. For the final system we conseriyativdabeled telephone segments from the 1995 Hub-4 training. dat

chose to use the 3-gram for rescoring [10].

Overall Recognition Structure

The recognition system was composed of the following stages

Segmentation, classification, and clustering
Initial-pass recognition

Initial-pass best-path search

Acoustic adaptation

Second-pass recognition

Second-pass best-path search

N-best rescoring

NogakrMwdpRE

Segmentation and Preprocessing

In this evaluation, we were faced with two different evaloatsce-
narios. In the first, ‘partitioned evaluation’ (PE), we wegigen

a set of shows, and a list of break-points correspondingdoqsd
where the speaker changed, the acoustic condition chamged
background music started or stopped), a major linguisticnioiary

occurred ég. at a change in topic), and the like. In the second

‘unpartitioned’ scenario (UE), we were given whole or nediele
broadcasts, and were faced with the task of separating trerge
long segments into pieces short enough to be suitable asfimpu
our recognizer.

We were also concerned that even in the partitioned evaluatie-

nario, we might be confronted with segments of several meisiut

in length, which would overwhelm the capabilities of the Bpk3
decoder. As additional incentive to trim long segments sitorter
ones, we reasoned that in order to get approximately the same
erage of points of uncertainty, the number of N-best hypseke
needed should be exponential in the length of the input.

With this all in mind, we decided to attack the unpartitioreacl-

uation problem strongly, noting that these problems with plar-

titioned evaluation would be taken care of as well. In the wed
used the same tools in somewhat different order for the PEJ&nhd
These are described briefly below; a more thorough treatiwesmt
be found in [11].

For the partitioned evaluation, the initial pass consistedassify-
ing each NIST-supplied segment, clustering segments biasity,
and splitting long segments into sub-segments.

For the unpartitioned evaluation, the initial pass coesigf auto-
matic segmentation, classification, and clustering. Tleegs used

We found that it was important to classify each segment m@eha
cally. Obviously in the UE we would not have any hints. Even in
the PE, and in the training data, not all segments marked 2is ‘F
were, in fact, speech over a telephone. We found that evetiéor
‘F2’ subset, it was better to use the choice of our classifier.

Our classifier also chose between male-only, female-ontypath-
gendered full-bandwidth models. As mentioned above on &e d
velopment test set we found no advantage to separating tae da
for gender-specific models. So in the end we mapped our fayr-w
model choice into the two (FBW and HBW) that we actually used.

Clustering: Segments were clustered using an acoustical similar-
ity metric similar to that used by Hwang for comparing stétal
distributions [1]. First, single mixture Gaussian paraengfor each
utterance were estimated using maximum likelihood tealesq
Then, the models estimated from each segment were clugtered
gether if the symmetric cross-entropy between them waslemal
than an empirically-derived threshold. We insured tha¢rafhe

(clustering operation, each cluster contained at least ¢0rsks of

data.

Sub-segmentation: To reduce the length of the decoded utterances
to 30 seconds, silences in each utterance were locatechauoittér-
ances broken at that point. A silence was located at framénen

the following criteria were met (1 frame equals 10 ms):

1. The average power of the interjal— 7, = + 7] was more than
8 dB lower than the power of the intenfal — 200, = + 200].

2. Therange of the power of the intenjal— 7, = + 7] was less
than 10 dB.

Automatic Segmentation and Silence Detection:nitially, the
long audio streams were chopped into smaller segments,irdspo
determined to be acoustic boundaries. These acoustic bdesd
were found using a Cross Entropy similarity metric [11], wdthe
statistics of 250 frames (2.5 sec) of data to the left and riflthe
boundary were compared. When the similarity was at its loiat
imum, and was also smaller than a predefined threshold, arstico
boundary was found.

Silences near the boundaries were then located as abovehend
utterances broken at that point.

Initial-pass recognition: The initial recognition was done with a
straight-forward continuous- density Viterbi beam seanding the
models described above. In addition to a hypothesis cantain
words and their times, this recognition produced a wordckatior

were the same as for the PE, though the order of applicatien dieach sub-segment.

fered.

These lattices were then searched for the global best patiding

Classification: Each segment in the test set was identified as eto the trigram grammar. Briefly, the lattice was converted i di-

ther “Full Bandwidth” (FBW) or “Half Bandwidth” (HBW) using

rected acyclic graph, with nodes corresponding to wordsstzated

mixture Gaussian models. The FBW model contained mixturest a particular time, and weighted arcs indicating whichdgarould

of 16 Gaussian densities and was trained using acoustiqdata

follow which other words, weighted by a combination of theas-



tic score for a word and the language model score implied by th

transition. The only acoustic scores used in this searcle wer
trieved from the lattice, but the language model scores wesrem-
puted. As a result, this part was much quicker than the sehath
produced the lattice. The result of this search was a glpbalimal
hypothesis with respect to higher-span (3-or-more-granyliage
models [5, 6].

Acoustic adaptation: The HMM means were adapted using Maxi-
mum Likelihood Linear Regression (MLLR) [4] as describedad
This adaptation was performed with a single regression iryatr
based on the best theory produced by the best-path lattaretse
as above (or, if that failed due to resource limitations, \titerbi
search result).

