
Lecture 8

Balanced search trees

8.1 Overview

In this lecture we discuss search trees as a method for storing data in a way that supports fast
insert, lookup, and delete operations. (Data structures handling these operations are often called
dictionary data structures.) The key issue with search trees is that you want them to be balanced
so that lookups can be performed quickly, and yet you don’t want to require them to be perfect
because that would be too expensive to maintain when a new element is inserted or deleted. In
this lecture, we discuss B-trees and treaps, which are two methods that handle this tradeoff so that
all desired operations can be performed in time O(log n).

Topics covered in this lecture:

• Simple binary search trees: like an on-the-fly version of quicksort.

• B-trees: a form of balanced search tree that uses flexibility in its node degrees to efficiently
keep the tree balanced.

• Treaps: like an on-the-fly version of randomized quicksort, that uses randomization to keep
the tree balanced with high probability.

• Tree-rotations: an important concept when talking about binary search trees, that is used
inside many binary search tree data structures (including treaps).

8.2 Introduction

For the next few lectures we will be looking at several important data-structures. A data-structure
is a method for storing data so that operations you care about can be performed quickly. Data
structures are typically used as part of some larger algorithm or system, and good data structures
are often crucial when especially fast performance is needed.

We will be focusing in particular on dictionary data structures, which support insert and lookup

operations (and usually delete as well). Specificially,

Definition 8.1 A dictionary data structure is a data structure supporting the following oper-
ations:

41



8.3. SIMPLE BINARY SEARCH TREES 42

• insert(key, object): insert the (key, object) pair. For instance, this could be a word and its
definition, a name and phone number, etc. The key is what will be used to access the object.

• lookup(key): return the associated object.

• delete(key): remove the key and its object from the data structure. We may or may not
care about this operation.

For example, perhaps we are the phone company and we have a database of people and their phone
numbers (plus addresses, billing information and so on). As new people come in, we’d like to be
able to insert them into our database. Given a name, we’d like to be able to quickly find their
associated information.

One option is we could use a sorted array. Then, a lookup takes O(log n) time using binary search.
However, an insert may take Ω(n) time in the worst case because we have to shift everything to
the right in order to make room for the new key. Another option might be an unsorted list. In that
case, inserting can be done in O(1) time, but a lookup may take time Ω(n). In the last lecture we
saw a data structure that consisted of an unsorted set of sorted arrays, where insert took O(log n)
amortized time and lookup took time O(log2 n). Today we will look at search tree methods that
allow us to perform both operation in time O(log n).

A binary search tree is a binary tree in which each node stores a (key, object) pair such that all
descendants to the left have smaller keys and all descendants to the right have larger keys (let’s
not worry about the case of multiple equal keys). To do a lookup operation you simply walk down
from the root, going left or right depending on whether the query is smaller or larger than the key
in the current node, until you get to the correct key or walk off the tree. We will also talk about
non-binary search trees that potentially have more than one key in each node, and nodes may have
more than two children.

For the rest of this discussion, we will ignore the “object” part of things. We will just worry about
the keys since that is all that matters as far as understanding the data structures is concerned.

8.3 Simple binary search trees

The simplest way to maintain a binary search tree is to implement the insert operations as follows.

insert(x): If the tree is empty then put x in the root. Otherwise, compare it to the root: if x is
smaller then recursively insert on the left; otherwise recursively insert on the right.

Equivalently: walk down the tree as if doing a lookup, and then insert x into a new leaf at the end.

Example: build a tree by inserting the sequence: C A R N E G I E’ (where E’ > E).

Plusses and minuses: On the positive side, this is very easy to implement (though deletes are
slightly painful — think about how you might handle them). On the negative side, this has very
bad worst-case behavior. In fact, it behaves exactly like quicksort using the leftmost element as
the pivot, and the search tree is the same as the quicksort recursion tree. In particular, if elements
are in sorted order, this will produce a very unbalanced tree where all operations take time Ω(n).

Today we will examine two ways to fix this problem, B-trees and treaps. B-trees are a particularly
nice method used in database applications, and treaps are a lot like randomized quicksort, but
trickier since the keys are coming in one at a time.
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An important idea: the problem with the basic binary search tree was that we were not main-
taining balance. On the other hand, if we try to maintain a perfectly balanced tree, we will spend
too much time rearranging things. So, we want to be balanced but also give ourselves some slack.
It’s a bit like how in the median-finding algorithm, we gave ourselves slack by allowing the pivot
to be “near” the middle. For B-trees, we will make the tree perfectly balanced, but give ourselves
slack by allowing some nodes to have more children than others.

8.4 B-trees and 2-3-4 trees

A B-tree is a search tree where for some pre-specified t ≥ 2 (think of t = 2 or t = 3):

• Each node has between t− 1 and 2t − 1 keys in it (except the root has between 1 and 2t − 1
keys). Keys in a node are stored in a sorted array.

