15-451 Algorithms, Fall 2011

Homework # 5 due: Tuesday November 8, 2011

Please hand in each problem on a separate sheet and put your name and recitation (time
or letter) at the top of each sheet. You will be handing each problem into a separate box,
and we will then give homeworks back in recitation.

Remember: written homeworks are to be done individually. Group work is only for the
oral-presentation assignments.

Problems:

(35 pts) 1.

(30 pts) 2.

[Fair carpooling] The n employees of the Algo Rhythms music downloading service
sometimes carpool to work together.! Say there are m days, and S; is the set of people
that carpool together on day i. For each set, one of the people in the set must be
chosen to be the driver that day. Since people would rather not drive, they want the
work of driving to be divided as fairly as possible. Your task in this problem is to give
an algorithm to do this efficiently.

The fairness criterion is the following: Say that person p is in some k of the sets,
which have sizes ni,no,...,ng, respectively. Person p should really have to drive
n% + niz + -+ nik times, because this is the amount of resource that this person
effectively uses. Of course this number may not be an integer, so let’s round it up to
an integer. The fairness criterion is simply that she should drive no more than this
many times.

For example, say that on day 1, Alice and Bob carpool together, and on day 2, Alice,
Carl, and Dilbert carpool together. Alice’s fair cost would be [1/2+41/3] = 1. So
Alice driving both days would not be fair. Any solution except that one is fair.

(a) Prove that there always exists a fair solution.

(b) Give a polynomial-time algorithm for computing a fair solution from the sets S;.

Hint: Try to model the problem using network flow in such a way that part (a) falls
out directly from the integrality theorem for network flow, and part (b) just follows
from the fact that we can solve max flow in polynomial time. So, it all boils down to
coming up with the right flow graph to model the problem.

[Graduation] Cranberry-Melon University has n courses.? In order to graduate, a

student must satisfy several requirements. Each requirement is of the form “you must
take at least k; courses from subset S;”. The problem is to determine whether or not
a given student can graduate. The tricky part is that any given course cannot be used
towards satisfying multiple requirements. For example if one requirement states that
you must take at least two courses from {A, B, C}, and a second requirement states

! Any relation to actual companies or bands of this name is purely coincidental.
2 Any relation to actual universities of similar name is purely coincidental. OK, that’s a lie - it’s not.



(30 pts) 3.

that you must take at least two courses from {C, D, E'}, then a student who had taken
just {B,C, D} would not yet be able to graduate.

Your job is to give a polynomial-time algorithm for the following problem. Given a
list of requirements rq, 79, ..., r, (where each requirement r; is of the form: “you must
take at least k; courses from set S;”), and given a list L of courses taken by some
student, determine if that student can graduate. In particular, show how you can solve
this using network flow.

[Realizing degree sequences| You are the chief engineer for Graphs-R-Us, a company
that makes graphs to meet all sorts of specifications.

(a) A client comes in and says he needs a 4-node directed graph in which the nodes
have the following in-degrees and out-degrees:

dl,in = 07 d2,in = 17 d3,in = 27 d4,in =3
dl,out = 27 d2,out = 27 d3,0ut = 17 d4,out =1

Is there a directed graph, with no multi-edges or self loops, that meets this spec-
ification? If so, what is it?

(b) What about a 3-node graph (again with no multi-edges or self loops) with these
in-degrees and out-degrees?

dl,in = 27 d2,in = 27 d3,in =1
dl,out = 27 d2,out = 27 d3,out =1

(c) This type of specification, in which the in-degrees and out-degrees of each node are

given, is called a degree sequence. The question above is asking whether a given
degree sequence is realizable — that is, whether there exists a directed graph
having those degrees.
Find an efficient algorithm that, given a degree sequence, will determine whether
this sequence is realizable, and if so will produce a directed graph with those
degrees. The graph should not have any self-loops, and should not have any
multi-edges (i.e., for each directed pair (i, j) there can be at most one edge from i
to 7, though it is fine if there is also an edge from j to ¢). Hint: as if you couldn’t
have guessed - think network flow!

(5 pts) 4. [Elevators and Stairs] In preparation for the discussion in one of the upcoming classes,

identify a place in your daily or weekly routine where you could reasonably choose to
take the elevator or the stairs. Time the following three quantities:

(a) How long does it take if you choose to take the stairs?

(b) How long does it take, from the time the elevator arrives, if you choose to take
the elevator? (If you want, try 3 times and take the average).

(¢) How long do you typically have to wait for the elevator to arrive? (If you want,
try 3 times and take the average).

Note: if you don’t want to try 3 times and take the average, you can just do it once.
Actually, we’re not going to check up on you, so if you don’t do it at all and just write
in plausible numbers above you will still get full credit, but where’s the fun in that?



