
15-451 Algorithms

Lectures 12-14

Author: Avrim Blum

Instructors: Avrim Blum

Manuel Blum

Department of Computer Science

Carnegie Mellon University

September 28, 2011

Contents

12 Dynamic Programming 59

12.1 Overview . 59

12.2 Introduction . 59

12.3 Example 1: Longest Common Subsequence . 60

12.4 More on the basic idea, and Example 1 revisited . 61

12.5 Example #2: The Knapsack Problem . 62

12.6 Example #3: Matrix product parenthesization . 63

12.7 High-level discussion of Dynamic Programming . 65

13 Graph Algorithms I 66

13.1 Overview . 66

13.2 Introduction . 66

13.3 Topological sorting and Depth-first Search . 67

13.4 Shortest Paths . 68

13.4.1 The Bellman-Ford Algorithm . 69

13.5 All-pairs Shortest Paths . 70

13.5.1 All-pairs Shortest Paths via Matrix Products 70

13.5.2 All-pairs shortest paths via Floyd-Warshall 70

14 Graph Algorithms II 72

14.1 Overview . 72

14.2 Shortest paths revisited: Dijkstra’s algorithm . 72

14.3 Maximum-bottleneck path . 74

14.4 Minimum Spanning Trees . 74

14.4.1 Prim’s algorithm . 75

14.4.2 Kruskal’s algorithm . 76

i

Lecture 12

Dynamic Programming

12.1 Overview

Dynamic Programming is a powerful technique that allows one to solve many different types of
problems in time O(n2) or O(n3) for which a naive approach would take exponential time. In this
lecture, we discuss this technique, and present a few key examples. Topics in this lecture include:

• The basic idea of Dynamic Programming.

• Example: Longest Common Subsequence.

• Example: Knapsack.

• Example: Matrix-chain multiplication.

12.2 Introduction

Dynamic Programming is a powerful technique that can be used to solve many problems in time
O(n2) or O(n3) for which a naive approach would take exponential time. (Usually to get running
time below that—if it is possible—one would need to add other ideas as well.) Dynamic Pro-
gramming is a general approach to solving problems, much like “divide-and-conquer” is a general
method, except that unlike divide-and-conquer, the subproblems will typically overlap. This lecture
we will present two ways of thinking about Dynamic Programming as well as a few examples.

There are several ways of thinking about the basic idea.

Basic Idea (version 1): What we want to do is take our problem and somehow break it down into
a reasonable number of subproblems (where “reasonable” might be something like n2) in such a way
that we can use optimal solutions to the smaller subproblems to give us optimal solutions to the
larger ones. Unlike divide-and-conquer (as in mergesort or quicksort) it is OK if our subproblems
overlap, so long as there are not too many of them.

59

12.3. EXAMPLE 1: LONGEST COMMON SUBSEQUENCE 60

12.3 Example 1: Longest Common Subsequence

Definition 12.1 The Longest Common Subsequence (LCS) problem is as follows. We are
given two strings: string S of length n, and string T of length m. Our goal is to produce their
longest common subsequence: the longest sequence of characters that appear left-to-right (but not
necessarily in a contiguous block) in both strings.

For example, consider:

S = ABAZDC

T = BACBAD

In this case, the LCS has length 4 and is the string ABAD. Another way to look at it is we are finding
a 1-1 matching between some of the letters in S and some of the letters in T such that none of the
edges in the matching cross each other.

For instance, this type of problem comes up all the time in genomics: given two DNA fragments,
the LCS gives information about what they have in common and the best way to line them up.

Let’s now solve the LCS problem using Dynamic Programming. As subproblems we will look at
the LCS of a prefix of S and a prefix of T , running over all pairs of prefixes. For simplicity, let’s
worry first about finding the length of the LCS and then we can modify the algorithm to produce
the actual sequence itself.

So, here is the question: say LCS[i,j] is the length of the LCS of S[1..i] with T[1..j]. How
can we solve for LCS[i,j] in terms of the LCS’s of the smaller problems?

Case 1: what if S[i] 6= T [j]? Then, the desired subsequence has to ignore one of S[i] or T [j] so
we have:

LCS[i, j] = max(LCS[i− 1, j], LCS[i, j− 1]).

Case 2: what if S[i] = T [j]? Then the LCS of S[1..i] and T [1..j] might as well match them up.
For instance, if I gave you a common subsequence that matched S[i] to an earlier location in
T , for instance, you could always match it to T [j] instead. So, in this case we have:

LCS[i, j] = 1 + LCS[i− 1, j− 1].

So, we can just do two loops (over values of i and j) , filling in the LCS using these rules. Here’s
what it looks like pictorially for the example above, with S along the leftmost column and T along
the top row.