• Each non-leaf has degree (number of children) equal to the number of keys in it plus 1. So,
node degrees are in the range [t, 2t] except the root has degree in the range [2, 2t]. The
semantics are that the ith child has items between the (i−1)st and ith keys. E.g., if the keys
are [a1, a2, . . . , a10] then there is one child for keys less than a1, one child for keys between
a1 and a2, and so on, until the rightmost child has keys greater than a10.

• All leaves are at the same depth.

The idea is that by using flexibility in the sizes and degrees of nodes, we will be able to keep trees
perfectly balanced (in the sense of all leaves being at the same level) while still being able to do
inserts cheaply. Note that the case of t = 2 is called a 2-3-4 tree since degrees are 2, 3, or 4.

Example: here is a tree for t = 3 (so, non-leaves have between 3 and 6 children—though the
root can have fewer—and the maximum size of any node is 5).

K  L N  O T  Y  Z

H   M   R

A  B  C  D

Now, the rules for lookup and insert turn out to be pretty easy:

Lookup: Just do binary search in the array at the root. This will either return the item you are
looking for (in which case you are done) or a pointer to the appropriate child, in which case
you recurse on that child.

Insert: To insert, walk down the tree as if you are doing a lookup, but if you ever encounter a full
node (a node with the maximum 2t−1 keys in it), perform a split operation on it (described
below) before continuing.

Finally, insert the new key into the leaf reached.

Split: To split a node, pull the median of its keys up to its parent and then split the remaining
2t− 2 keys into two nodes of t− 1 keys each (one with the elements less than the median and
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one with the elements greater than the median). Then connect these nodes to their parent
in the appropriate way (one as the child to the left of the median and one as the child to
its right). If the node being split is the root, then create a fresh new root node to put the
median in.

Let’s consider the example above. If we insert an “E” then that will go into the leftmost leaf,
making it full. If we now insert an “F”, then in the process of walking down the tree we will split
the full node, bringing the “C” up to the root. So, after inserting the “F” we will now have:

C  H  M  R

A  B     D E F K  L N  O T  Y  Z

Question: We know that performing a split maintains the requirement of at least t − 1 keys per
non-root node (because we split at the median) but is it possible for a split to make the parent
over-full?

Answer: No, since if the parent was full we would have already split it on the way down.

Let’s now continue the above example, inserting “S”, “U”, and “V” (which causes a split):

C  H  M  R  U

A  B     D E F K  L N  O S  T    V  Y  Z

Now, suppose we insert “P”. Doing this will bring “M” up to a new root, and then we finally insert
“P” in the appropriate leaf node:

C  H        R  U

A  B     D E F K  L S  T    V  Y  ZN O P

M

Question: is the tree always height-balanced (all leaves at the same depth)?

Answer: yes, since we only grow the tree up.

So, we have maintained our desired properties. What about running time? To perform a lookup,
we perform binary search in each node we pass through, so the total time for a lookup is O(depth×
log t). What is the depth of the tree? Since at each level we have a branching factor of at least t
(except possibly at the root), the depth is O(logt n). Combining these together, we see that the
“t” cancels out in the expression for lookup time:
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Time for lookup = O(logt n × log t) = O(log n).

Inserts are similar to lookups except for two issues. First, we may need to split nodes on the way
down, and secondly we need to insert the element into the leaf. So, we have:

Time for insert = lookup-time + splitting-time + time-to-insert-into-leaf.

The time to insert into a leaf is O(t). The splitting time is O(t) per split, which could happen at
each step on the way down. So, if t is a constant, then we still get total time O(log n).

What if we don’t want to think of t as a constant, though. The interesting thing is that even if t
is large, amortized analysis comes to our rescue. In particular, if we create a tree from n inserts,
we can have made at most O(n/t) splits total in the process. Why? Because each split creates a
new node, and there are O(n/t) nodes total. So the total time spent on splits over all n inserts is
O(n), which means that we are only spending O(1) time on average on splits per insert. So, the
amortized time per insert is:

O(log n) + O(1) + O(t) = O(log n + t).

More facts about B-trees:

• B-trees are used a lot in databases applications because they fit in nicely with the memory
heirarchy when you use a large value of t. For instance, if you have 1 billion items and use
t = 1, 000, then you can probably keep the top two levels in fast memory and only make one
disk access at the bottom level. The savings in disk accesses more than makes up for the
additive O(t) cost for the insert.

• If you use t = 2, you have what is known as a 2-3-4 tree. What is special about 2-3-4 trees
is that they can be implemented efficiently as binary trees using an idea called “red-black-
trees”. We will not discuss these in detail, but they use the same notion of tree rotation as
treaps (which are discussed below).

8.5 Treaps

Going back to binary search trees, we saw how a standard binary search tree is like quicksort using
the leftmost element as a pivot, with all of its worst-case problems. A natural question is: can we
come up with a method that is instead like randomized quicksort? The problem is that we don’t
have all the elements at the start, so it’s not so obvious (we can’t just say “let the root be some
element we are going to see in the future”). However, it turns out we can come up with an analog
to randomized quicksort, and the data structure based on this is called a “treap”.

