CMU 15-451 lecture 12/08/11

An Algorithms-based Intro to Machine Learning

Avrim Blum

[Based on a talk given at the National Academy of Sciences "Frontiers of Science" symposium]

Plan for today

- Machine Learning intro: models and basic issues
- An interesting algorithm for "combining expert advice"

Machine learning can be used to ...

- recognize speech,
- identify patterns in data,
- steer a car,
- play games,
- adapt programs to users,
- improve web search, ...

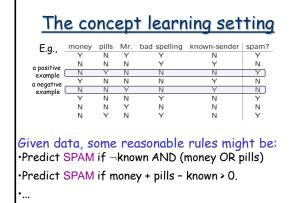
From a scientific perspective: can we develop models to understand learning as a computational problem, and what types of guarantees might we hope to achieve?

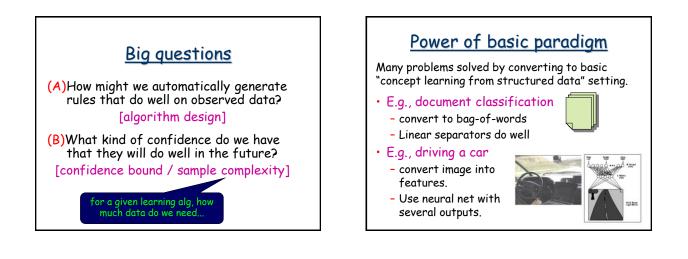
A typical setting

- Imagine you want a computer program to help filter which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample 5 of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

The concept learning setting

E.g., money pills Mr. bad spelling known-sender spam?

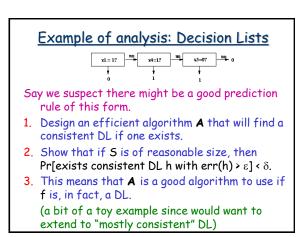


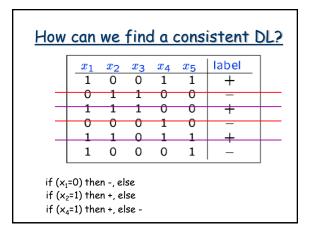


Natural formalization (PAC) Email msg Spam or not? • We are given sample S = {(x,y)}.

- View labels y as being produced by some target function f.
- Alg does optimization over S to produce some hypothesis (prediction rule) h.
- Assume S is a random sample from some probability distribution D. Goal is for h to do well on new examples also from D.

I.e., $\Pr_{D}[h(x)\neq f(x)] < \varepsilon$.





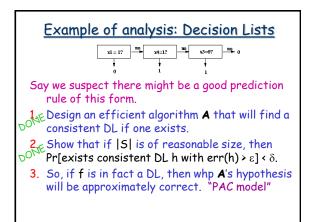
Decision List algorithm
Start with empty list.Find if-then rule consistent with data.
 (and satisfied by at least one example) Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.
If this fails, then: •No rule consistent with remaining data. •So no DL consistent with remaining data. •So, no DL consistent with original data. OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>ε, that we're worried might fool us.
- Chance that h survives |S| examples is at most $(1-\epsilon)^{|S|}$.
- Let |H| = number of DLs over n Boolean features. |H| < (4n+2)!. (really crude bound)

So, Pr[some DL h with err(h)> ϵ is consistent] $\langle |H|(1-\epsilon)^{|S|}$.

 This is <0.01 for |S| > (1/ε)[ln(|H|) + ln(100)] or about (1/ε)[n ln n + ln(100)]



Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.
- All we said was: "if there are not too many rules to choose from, then it's unlikely one will have fooled us just by chance."
- And in particular, the number of examples needs to only be proportional to log(|H|).
 (big difference between 100 and e¹⁰⁰.)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?

Occam's razor (contd)

A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- At most 2^s explanations can be < s bits long.
- So, if the number of examples satisfies:

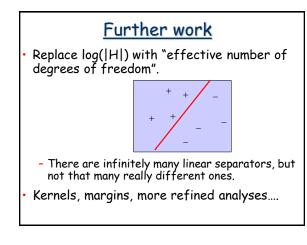
Think of as $m > (1/\epsilon)[s \ln(2) + \ln(100)]$

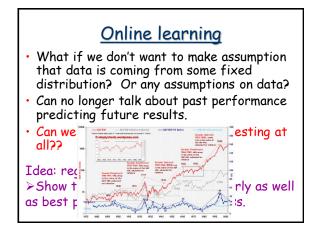
Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)²

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.