B A C B A D

A 0 1 1 1 1 1

B 1 1 1 2 2 2

A 1 2 2 2 3 3

Z 1 2 2 2 3 3

D 1 2 2 2 3 4

C 1 2 3 3 3 4

We just fill out this matrix row by row, doing constant amount of work per entry, so this takes
O(mn) time overall. The final answer (the length of the LCS of S and T) is in the lower-right
corner.

12.4. MORE ON THE BASIC IDEA, AND EXAMPLE 1 REVISITED 61

How can we now find the sequence? To find the sequence, we just walk backwards through
matrix starting the lower-right corner. If either the cell directly above or directly to the right
contains a value equal to the value in the current cell, then move to that cell (if both to, then chose
either one). If both such cells have values strictly less than the value in the current cell, then move
diagonally up-left (this corresponts to applying Case 2), and output the associated character. This
will output the characters in the LCS in reverse order. For instance, running on the matrix above,
this outputs DABA.

12.4 More on the basic idea, and Example 1 revisited

We have been looking at what is called “bottom-up Dynamic Programming”. Here is another way
of thinking about Dynamic Programming, that also leads to basically the same algorithm, but
viewed from the other direction. Sometimes this is called “top-down Dynamic Programming”.

Basic Idea (version 2): Suppose you have a recursive algorithm for some problem that gives you
a really bad recurrence like T (n) = 2T (n−1)+n. However, suppose that many of the subproblems
you reach as you go down the recursion tree are the same. Then you can hope to get a big savings
if you store your computations so that you only compute each different subproblem once. You can
store these solutions in an array or hash table. This view of Dynamic Programming is often called
memoizing.

For example, for the LCS problem, using our analysis we had at the beginning we might have
produced the following exponential-time recursive program (arrays start at 1):

LCS(S,n,T,m)

{

if (n==0 || m==0) return 0;

if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1); // no harm in matching up

else result = max(LCS(S,n-1,T,m), LCS(S,n,T,m-1));

return result;

}

This algorithm runs in exponential time. In fact, if S and T use completely disjoint sets of characters
(so that we never have S[n]==T[m]) then the number of times that LCS(S,1,T,1) is recursively
called equals

(n+m−2
m−1

)

.1 In the memoized version, we store results in a matrix so that any given
set of arguments to LCS only produces new work (new recursive calls) once. The memoized version
begins by initializing arr[i][j] to unknown for all i,j, and then proceeds as follows:

LCS(S,n,T,m)

{

if (n==0 || m==0) return 0;

if (arr[n][m] != unknown) return arr[n][m]; // <- added this line (*)

if (S[n] == T[m]) result = 1 + LCS(S,n-1,T,m-1);

else result = max(LCS(S,n-1,T,m), LCS(S,n,T,m-1));

arr[n][m] = result; // <- and this line (**)

1This is the number of different “monotone walks” between the upper-left and lower-right corners of an n by m

grid.

12.5. EXAMPLE #2: THE KNAPSACK PROBLEM 62

return result;

}

All we have done is saved our work in line (**) and made sure that we only embark on new recursive
calls if we haven’t already computed the answer in line (*).

In this memoized version, our running time is now just O(mn). One easy way to see this is as
follows. First, notice that we reach line (**) at most mn times (at most once for any given value
of the parameters). This means we make at most 2mn recursive calls total (at most two calls for
each time we reach that line). Any given call of LCS involves only O(1) work (performing some
equality checks and taking a max or adding 1), so overall the total running time is O(mn).

Comparing bottom-up and top-down dynamic programming, both do almost the same work. The
top-down (memoized) version pays a penalty in recursion overhead, but can potentially be faster
than the bottom-up version in situations where some of the subproblems never get examined at
all. These differences, however, are minor: you should use whichever version is easiest and most
intuitive for you for the given problem at hand.

More about LCS: Discussion and Extensions. An equivalent problem to LCS is the “mini-
mum edit distance” problem, where the legal operations are insert and delete. (E.g., the unix “diff”
command, where S and T are files, and the elements of S and T are lines of text). The minimum
edit distance to transform S into T is achieved by doing |S|−LCS(S, T) deletes and |T |−LCS(S, T)
inserts.

In computational biology applications, often one has a more general notion of sequence alignment.
Many of these different problems all allow for basically the same kind of Dynamic Programming
solution.

12.5 Example #2: The Knapsack Problem

Imagine you have a homework assignment with different parts labeled A through G. Each part has
a “value” (in points) and a “size” (time in hours to complete). For example, say the values and
times for our assignment are:

A B C D E F G

value 7 9 5 12 14 6 12
time 3 4 2 6 7 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that was
proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5 points)
then the best approach is to work on problems in order of points/hour (a greedy strategy). But,
what if there is no partial credit? In that case, which parts should you do, and what is the best
total value possible?2

The above is an instance of the knapsack problem, formally defined as follows:

2Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!

12.6. EXAMPLE #3: MATRIX PRODUCT PARENTHESIZATION 63

Definition 12.2 In the knapsack problem we are given a set of n items, where each item i is
specified by a size si and a value vi. We are also given a size bound S (the size of our knapsack).
The goal is to find the subset of items of maximum total value such that sum of their sizes is at
most S (they all fit into the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O(nS).

