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Abstract

We introduce an adaptive moving horizon control
scheme for nonlinear stochastic systems. The scheme
uses the recently developed particle filter to track the
hidden state, as well as to estimate unknown param-
eters. In addition, expected costs are approximated
by Monte Carlo integration where necessary. Although
computationally intensive, the scheme has wide appli-
cability, and we demonstrate its robustness in simula-
tions.
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1 Introduction

A number of adaptive control schemes have been pro-
posed to regulate unknown stochastic systems. Among
the most well-known of these is the self-tuning regula-
tor of [1], which, along with various generalizations, has
been studied extensively (see, e.g., [2]). Although [6] es-
tablished stability of the self-tuning regulator when ap-
plied to time-varying systems, such results have proved
difficult to extend to more complex nonlinear systems.
Perhaps the most significant recent development in this
direction has been the control-Lyapunov function based
work of [5] and [4], but these methods require a sub-
stantial amount of effort to be allocated to construction
of an appropriate Lyapunov function.

In this paper we propose the use of a Bayesian approach
to adaptive control, in conjunction with a standard
moving horizon control scheme, and recently developed
nonlinear filtering methods known as “particle filters”.
(See, e.g., [3], for a nice description of these techniques.)
The approach is quite similar to that proposed in [7],
but we extend it to an adaptive control setting, where
the system involves one or more unknown parameters
which must be estimated. The Bayesian approach pro-
vides a formal framework within which we can specify
costs, which may take into account parameter estima-
tion error as well as state and control trajectory costs.
The particle filtering methods allow us to carry out

Bayesian parameter and state estimation for a quite
general class of nonlinear stochastic systems.

We consider nonlinear stochastic discrete-time systems,
in which one or more parameters are unknown. To
identify the system in a Bayesian framework, unknown
parameters are assigned prior distributions, and at ev-
ery point in time, current information about system
parameters is updated by computing a new posterior
distribution on those parameters. This update pro-
cedure is simple in principle, but in practice, can be
difficult to implement.

The following example illustrates the kind of difficul-
ties which arise. The well-known Kalman filter, when
applied to the linear Gaussian system

xt+1 = Axt + But + εt+1

yt = Cxt + νt, (1)

can be thought of as implementing exactly these re-
cursions when x0 is assigned a Gaussian prior. In this
case, the posterior distribution of xt, given y0, y1, . . . , yt

is itself Gaussian, and its mean vector and covariance
matrix come directly out of the Kalman filter. When
one of the matrices A,B or C contains unknown pa-
rameters, which we will denote by θ, it is tempting to
reformulate the system in the form

x∗t+1 = A∗x∗t + B∗ut + ε∗t+1

yt = C∗x∗t + ν∗t , (2)

where x∗t = (xt, θ)T ,

A∗ =
[

A 0
0 I

]
, B∗ =

[
B
0

]
, C∗ = [C, 0],

with ν∗t = (νt, 0)T and ε∗t = (εt, 0)T . Doing this en-
sures that the posterior (or “filtering”) distribution
p(x∗t |yt, yt−1, . . . , y1) includes as a marginal distribu-
tion the posterior distribution p(θ|yt, . . . , y1) of the un-
known parameter vector θ at time t. Unfortunately, the
system of equations (2) is no longer linear since A∗, B∗

and C∗ depend on θ, and hence the Kalman filter can-
not be used to find these posteriors. This problem is
only exacerbated when the original system is nonlinear.



Particle filtering methods, however, are ideally suited
to finding the desired posterior distributions. Loosely
speaking, these methods approximate filtering and pre-
dictive distributions with samples rather than specify-
ing them in a parametric form. A full description of
the standard particle filter is beyond the scope of this
paper, but the interested reader is referred to [3] for
further details. For the sake of understanding the al-
gorithm in this paper, it is sufficient to know that each
posterior distribution p(xt|y1, . . . , yt) is represented by
a collection of M particles {ξ(i)

t , i = 1, 2, . . . , M}. The
collection of particles can be regarded as an approxi-
mate sample of size M from the posterior distribution,
and it follows that properties of the posterior distri-
bution can be estimated directly from the particles.
Specifically, for functions g(·) which are integrable with
respect to the posterior distribution, one can estimate∫

g(xt)p(xt|y1, . . . , yt)dxt by ĝ = M−1
∑M

i=1 g(ξ(i)
t ).