The subsegments were adapted into groups, according tdusie ¢
tering derived in the initial segmentation and clusteriteps Full-
and Half-bandwidth subsegments were not clustered togethe

Second-pass recognition:Each subsegment was then decoded

again, using the acoustic models adapted in the previopsAtain

a lattice was produced for each subsegment. This latticebwts
searched for the global best path, as above. An N-best sfrch
over the lattice was also done at this point. The Viterbi aastb
path results and the N-best lists were passed on to the megcor
step. For the evaluation system we used 200-best lists.

BROADCAST
AUDIO \b

Cepstral Analysis
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to acoustic model type

Decode,
DAG-search,
N-best

Acoustic
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Figure 1: Decoder Architecture

Each “name” consisted of:

File name

Sub-segment unique serial number

Focus condition, or “UE”

Starting frame

Ending frame

Story ID, or “0” for UE

Acoustic model to use (from classifier): M, F, G, or P
Acoustic cluster number

NIST segment ID, or “0000” for UE
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N-best rescoring: The N-best lists generated using the supple-

mented vocabulary [10] were processed to convert the phiase
acronyms into their constituent words and letters, respagt N-

For example, for the first subsegment of the PE:

best rescoring was then performed in the space of the unsuppl

mented vocabulary.

The Viterbi search, best-path, and N-best hypotheses wsoered
as described above, using the Kneser-Ney smoothed triggam |
guage model. The highest scoring hypothesis accordingiso t
rescoring was output.

Reformatting and collating: Finally, the hypotheses for all seg-
ments were collected together, reformatted to be suitabileput to
the NIST scoring tools, and sorted into original time ortler.

Overall System Architecture

Two of the greatest challenges in putting together a conglsiem
are managing the flow of information, and detecting failunesrder
to correct them when they occur.

We first envisioned a quite complex system, with many separat

pieces of information flowing from module to module. We quyck
came to the conclusion that handling all of this data in sufdsh-
ion, and ensuring its consistency and correctness, wouwiel lheen a
nightmare. We chose to circumvent these problems by chgriggn
format of the control files that our system used, and packirtpe
segment-dependentinformation into the “name” of the sgilvemnt.

filel 0000-F0_-000062_000766-001_M0001_0001

By overloading the ‘name’ in this fashion, the actual systam-

hplexity was considerably reduced, resulting in the faitlyan archi-

tecture shown in figure 1.

As an added benefit, this allowed us to easily check for erfeos
example, if the above subsegment was missing from the oofput
the second pass decode, we would know to look at the decode run
for the 'M’ models applied to cluster number’0001".

Experimental results

Our evaluation results are shown in tables 1 and 2, as well as a
breakdown by F-condition of some intermediate steps in tioe p
cessing of the evaluation runs.

Murphy’s Law? is a specter that looms over any evaluation. This
year, we were stung by a subtle bug that fortunately had only a
small effect on our reported performance. The Sphinx-3 deco
occasionally exhibited a fault that caused the end-of-sggmoken

</ s> to consume a large fraction of the end of a segment. Though
we thought we had solved this through a judicious choice ideho
configuration, this detail did not make it into the final configtion.
And, of course, the development test run with which we vadida

1This step of processing, as well as many others implied abovéhe final configuration, did not expose the bug.

was made practically uninteresting by use of the Perl prognang lan-
guage [12].

2“Anything that can go wrong will go wrong.” [2]



Overall FO F1 F2 F3 F4 F5 FX

1st pass Viterbi 38.8 28.8| 33.8| 449 | 451 | 456 | 45.2 | 64.6
1st pass best-patl  37.3 (+4%) | 27.2| 324 | 43.2| 43.3| 45.7| 458 | 61.8
2nd pass best-path  35.5 (+9.3%)| 26.1| 32.3 | 39.7 | 37.3| 439 38.1| 57.8
Rescored (final) 34.9 (+11%) | 25.8| 32.1 | 38.6| 36.6 | 43.7 | 36.5| 55.8

Table 1: Partitioned Evaluation

Overall FO F1 F2 F3 F4 F5 FX

1st pass Viterbi 39.1 27.2| 344 | 458 | 50.0| 45.6 | 40.8 | 66.7
1st pass best-patl  37.8 (+3.4%)| 26.0 | 33.5| 44.7| 48.4| 45.0| 40.8 | 62.9
2nd pass best-path  36.5 (+7.1%)| 24.8| 33.7| 39.8 | 488 | 425 | 38.8| 60.3
Rescored (final) 35.9 (+8.9%)| 24.7| 33.1| 39.1| 484 | 42.1| 355 | 58.3

Table 2: Unpartitioned Evaluation
As a result, we lost approximately 120 words of output in tae p REFERENCES

titioned evaluation. By fixing the bug and re-running thesaféd

segments, we now estimate that this bug contributed 0.4%pofab 1. Mei-Yuh Hwang. Subphonetic Acoustic Modeling for Speake

lute) to our overall word error rate, and 1.3% to our FO wonier
rate. Interestingly, our unpartitioned evaluation waseftected by
this bug.

A comparison of PE and UE results shows how well our efforts in

automatic segmentation paid off. Our overall scores showea 3
relative difference between the PE and UE (4% post-bug-Tik)s
demonstrates the effectiveness of our new segmentatioersys

Like some other sites, we were somewhat surprised by theegisc
ancy between our development and evaluation test resuksotw/
served a much higher error rate on the evaluation data cadpar

the development test. So far we have not been able to adéguate

characterize this effect.
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