Let’s do this top down by starting with a simple recursive solution and then trying to memoize
it. Let’s start by just computing the best possible total value, and we afterwards can see how to
actually extract the items needed.

// Recursive algorithm: either we use the last element or we don’t.

Value(n,S) // S = space left, n = # items still to choose from

{

if (n == 0) return 0;

if (s_n > S) result = Value(n-1,S); // can’t use nth item

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

return result;

}

Right now, this takes exponential time. But, notice that there are only O(nS) different pairs of
values the arguments can possibly take on, so this is perfect for memoizing. As with the LCS
problem, let us initialize a 2-d array arr[i][j] to “unknown” for all i,j.

Value(n,S)

{

if (n == 0) return 0;

if (arr[n][S] != unknown) return arr[n][S]; // <- added this

if (s_n > S) result = Value(n-1,S);

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

arr[n][S] = result; // <- and this

return result;

}

Since any given pair of arguments to Value can pass through the array check only once, and in
doing so produces at most two recursive calls, we have at most 2n(S + 1) recursive calls total, and
the total time is O(nS).

So far we have only discussed computing the value of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards: if
arr[n][S] = arr[n-1][S] then we didn’t use the nth item so we just recursively work backwards
from arr[n-1][S]. Otherwise, we did use that item, so we just output the nth item and recursively
work backwards from arr[n-1][S-s n]. One can also do bottom-up Dynamic Programming.

12.6 Example #3: Matrix product parenthesization

Our final example for Dynamic Programming is the matrix product parenthesization problem.

12.6. EXAMPLE #3: MATRIX PRODUCT PARENTHESIZATION 64

Say we want to multiply three matrices X, Y , and Z. We could do it like (XY)Z or like X(Y Z).
Which way we do the multiplication doesn’t affect the final outcome but it can affect the running
time to compute it. For example, say X is 100x20, Y is 20x100, and Z is 100x20. So, the end
result will be a 100x20 matrix. If we multiply using the usual algorithm, then to multiply an ℓxm
matrix by an mxn matrix takes time O(ℓmn). So in this case, which is better, doing (XY)Z or
X(Y Z)?

Answer: X(Y Z) is better because computing Y Z takes 20x100x20 steps, producing a 20x20 matrix,
and then multiplying this by X takes another 20x100x20 steps, for a total of 2x20x100x20. But,
doing it the other way takes 100x20x100 steps to compute XY , and then multplying this with Z
takes another 100x20x100 steps, so overall this way takes 5 times longer. More generally, what if
we want to multiply a series of n matrices?

Definition 12.3 The Matrix Product Parenthesization problem is as follows. Suppose we
need to multiply a series of matrices: A1 × A2 × A3 × . . . × An. Given the dimensions of these
matrices, what is the best way to parenthesize them, assuming for simplicity that standard matrix
multiplication is to be used (e.g., not Strassen)?

There are an exponential number of different possible parenthesizations, in fact
(2(n−1)

n−1

)

/n, so we
don’t want to search through all of them. Dynamic Programming gives us a better way.

As before, let’s first think: how might we do this recursively? One way is that for each possible
split for the final multiplication, recursively solve for the optimal parenthesization of the left and
right sides, and calculate the total cost (the sum of the costs returned by the two recursive calls
plus the ℓmn cost of the final multiplication, where “m” depends on the location of that split).
Then take the overall best top-level split.

For Dynamic Programming, the key question is now: in the above procedure, as you go through the
recursion, what do the subproblems look like and how many are there? Answer: each subproblem
looks like “what is the best way to multiply some sub-interval of the matrices Ai × . . .×Aj?” So,
there are only O(n2) different subproblems.

The second question is now: how long does it take to solve a given subproblem assuming you’ve
already solved all the smaller subproblems (i.e., how much time is spent inside any given recursive
call)? Answer: to figure out how to best multiply Ai× . . .×Aj, we just consider all possible middle
points k and select the one that minimizes:

optimal cost to multiply Ai . . . Ak ← already computed

+ optimal cost to multiply Ak+1 . . . Aj ← already computed

+ cost to multiply the results. ← get this from the dimensions

This just takes O(1) work for any given k, and there are at most n different values k to consider, so
overall we just spend O(n) time per subproblem. So, if we use Dynamic Programming to save our
results in a lookup table, then since there are only O(n2) subproblems we will spend only O(n3)
time overall.