Using "expert" advice Say we want to predict the stock market. • We solicit n "experts" for their advice. (Will the market go up or down?) • We then want to use their advice somehow to make our prediction. E.g., Expt 1 Expt 2 Expt 3 neighbor's dog truth down up up up up up

down	up	up	down	down
40.00	ap	чp	ap	up

Basic question: Is there a strategy that allows us to do nearly as well as best of these in hindsight?

["expert" = someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- We have n "experts".
- One of these is perfect (never makes a mistake).
 We just don't know which one.
- Can we find a strategy that makes no more than lg(n) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

- > Each mistake cuts # available by factor of 2.
- >Note: this means ok for n to be very large.

What if no expert is perfect?

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

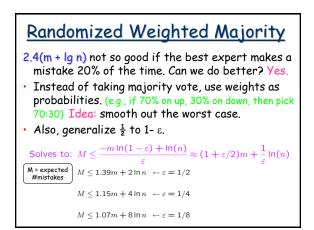
					prediction	COLLEC
weights	1	1	1	1		
predictions	Y	Y	Y	Ν	Y	Y
weights	1	1	1	.5		
predictions	Y	Ν	Ν	Y	N	Y
weights	1	.5	.5	.5		

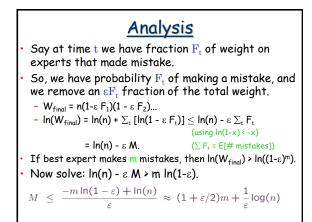
<u>Analysis: do nearly as well as best</u> <u>expert in hindsight</u>

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

$$\begin{array}{rcl} (1/2)^m &\leq & n(3/4)^M \\ (4/3)^M &\leq & n2^m \\ M &\leq & 2.4(m+\lg n) \end{array}$$

So, if m is small, then M is pretty small too.





What can we use this for?

Can use for repeated play of matrix game:
 Consider a matrix where all entries 0 or -1.

- Rows are different experts. Start at each with
- weight 1.
 Pick row with prob. proportional to weight and update as in RWM.
- Analysis shows do nearly as well as best row in hindsight!
- In fact, analysis applies for entries in [-1,0], not just {-1,0}.
- In fact, gives a proof of the minimax theorem...

Nice proof of minimax thm (sketch) Suppose for contradiction it was false. This means some game G has V_C > V_R:

- If Column player commits first, there exists a row that gets the Row player at least V_c .
- But if Row player has to commit first, the Column player can make him get only $V_{\rm R}.$

_ V_

 V_R

 Scale matrix so payoffs to row are in [-1,0]. Say V_R = V_C - δ.

Proof sketch, contd

- Now, consider randomized weighted-majority alg, against Col who plays optimally against Row's distrib.
- In T steps,
 - Alg gets $\geq (1-\epsilon/2)$ [best row in hindsight] log(n)/ ϵ
- $\text{BRiH} \geq T \cdot V_{\text{C}}$ [Best against opponent's empirical distribution]
- Alg $\leq T \cdot V_{\text{R}}~~[\text{Each time, opponent knows your randomized strategy}]$
- Gap is $\delta T.$ Contradicts assumption if use $\epsilon\text{=}\delta,$ once T > 2log(n)/ $\epsilon^2.$

Other models

Some scenarios allow more options for algorithm.

- "Active learning": have large unlabeled sample and alg may choose among these.
 E.g., web pages, image databases.
- Or, allow algorithm to construct its own examples. "Membership queries"
 - E.g., features represent variable-settings in some experiment, label represents outcome.
 - Gives algorithm more power.

Other models

• A lot of ongoing research into better algorithms, models that capture additional issues, incorporating Machine Learning into broader classes of applications.

Additional notes

- Some courses at CMU on machine learning: - 10-601 Machine Learning
- 15-859(B) Machine Learning Theory. See http://www.machinelearning.com.
- Any 10-xxx course...

And finally...

- Final exam is Thurs 1pm DH 2210. 1 sheet of notes allowed.
- Review session next Wed 1-3pm in Wean 7500.
- Good luck everyone!