
15-451 Algorithms, Fall 2011

Homework # 3 Due: October 11, 2011

Please hand in each problem on a separate sheet and put your name, andrew id, and
recitation (time or letter) at the top of each sheet. You will be handing each problem into
a separate stack, so it is important to have your name on each sheet to make sure you get
credit for your work!

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

(25 pts) 1. Treaps and amortized analysis. Suppose you have an array of n keys that is already
sorted, and you want to convert it into a treap (e.g., so that you can later do additional
inserts). Here is a procedure for converting the array into a treap in linear time, no
matter what the priorities are — we won’t be relying on the priorities being chosen
randomly here. The procedure walks down the array, inserting the elements one at a
time in a special way. Your job is to show that the amortized cost per insert for this
procedure is O(1).

First of all, in addition to keeping a pointer to the root node, we will also keep a pointer
to the rightmost node of the treap. (The rightmost node is the one with the largest
key so far). Also, every node will have a parent pointer in addition to left-child and
right-child pointers.

Algorithm. Let A be the input array, where the ith key and priority appear in A[i].key
and A[i].prio respectively, and the keys are in sorted order. We will insert the
elements one by one, into an initially empty treap T .

We insert element i into the treap T made of elements 1 · · · (i − 1) as follows:

(a) if A[i].prio is less than the priority of the root of T , then i becomes the new
root and T is made into its left child;

(b) if A[i].prio is greater than the priority of the rightmost node in the treap,
then element i is made into the right child of this node;

(c) if A[root].prio < A[i].prio < A[right].prio, then element i is temporarily
made the right child of the rightmost node, and the heap property of the
treap is then restored by successive rotations of the newly inserted node.
(Note: A[right] is really the same thing as A[i − 1] since the keys are in
sorted order.)

Cases (a) and (b) above are clearly constant-time. The problem is that case (c)
could involve a lot of rotations. You job is to show that nonetheless, the amortized
time per operation is O(1).

(25 pts) 2. The List-Update Problem. Suppose we have n data items x1, x2, . . . , xn that we
wish to store in a linked list in some order. Let’s say the cost for performing a lookup(x)

operation is $1 if x is in the head of the list, $2 if x is the second element in the list,
and so on.

For instance, say there are 4 items and it turns out that we end up accessing x1 3
times, x2 5 times, x3 once, and x4 twice. In this case, in hindsight, the best ordering
for a linked list would have been (x2, x1, x4, x3) with a total cost of $21.

The Move-to-Front (MTF) strategy is the following algorithm for organizing the list
if we don’t know in advance how many times we will access each element. We begin
with the elements in their initial order (x1, x2, . . . , xn). Then, whenever we perform a
lookup(x) operation, we move the item accessed to the front of the list. Let us say that
performing the movement is free. For instance, if the first operation was lookup(x3),
then we pay $3, and afterwards the list will look like (x3, x1, x2, x4 . . .).

(a) Suppose n = 4 and we use MTF starting from the order (x1, x2, x3, x4). If we
perform the following 4 operations:

lookup(x4), lookup(x2), lookup(x4), lookup(x2).

What does the list look like in the end and what was the total cost?

(b) Your job is to prove that the total cost of the MTF algorithm on a sequence of
m operations (think of m as much larger than n) is at most 2Cstatic + n2 where
Cstatic is the cost of the best static list in hindsight for those m operations (like
in our first example). We will prove this in two steps.

i. First prove the somewhat easier statement that the cost of Move-to-Front is at
most 2Cinitial where Cinitial is the cost of the original ordering (x1, x2, . . . , xn).

Hint: If i < j but xj is in front of xi in the MTF list, let’s say that xj has
“cut in line” in front of xi. Now, imagine that each element xi has a piggy
bank with $1 for everyone that is currently cutting in line in front of it.

ii. Now prove the 2Cstatic + n2 bound.

Note: one nice use of this is for data compression. You store each ascii character in a
list in this way, and then when reading a string of text, for each character you output its
index i in the list before moving the character to the front (this requires only O(log i)
bits, which will be small if the item was close to the front of the list).

(25 pts) 3. Hashing. As discussed in class, the notion of universal hashing gives us guarantees
that hold for arbitrary (i.e., worst-case) sets S, in expectation over our choice of hash
function. In this problem, you will work out what some of these guarantees are (in
addition to solving a few short-answer questions).

(a) Describe an explicit universal hash function family from U = {0, 1, 2, 3, 4, 5, 6, 7}
to {0, 1}. Hint: you can do this with a set of 4 functions.

(b) Let H = {h1, . . . , hk} be a universal family of hash functions from some universe
U (|U | ≥ 2) into {0, 1}. Could it be that some function hi ∈ H maps all of U to
0? Explain.

2

(c) Let H be a universal family of hash functions from some universe U into a table
of size m. Let S ⊆ U be a set of m elements we wish to hash. Prove that if we
choose h from H at random, the expected number of pairs (x, y) in S that collide
is ≤ m−1

2
.

(d) Let H be a universal family of hash functions from some universe U into a table
of size m. Let S ⊆ U be a set of m elements we wish to hash. Prove that with
probability at least 3/4, no bin gets more than 1+2

√
m elements. Hint: use part

(c).

To solve this question, you should use “Markov’s inequality”. Markov’s inequality
is a fancy name for a pretty obvious fact: if you have a non-negative random
variable X with expectation E[X], then for any k > 0, Pr(X > kE[X]) ≤ 1/k.
For instance, the chance that X is more that 100 times its expectation is at
most 1/100. You can see that this has to be true just from the definition of
“expectation”.

(25 pts) 4. Knapsack revisited.

Recall from class that in the knapsack problem we have n items, where each item i has
an integer value vi and an integer size si, and we also have a knapsack of size S. The
goal is to find the maximum total value of items that can be placed into the knapsack.
In particular, out of all sets of items whose total size is at most S, we want the set of
highest total value. In class, we gave a dynamic programming algorithm to solve this
problem whose running time was O(nS).

One issue, though, is that if the sizes are large, then O(nS) may not be so good. In
this problem, we want you to come up with an alternative algorithm whose running
time is O(nV), where V is the value of the optimal solution. So, this would be a better
algorithm if the sizes are much larger than the values.

Note: your algorithm should work even if V is not known in advance, but you may
want to first assume you are given V up front and then afterwards figure out how to
remove that requirement.

Hint: it might help to look at the algorithm from class and think about what the
subproblems were. Then think about what subproblems you want to use for the new
goal.

3