If you want to do this using bottom-up Dynamic Programming, you would first solve for all sub-
problems with j − i = 1, then solve for all with j − i = 2, and so on, storing your results in an n
by n matrix. The main difference between this problem and the two previous ones we have seen is
that any given subproblem takes time O(n) to solve rather than O(1), which is why we get O(n3)

12.7. HIGH-LEVEL DISCUSSION OF DYNAMIC PROGRAMMING 65

total running time. It turns out that by being very clever you can actually reduce this to O(1)
amortized time per subproblem, producing an O(n2)-time algorithm, but we won’t get into that
here.3

12.7 High-level discussion of Dynamic Programming

What kinds of problems can be solved using Dynamic Programming? One property these problems
have is that if the optimal solution involves solving a subproblem, then it uses the optimal solution
to that subproblem. For instance, say we want to find the shortest path from A to B in a graph,
and say this shortest path goes through C. Then it must be using the shortest path from C to B.
Or, in the knapsack example, if the optimal solution does not use item n, then it is the optimal
solution for the problem in which item n does not exist. The other key property is that there
should be only a polynomial number of different subproblems. These two properties together allow
us to build the optimal solution to the final problem from optimal solutions to subproblems.

In the top-down view of dynamic programming, the first property above corresponds to being
able to write down a recursive procedure for the problem we want to solve. The second property
corresponds to making sure that this recursive procedure makes only a polynomial number of
different recursive calls. In particular, one can often notice this second property by examining
the arguments to the recursive procedure: e.g., if there are only two integer arguments that range
between 1 and n, then there can be at most n2 different recursive calls.

Sometimes you need to do a little work on the problem to get the optimal-subproblem-solution
property. For instance, suppose we are trying to find paths between locations in a city, and some
intersections have no-left-turn rules (this is particulatly bad in San Francisco). Then, just because
the fastest way from A to B goes through intersection C, it doesn’t necessarily use the fastest way
to C because you might need to be coming into C in the correct direction. In fact, the right way
to model that problem as a graph is not to have one node per intersection, but rather to have one
node per 〈intersection, direction〉 pair. That way you recover the property you need.

3For details, see Knuth (insert ref).

Lecture 13

Graph Algorithms I

13.1 Overview

This is the first of several lectures on graph algorithms. We will see how simple algorithms like
depth-first-search can be used in clever ways (for a problem known as topological sorting) and will
see how Dynamic Programming can be used to solve problems of finding shortest paths. Topics in
this lecture include:

• Basic notation and terminology for graphs.

• Depth-first-search for Topological Sorting.

• Dynamic-Programming algorithms for shortest path problems: Bellman-Ford (for single-
source) and Floyd-Warshall (for all-pairs).

13.2 Introduction

Many algorithmic problems can be modeled as problems on graphs. Today we will talk about a
few important ones and we will continue talking about graph algorithms for much of the rest of
the course.

As a reminder of basic terminology: a graph is a set of nodes or vertices, with edges between some
of the nodes. We will use V to denote the set of vertices and E to denote the set of edges. If there
is an edge between two vertices, we call them neighbors. The degree of a vertex is the number of
neighbors it has. Unless otherwise specified, we will not allow self-loops or multi-edges (multiple
edges between the same pair of nodes). As is standard with discussing graphs, we will use n = |V |,
and m = |E|, and we will let V = {1, . . . , n}.

The above describes an undirected graph. In a directed graph, each edge now has a direction. For
each node, we can now talk about out-neighbors (and out-degree) and in-neighbors (and in-degree).
In a directed graph you may have both an edge from i to j and an edge from j to i.

To make sure we are all on the same page, what is the maximum number of total edges in an
undirected graph? Answer:

(n
2

)

. What about a directed graph? Answer: n(n− 1).

66

13.3. TOPOLOGICAL SORTING AND DEPTH-FIRST SEARCH 67

There are two standard representations for graphs. The first is an adjacency list, which is an array
of size n where A[i] is the list of out-neighbors of node i. The second is an adjacency matrix, which
is an n by n matrix where A[i, j] = 1 iff there is an edge from i to j. For an undirected graph, the
adjacency matrix will be symmetric. Note that if the graph is reasonably sparse, then an adjacency
list will be more compact than an adjacency matrix, because we are only implicitly representing
the non-edges. In addition, an adjacency list allows us to access all edges out of some node v in
time proportional to the out-degree of v. In general, however, the most convenient representation
for a graph will depend on what we want to do with it.

We will also talk about weighted graphs where edges may have weights or costs on them. The
best notion of an adjacency matrix for such graphs (e.g., should non-edges have weight 0 or weight
infinity) will again depend on what problem we are trying to model.

13.3 Topological sorting and Depth-first Search

A Directed Acyclic Graph (DAG) is a directed graph without any cycles.1 E.g.,

C

A ED

FB

Given a DAG, the topological sorting problem is to find an ordering of the vertices such that all
edges go forward in the ordering. A typical situation where this problem comes up is when you are
given a set of tasks to do with precedence constraints (you need to do A and F before you can do
B, etc.), and you want to find a legal ordering for performing the jobs. We will assume here that
the graph is represented using an adjacency list.