2 The Control Algorithm

We are interested in controlling a nonlinear stochastic
system of the form

xt+1 = f(xt, ut, εt; θ)
yt = g(xt, νt; θ), (3)

where xt ∈ Rp, ut ∈ Rq, yt ∈ Rs, {εt} and {νt} are
independent and identically distributed sequences of
random variables, f(·) and g(·) are some specified func-
tions, and θ is a vector of unknown parameters. As
usual, we assume that the process {yt} is observed,
while {xt} remains hidden. We will use It to denote
observations up to time t, that is, It = {ys, s ≤ t},,
with I−1 equal to the empty set. Again, we adopt
the approach of incorporating the unknown parameter
vector into a new state vector, defining x∗t = (xt, θ).
This ensures that the posterior (or filtering) distribu-
tion p(x∗t |It) contains information about both the hid-
den state xt and the parameter vector θ.

We propose the following scheme to carry out approx-
imate optimal control of the unknown system (3), in
the face of parameter uncertainty.

Adaptive Bayesian Moving Horizon Control
Algorithm

1. Initialization: Specify a prior distribution for
θ. Set t = 0 and choose some positive integer
“horizon” h. Initialize the particle filter.

2. Parameter update step: Observe yt. Carry
out one iteration of the particle filter, to com-
pute the new posterior distribution for the hid-
den state and unknown parameter vector, that is,
p(x∗t |It).

3. Moving horizon control step:
Choose ut, . . . , ut+h−1 so as to mini-
mize the expected value of the cost
J(xt+1, . . . , xt+h, ut, . . . , ut+h−1), given It.
The expectation is taken over the distribution
of the unobserved state xt, and the random
variation in the system itself, as well as over the
distribution p(θ|It).

4. Control: Apply the control signal ut to the sys-
tem.

5. Iteration: Replace t by t+1 and go back to step
2.

One approach to carrying out Step 3 is to perform di-
rect numerical minimization of E[J(. . .)], evaluating
the expectation by Monte-Carlo integration for each
possible choice of {ut, . . . , ut+h−1.} Thus E[J(. . .)] is
approximated by

Ĵ(xt+1, . . . , xt+h, ut, . . . , ut+h−1)

=
M∑

m=1

N∑

i=1

J(x(i,m)
t+1 , . . . , x

(i,m)
t+h , ut, . . . , ut+h−1),

where {x(i,m)
t+1 , . . . , x

(i,m)
t+h } represents the ith of N sim-

ulations of the system, using the control sequence
ut, . . . , ut+h−1, starting with xt and θ taken directly
from the particle ξ

(m)
t .

Note that most optimization algorithms do not per-
form particularly well when evaluations of the target
function are perturbed by random noise. Hence it is
necessary to use a large value of N in the expression
for Ĵ given above. There are a number of stochastic
programming techniques, however (see, in particular,
[?]), which could potentially lead to more efficient im-
plementation of Step 3.

3 Simulation Studies

We study the performance of the algorithm by simula-
tion studies. We compare the perform of the algorithm
to that of the LQG controller applied to the same prob-
lem.

3.1 A Simple Second-Order System
We first consider the second-order system

xt+1 =
[

1 1
0 φ

]
xt +

[
0
g

]
u(t) +

[
0

εt+1

]
,

yt =
(

1, 0
)
xt + νt, (4)

where εt and νt are independent Gaussian noise se-
quences with means zero and variances equal to one.
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Figure 1: Average costs over multiple simulations of the
system (4) with the standard LQG controller
and the particle-filter controller.

This system represents the motion of a particle sub-
ject to a force, in the presence of friction and random
disturbances.

We consider two controllers. The first is a moving hori-
zon version of an LQG regulator, which, at each point
t in time, chooses the control so as to minimize the
expected value of the cost

J =
t+5∑

s=t+1

xT
t Qxt + u2

t−1,

when φ = 0.8 and g = 1. The second is the parti-
cle filtering-based controller described above, using the
same cost J , but restricting the selection of the control
at each point in time to the case where ut+1, . . . , ut+5

are all equal. (This restriction on the control makes
the optimization in Step 2 of the algorithm simpler.)