The idea for a treap is that when an element x is inserted, we also give it a random priority value.
Think of the priorities as giving the order in which they are supposed to be chosen as pivots. (Also,
think of priorities as real numbers so we don’t get any ties). In particular, the property we will
require is that if v is a child of u, then priority(v) > priority(u). For example:
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N:5

C:10

A:12

R:7

So, the keys are search-tree ordered and the priorities are heap ordered, which is why this is called
a treap!

Question: Why must such a thing even exist? Given a set of (key, priority) pairs, how do we
know it is even possible to design a tree so that the keys are in search-tree order and the priorities
are in heap order? Answer: just sort by priority and run the standard BST insertion algorithm.
Moreover, notice that if we choose priorities at random, the tree is exactly the same as the recursion
tree of a randomized quicksort that chooses the pivots in the same random order as the priorities.

The big question now is: how can we perform inserts to maintain the treap property? It turns out
it is not too difficult. To insert a new element into a treap, just do the usual binary search tree
insert (walking down and inserting at a leaf) and then rotate the new item up the tree so long as
its parent has a larger priority value. A tree rotation is the following operation (which can be done
in either direction) that maintains search tree order:

x y

/ \ / \

T1 y <------> x T3

/ \ / \

T2 T3 T1 T2

Here, T1, T2, T3 represent subtrees. This rotation is legal (maintains search tree order) because
both trees correspond to the statement T1 < x < T2 < y < T3. In the above picture, in the left-to-
right direction, we will call this “rotating y above x” (or “rotating x above y” in the right-to-left
direction).

Let’s do an example of inserting into a treap. Suppose we are inserting the letters C A R N E G

I É, and so far we have the tree with 4 letters above. If we now insert E with priority 15 (so no
rotations) and then G with priority 8, we would do:

N:5

C:10

A:12

R:7

G:8

E:15

N:5

C:10

A:12

R:7

N:5

R:7

G:8

A:12E:15

C:10

G:8

E:15

We now need to prove this maintains the treap property. First, the search-tree property on keys
is maintained since that is not affected by rotations. We can analyze the heap property as follows.
Initially, all descendant relations are satisfied (if y is descendant of x then priority(y) > priority(x))
except for case that y is the new node. Now, suppose the new node y does violate the heap property.
Then it must do so with its parent x, and we will do a rotation. Without loss of generality, assume
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it is left-to-right in the generic picture above. Notice now that the only new descendant relation we
add is that x and T1 become descendants of y. But since priority(x) > priority(y), and priority(T1)
> priority(x) by assumption, these are all satisfied. So, we maintain our invariant. Finally when
new node y has priority greater than its parent, all descendant relations are satisfied and we are
done.

So, insert can be done in time proportional to the search time, since at worst the number of
rotations equals the number of steps on the way down. (One can actually furthermore show that
the expected number of rotations per insert is O(1).)

Depth analysis. Inserts and searches both take time proportional to the depth of the tree, so
all that remains is to analyze depth. When we analyzed randomized quicksort, we showed that
in expectation, the total number of comparisons is O(n log n). This means that in expectation,
the sum of all node depths is O(n log n), or equivalently, in expectation, the average node depth is
O(log n). However, we can actually show something a lot stronger: in fact, with high probability,
the maximum node depth is O(log n). (This also implies that the quicksort O(n log n) bound holds
with high probability.) Here is a sketch of one way to prove it:

Proof: let’s go back to our “dart-throwing” argument for quicksort. Let’s line up the elements in
sorted order, and pick one element X that we care about. We can think about the depth of this
node as follows: we throw a dart at random into this sorted list, representing whatever element
is at the root of the tree, and whereever it lands, it cuts the list and the part that X is not on
disappears. We do this again, representing the next node on the path to X, and keep going until
only X is left. Now, if you think about it, whether the dart lands to the left or right of X, it has
a 50% chance of deleting at least half of that side of the list. This can happen at most lg n times
to the left of X, and at most lg n times to the right.

So, we can think of it like this: each dart/pivot is like a coin toss with a 50% chance of heads. Each
heads cuts off at least half of that side of the list. We have to stop sometime before getting 2 lg n
heads. There’s a nice bound called “Hoeffding’s inequality” that says that if you flip a coin t times,
the chance of getting less than t/4 heads is at most e−t/8. So, if we flip 8 lg n times, the chance of
getting at most 2 lg n heads is at most e− lg n = e−(ln n)/(ln 2) = 1/n1.44. Even if you multiply this
by n to account for the fact that we want this to be true for every node X, you still get that it’s
unlikely any element has depth more than 8 lg n.1

1Hoeffding bounds also say that the chance you get fewer than t/8 heads in t flips is at most e−9t/32. So in 16 lg n
flips, the chance of failure is at most n−6.49. This means the chance that any X has depth greater than 16 lg n is at

most 1/n5.49 .