One way to solve the topological sorting problem is to put all the nodes into a priority queue
according to in-degree. You then repeatedly pull out the node of minimum in-degree (which should
be zero — otherwise you output “graph is not acyclic”) and then decrement the keys of each
of its out-neighbors. Using a heap to implement the priority queue, this takes time O(m log n).
However, it turns out there is a better algorithm: a simple but clever O(m + n)-time approach
based on depth-first search.2

To be specific, by a Depth-First Search (DFS) of a graph we mean the following procedure. First,
pick a node and perform a standard depth-first search from there. When that DFS returns, if
the whole graph has not yet been visited, pick the next unvisited node and repeat the process.

1It would perhaps be more proper to call this an acyclic directed graph, but “DAG” is easier to say.

2You can also directly improve the first approach to O(m + n) time by using the fact that the minimum always
occurs at zero (think about how you might use that fact to speed up the algorithm). But we will instead examine
the DFS-based algorithm because it is particularly elegant.

13.4. SHORTEST PATHS 68

Continue until all vertices have been visited. Specifically, as pseudocode, we have:

DFSmain(G):

For v=1 to n: if v is not yet visited, do DFS(v).

DFS(v):

mark v as visited. // entering node v

for each unmarked out-neighbor w of v: do DFS(w).

return. // exiting node v.

DFS takes time O(1 + out-degree(v)) per vertex v, for a total time of O(m + n). Here is now how
we can use this to perform a topological sorting:

1. Do depth-first search of G, outputting the nodes as you exit them.

2. Reverse the order of the list output in Step 1.

Claim 13.1 If there is an edge from u to v, then v is exited first. (This implies that when we
reverse the order, all edges point forward and we have a topological sorting.)

Proof: [In this proof, think of u = B, and v = D in the previous picture.] The claim is easy to
see if our DFS entered node u before ever entering node v, because it will eventually enter v and
then exit v before popping out of the recursion for DFS(u). But, what if we entered v first? In
this case, we would exit v before even entering u since there cannot be a path from v to u (else the
graph wouldn’t be acyclic). So, that’s it.

13.4 Shortest Paths

We are now going to turn to another basic graph problem: finding shortest paths in a weighted
graph, and we will look at several algorithms based on Dynamic Programming. For an edge (i, j)
in our graph, let’s use len(i, j) to denote its length. The basic shortest-path problem is as follows:

Definition 13.1 Given a weighted, directed graph G, a start node s and a destination node t, the
s-t shortest path problem is to output the shortest path from s to t. The single-source shortest
path problem is to find shortest paths from s to every node in G. The (algorithmically equivalent)
single-sink shortest path problem is to find shortest paths from every node in G to t.

We will allow for negative-weight edges (we’ll later see some problems where this comes up when
using shortest-path algorithms as a subroutine) but will assume no negative-weight cycles (else the
shortest path can wrap around such a cycle infinitely often and has length negative infinity). As
a shorthand, if there is an edge of length ℓ from i to j and also an edge of length ℓ from j to i,
we will often just draw them together as a single undirected edge. So, all such edges must have
positive weight.

13.4. SHORTEST PATHS 69

13.4.1 The Bellman-Ford Algorithm

We will now look at a Dynamic Programming algorithm called the Bellman-Ford Algorithm for
the single-sink (or single-source) shortest path problem.3 Let us develop the algorithm using the
following example:

t

15 30

10

3060

40 −40

0

4

21

53

How can we use Dyanamic Programming to find the shortest path from all nodes to t? First of all,
as usual for Dynamic Programming, let’s just compute the lengths of the shortest paths first, and
afterwards we can easily reconstruct the paths themselves. The idea for the algorithm is as follows:

1. For each node v, find the length of the shortest path to t that uses at most 1 edge, or write
down ∞ if there is no such path.

This is easy: if v = t we get 0; if (v, t) ∈ E then we get len(v, t); else just put down ∞.

2. Now, suppose for all v we have solved for length of the shortest path to t that uses i − 1 or
fewer edges. How can we use this to solve for the shortest path that uses i or fewer edges?

Answer: the shortest path from v to t that uses i or fewer edges will first go to some neighbor
x of v, and then take the shortest path from x to t that uses i−1 or fewer edges, which we’ve
already solved for! So, we just need to take the min over all neighbors x of v.

3. How far do we need to go? Answer: at most i = n− 1 edges.

Specifically, here is pseudocode for the algorithm. We will use d[v][i] to denote the length of the
shortest path from v to t that uses i or fewer edges (if it exists) and infinity otherwise (“d” for
“distance”). Also, for convenience we will use a base case of i = 0 rather than i = 1.

Bellman-Ford pseudocode:
initialize d[v][0] = infinity for v != t. d[t][i]=0 for all i.

for i=1 to n-1:

for each v != t:

d[v][i] = min
(v,x)∈E

(len(v,x) + d[x][i-1])

For each v, output d[v][n-1].

Try it on the above graph!