Figure 1 shows average costs for simulations of the test
system 4 for each of the two controllers, as the actual
gain g of the system varies from 1 to 2. Clearly, the
optimal LQG controller performs well when the gain
g is close to the value 1 the controller is designed for,
but the particle filter outperforms the LQG controller
once the gain increases beyond about 1.7, and gives
relatively good performance over the entire range of
gains. Note that the moving-horizon LQG controller
has an advantage here because of the restriction we
impose on the choice of control signal for the particle-
filter controller. This advantage would be reduced if we
were to remove this restriction (which in general would
incur higher computational costs).

3.2 A System of Unknown Order
We consider, as another example, a system of two
masses moving in the plane with damping, and con-
nected by a spring. The system is shown in Figure 2.

Figure 2: A system of unknown order.

The damping of the system is accurately known, as is
the values of the two masses. The spring constant is
the unknown parameter in the system and we consider
its value restricted to two possibilities, either ∞ or a
particular finite value. In the case where the spring is
infinitely rigid, the system of two masses operates as a
single mass and the system is 2nd-order. If the spring
has finite rigidity, the system is 4th-order.

The 2nd and 4th-order models are discrete-time ap-
proximations to the true continuous-time dynamical
systems, driven by Gaussian noise sequences. To be
precise, the 2nd-order model is given by

xt+1 = A2xt + b2ut + ε
(2)
t+1

yt =
(

1, 0
)
xt + νt, (5)

where

A2 =
[

1 1
0 1− B

m1+m2

]
, b2 =

[
0
1

m1+m2

]
,

and ε
(2)
t+1 =

[
0

εa
t+1

]
,

and the 4th-order model is given by

xt+1 = A4xt + b4ut + ε
(4)
t+1

yt =
(

1, 0, 0, 0
)
xt + νt, (6)

where

A4 =




1 1 0 0
−K
m1

1− B
m1

K
m1

0
0 0 1 1
K
m2

0 −K
m2

1− B
m2




b4 =




0
0
1

m1

0


 , and ε

(4)
t+1 =




0
εa
t+1

0
εb
t+1


 .

We consider three controllers used to control these two
models of the system. The first is a moving horizon
LQG controller designed to control the 2nd-order (rigid
spring) model. The second is a moving horizon LQG
controller designed for the 4th-order model. The third
is the proposed adaptive particle filter controller. The
parameter θ is the unknown order of the system. Hence
the particle filter adapts to the order of the system in
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Figure 3: Average cost per iteration for the 2nd and 4th
order LQG controllers and the particle filter
controller.

order to generate an effective control. The cost function
takes the same functional form as for the example in
the previous subsection.

Figure 3 shows the average cost for each controller on
both the 2nd and 4th-order systems above. As one
would expect, for both the 2nd and 4th-order systems,
the LQG controller designed for the correct system per-
formed the best. The particle filter controller, however,
is clearly far more robust, giving reasonable costs re-
gardless of the order of the system.

4 Discussion

We have demonstrated a general-purpose moving hori-
zon control algorithm which can be used for nonlin-
ear stochastic systems with unknown parameters. The
algorithm gathers information about the hidden state
and the unknown parameters by use of the particle fil-
ter, rather than traditional variants of the Kalman fil-
ter. This means that we could expect it to perform
reasonably well even for highly complex systems. Fur-
thermore, the algorithm itself is relatively simple to
implement, relying heavily on simulation rather than
analysis.

There are, however, limitations. General forms of par-
ticle filtering are not practical for cases where either
the state-dimension or the dimension of θ is very large,
since prohibitively large numbers of particles would be
required to get good approximations to posterior dis-
tributions. There are also a number of parameters as-
sociated with the particle filter itself (certain sampling
distributions must be chosen), adding a degree of com-
plexity to the implementation of the control law in this
paper. One further issue arises in implementation of
the particle filter. Incorporation of the parameter vec-
tor θ into the expanded state x∗t = (xt, θ) leads to a
state-space model for which the second component of

the state does not change. In general, this can lead
to a problem known as “particle depletion” (see [3] for
more details), and to get around it, we use the standard
technique of allowing θ to vary slowly over time. While
this solves the particle depletion problem, it means that
the system is not exactly the same as originally spec-
ified. On the other hand, for many real-life systems,
parameters do in fact vary slowly over time, so this is
arguably not problematic. Furthermore, particle filter-
ing is a currently active area of research, and we expect
these problems to be mitigated in the future, as gen-
eral purpose particle filtering techniques continue to be
improved.
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