We already argued for correctness of the algorithm. What about running time? The min operation
takes time proportional to the out-degree of v. So, the inner for-loop takes time proportional to
the sum of the out-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

3Bellman is credited for inventing Dynamic Programming, and even if the technique can be said to exist inside
some algorithms before him, he was the first to distill it as an important technique.

13.5. ALL-PAIRS SHORTEST PATHS 70

So far we have only calculated the lengths of the shortest paths; how can we reconstruct the paths
themselves? One easy way is (as usual for DP) to work backwards: if you’re at vertex v at distance
d[v] from t, move to the neighbor x such that d[v] = d[x] + len(v, x). This allows us to reconstruct
the path in time O(m + n) which is just a low-order term in the overall running time.

13.5 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between every pair of vertices. This is
called the all-pairs shortest path problem. If we use Bellman-Ford for all n possible destinations t,
this would take time O(mn2). We will now see two alternative Dynamic-Programming algorithms
for this problem: the first uses the matrix representation of graphs and runs in time O(n3 log n);
the second, called the Floyd-Warshall algorithm uses a different way of breaking into subproblems
and runs in time O(n3).

13.5.1 All-pairs Shortest Paths via Matrix Products

Given a weighted graph G, define the matrix A = A(G) as follows:

• A[i, i] = 0 for all i.

• If there is an edge from i to j, then A[i, j] = len(i, j).

• Otherwise, A[i, j] =∞.

I.e., A[i, j] is the length of the shortest path from i to j using 1 or fewer edges. Now, following the
basic Dynamic Programming idea, can we use this to produce a new matrix B where B[i, j] is the
length of the shortest path from i to j using 2 or fewer edges?

Answer: yes. B[i, j] = mink(A[i, k] + A[k, j]). Think about why this is true!

I.e., what we want to do is compute a matrix product B = A × A except we change “*” to “+”
and we change “+” to “min” in the definition. In other words, instead of computing the sum of
products, we compute the min of sums.

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need
to compute C = B ×B (using our new definition of matrix product). I.e., to get from i to j using
4 or fewer edges, we need to go from i to some intermediate node k using 2 or fewer edges, and
then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring O(log n) times. Each matrix
multiplication takes time O(n3) so the overall running time is O(n3 log n).

13.5.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the O(log n) and runs in time O(n3). The idea is that instead of
increasing the number of edges in the path, we’ll increase the set of vertices we allow as intermediate
nodes in the path. In other words, starting from the same base case (the shortest path that uses no
intermediate nodes), we’ll then go on to considering the shortest path that’s allowed to use node 1
as an intermediate node, the shortest path that’s allowed to use {1, 2} as intermediate nodes, and
so on.

13.5. ALL-PAIRS SHORTEST PATHS 71

// After each iteration of the outside loop, A[i][j] = length of the

// shortest i->j path that’s allowed to use vertices in the set 1..k

for k = 1 to n do:

for each i,j do:

A[i][j] = min(A[i][j], (A[i][k] + A[k][j]);

I.e., you either go through node k or you don’t. The total time for this algorithm is O(n3). What’s
amazing here is how compact and simple the code is!

Lecture 14

Graph Algorithms II

14.1 Overview

In this lecture we begin with one more algorithm for the shortest path problem, Dijkstra’s algorithm.
We then will see how the basic approach of this algorithm can be used to solve other problems
including finding maximum bottleneck paths and the minimum spanning tree (MST) problem. We
will then expand on the minimum spanning tree problem, giving one more algorithm, Kruskal’s
algorithm, which to implement efficiently requires an good data structure for something called the
union-find problem. Topics in this lecture include:

• Dijkstra’s algorithm for shortest paths when no edges have negative weight.

• The Maximum Bottleneck Path problem.

• Minimum Spanning Trees: Prim’s algorithm and Kruskal’s algorithm.

14.2 Shortest paths revisited: Dijkstra’s algorithm

Recall the single-source shortest path problem: given a graph G, and a start node s, we want to
find the shortest path from s to all other nodes in G. These shortest paths can all be described by
a tree called the shortest path tree from start node s.

Definition 14.1 A Shortest Path Tree in G from start node s is a tree (directed outward from
s if G is a directed graph) such that the shortest path in G from s to any destination vertex t is the
path from s to t in the tree.

Why must such a tree exist? The reason is that if the shortest path from s to t goes through some
intermediate vertex v, then it must use a shortest path from s to v. Thus, every vertex t 6= s can
be assigned a “parent”, namely the second-to-last vertex in this path (if there are multiple equally-
short paths, pick one arbitrarily), creating a tree. In fact, the Bellman-Ford Dynamic-Programming
algorithm from the last class was based on this “optimal subproblem” property.

The first algorithm for today, Dijkstra’s algorithm, builds the tree outward from s in a greedy
fashion. Dijkstra’s algorithm is faster than Bellman-Ford. However, it requires that all edge

72

14.2. SHORTEST PATHS REVISITED: DIJKSTRA’S ALGORITHM 73

lengths be non-negative. See if you can figure out where the proof of correctness of this algorithm
requires non-negativity.

We will describe the algorithm the way one views it conceptually, rather than the way one would
code it up (we will discuss that after proving correctness).

Dijkstra’s Algorithm:
Input: Graph G, with each edge e having a length len(e), and a start node s.

Initialize: tree = {s}, no edges. Label s as having distance 0 to itself.

Invariant: nodes in the tree are labeled with the correct distance to s.

Repeat:

1. For each neighbor x of the tree, compute an (over)-estimate of its distance to s:

distance(x) = min
e=(v,x):v∈tree

[distance(v) + len(e)] (14.1)

In other words, by our invariant, this is the length of the shortest path to x whose only
edge not in the tree is the very last edge.

2. Insert the node x of minimum distance into tree, connecting it via the argmin (the edge
e used to get distance(x) in the expression (14.1)).

Let us run the algorithm on the following example starting from vertex A:

5

2

1 1 3

4

8

D

A CB

FE

Theorem 14.1 Dijkstra’s algorithm correctly produces a shortest path tree from start node s.
Specifically, even if some of distances in step 1 are too large, the minimum one is correct.

Proof: Say x is the neighbor of the tree of smallest distance(x). Let P denote the true shortest
path from s to x, choosing the one with the fewest non-tree edges if there are ties. What we need to
argue is that the last edge in P must come directly from the tree. Let’s argue this by contradiction.
Suppose instead the first non-tree vertex in P is some node y 6= x. Then, the length of P must be
at least distance(y), and by definition, distance(x) is smaller (or at least as small if there is a tie).
This contradicts the definition of P .

Did you catch where “non-negativity” came in in the proof? Can you find an example with
negative-weight directed edges where Dijkstra’s algorithm actually fails?

14.3. MAXIMUM-BOTTLENECK PATH 74

Running time: To implement this efficiently, rather than recomputing the distances every time
in step 1, you simply want to update the ones that actually are affected when a new node is added
to the tree in step 2, namely the neighbors of the node added. If you use a heap data structure
to store the neighbors of the tree, you can get a running time of O(m log n). In particular, you
can start by giving all nodes a distance of infinity except for the start with a distance of 0, and
putting all nodes into a min-heap. Then, repeatedly pull off the minimum and update its neighbors,
tentatively assigning parents whenever the distance of some node is lowered. It takes linear time
to initialize the heap, and then we perform m updates at a cost of O(log n) each for a total time
of O(m log n).

If you use something called a “Fibonacci heap” (that we’re not going to talk about) you can actually
get the running time down to O(m+n log n). The key point about the Fibonacci heap is that while
it takes O(log n) time to remove the minimum element just like a standard heap (an operation we
perform n times), it takes only amortized O(1) time to decrease the value of any given key (an
operation we perform m times).

14.3 Maximum-bottleneck path

Here is another problem you can solve with this type of algorithm, called the “maximum bottleneck
path” problem. Imagine the edge weights represent capacities of the edges (“widths” rather than
“lengths”) and you want the path between two nodes whose minimum width is largest. How could
you modify Dijkstra’s algorithm to solve this?

To be clear, define the width of a path to be the minimum width of any edge on the path, and for a
vertex v, define widthto(v) to be the width of the widest path from s to v (say that widthto(s) =∞).
To modify Dijkstra’s algorithm, we just need to change the update rule to:

widthto(x) = max
e=(v,x):v∈tree

[min(widthto(v),width(e))]

and now put the node x of maximum “widthto” into tree, connecting it via the argmax. We’ll
actually use this later in the course.

14.4 Minimum Spanning Trees

A spanning tree of a graph is a tree that touches all the vertices (so, it only makes sense in
a connected graph). A minimum spanning tree (MST) is a spanning tree whose sum of edge
lengths is as short as possible (there may be more than one). We will sometimes call the sum of
edge lengths in a tree the size of the tree. For instance, imagine you are setting up a communication
network among a set of sites and you want to use the least amount of wire possible. Note: our
definition is only for undirected graphs.

14.4. MINIMUM SPANNING TREES 75

What is the MST in the graph below?
5

2

1 1

4

8

6

D

A CB

FE

14.4.1 Prim’s algorithm

Prim’s algorithm is an MST algorithm that works much like Dijkstra’s algorithm does for shortest
path trees. In fact, it’s even simpler (though the correctness proof is a bit trickier).

Prim’s Algorithm:

1. Pick some arbitrary start node s. Initialize tree T = {s}.

2. Repeatedly add the shortest edge incident to T (the shortest edge having one vertex in
T and one vertex not in T) until the tree spans all the nodes.

So the algorithm is the same as Dijsktra’s algorithm, except you don’t add distance(v) to the length
of the edge when deciding which edge to put in next. For instance, what does Prim’s algorithm do
on the above graph?

Before proving correctness for the algorithm, we first need a useful fact about spanning trees: if
you take any spanning tree and add a new edge to it, this creates a cycle. The reason is that there
already was one path between the endpoints (since it’s a spanning tree), and now there are two. If
you then remove any edge in the cycle, you get back a spanning tree (removing one edge from a
cycle cannot disconnect a graph).

Theorem 14.2 Prim’s algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We will prove correctness by induction. Let G be the given graph. Our inductive hypothesis
will be that the tree T constructed so far is consistent with (is a subtree of) some minimum spanning
tree M of G. This is certainly true at the start. Now, let e be the edge chosen by the algorithm.
We need to argue that the new tree, T ∪ {e} is also consistent with some minimum spanning tree
M ′ of G. If e ∈M then we are done (M ′ = M). Else, we argue as follows.

Consider adding e to M . As noted above, this creates a cycle. Since e has one endpoint in T and
one outside T , if we trace around this cycle we must eventually get to an edge e′ that goes back in
to T . We know len(e′) ≥ len(e) by definition of the algorithm. So, if we add e to M and remove e′,
we get a new tree M ′ that is no larger than M was and contains T ∪{e}, maintaining our induction
and proving the theorem.

14.4. MINIMUM SPANNING TREES 76

Running time: We can implement this in the same was as Dijkstra’s algorithm, getting an
O(m log n) running time if we use a standard heap, or O(m + n log n) running time if we use a
Fibonacci heap. The only difference with Dijkstra’s algorithm is that when we store the neighbors
of T in a heap, we use priority values equal to the shortest edge connecting them to T (rather than
the smallest sum of “edge length plus distance of endpoint to s”).

14.4.2 Kruskal’s algorithm

Here is another algorithm for finding minimum spanning trees called Kruskal’s algorithm. It is also
greedy but works in a different way.

Kruskal’s Algorithm:
Sort edges by length and examine them from shortest to longest. Put each edge into the
current forest (a forest is just a set of trees) if it doesn’t form a cycle with the edges chosen
so far.

E.g., let’s look at how it behaves in the graph below:

5

2

1 1

4

8

6

D

A CB

FE

Kruskal’s algorithm sorts the edges and then puts them in one at a time so long as they don’t form
a cycle. So, first the AD and BE edges will be added, then the DE edge, and then the EF edge.
The AB edge will be skipped over because it forms a cycle, and finally the CF edge will be added
(at that point you can either notice that you have included n− 1 edges and therefore are done, or
else keep going, skipping over all the remaining edges one at a time).

Theorem 14.3 Kruskal’s algorithm correctly finds a minimum spanning tree of the given graph.

Proof: We can use a similar argument to the one we used for Prim’s algorithm. Let G be the
given graph, and let F be the forest we have constructed so far (initially, F consists of n trees of
1 node each, and at each step two trees get merged until finally F is just a single tree at the end).
Assume by induction that there exists an MST M of G that is consistent with F , i.e., all edges
in F are also in M ; this is clearly true at the start when F has no edges. Let e be the next edge
added by the algorithm. Our goal is to show that there exists an MST M ′ of G consistent with
F ∪ {e}.

If e ∈M then we are done (M ′ = M). Else add e into M , creating a cycle. Since the two endpoints
of e were in different trees of F , if you follow around the cycle you must eventually traverse some
edge e′ 6= e whose endpoints are also in two different trees of F (because you eventually have to get
back to the node you started from). Now, both e and e′ were eligible to be added into F , which
by definition of our algorithm means that len(e) ≤ len(e′). So, adding e and removing e′ from M
creates a tree M ′ that is also a MST and contains F ∪ {e}, as desired.

14.4. MINIMUM SPANNING TREES 77

Running time: The first step is sorting the edges by length which takes time O(m log m). Then,
for each edge we need to test if it connects two different components. This seems like it should be
a real pain: how can we tell if an edge has both endpoints in the same component? It turns out
there’s a nice data structure called the Union-Find’ data structure for doing this operation. It is
so efficient that it actually will be a low-order cost compared to the sorting step.

We will talk about the union-find problem in the next class, but just as a preview, the simpler
version of that data structure takes time O(m+n log n) for our series of operations. This is already
good enough for us, since it is low-order compared to the sorting time. There is also a more
sophisticated version, however, whose total time is O(m lg∗ n), in fact O(mα(n)), where α(n) is the
inverse-Ackermann function that grows even more slowly than lg∗.

What is lg∗? lg∗(n) is the number of times you need to take log2 until you get down to 1. So,

lg∗(2) = 1

lg∗(22 = 4) = 2

lg∗(24 = 16) = 3

lg∗(216 = 65536) = 4

lg∗(265536) = 5.

I won’t define Ackerman, but to get α(n) up to 5, you need n to be at least a stack of 256 2’s.

