
Lecture 2

Selection (deterministic &
randomized): finding the median in
linear time

2.1 Overview

Given an unsorted array, how quickly can one find the median element? Can one do it more quickly
than by sorting? This was an open question for some time, solved affirmatively in 1972 by (Manuel)
Blum, Floyd, Pratt, Rivest, and Tarjan. In this lecture we describe two linear-time algorithms for
this problem: one randomized and one deterministic. More generally, we solve the problem of
finding the kth smallest out of an unsorted array of n elements.

2.2 The problem and a randomized solution

Consider the problem of finding the kth smallest element in an unsorted array of size n. (Let’s say
all elements are distinct to avoid the question of what we mean by the kth smallest when we have
equalities). One way to solve this problem is to sort and then output the kth element. We can
do this in time O(n log n) if we sort using Mergesort, Quicksort, or Heapsort. Is there something
faster – a linear-time algorithm? The answer is yes. We will explore both a simple randomized
solution and a more complicated deterministic one.

The idea for the randomized algorithm is to start with the Randomized-Quicksort algorithm (choose
a random element as “pivot”, partition the array into two sets LESS and GREATER consisting of
those elements less than and greater than the pivot respectively, and then recursively sort LESS
and GREATER). Then notice that there is a simple speedup we can make if we just need to find
the kth smallest element. In particular, after the partitioning step we can tell which of LESS or
GREATER has the item we are looking for, just by looking at their sizes. So, we only need to
recursively examine one of them, not both. For instance, if we are looking for the 87th-smallest
element in our array, and suppose that after choosing the pivot and partitioning we find that LESS
has 200 elements, then we just need to find the 87th smallest element in LESS. On the other hand,
if we find LESS has 40 elements, then we just need to find the 87− 40− 1 = 46th smallest element
in GREATER. (And if LESS has size exactly 86 then we can just return the pivot). One might
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at first think that allowing the algorithm to only recurse on one subset rather than both would
just cut down time by a factor of 2. However, since this is occuring recursively, it compounds
the savings and we end up with Θ(n) rather than Θ(n log n) time. This algorithm is often called
Randomized-Select, or QuickSelect.

QuickSelect: Given array A of size n and integer k ≤ n,

1. Pick a pivot element p at random from A.

2. Split A into subarrays LESS and GREATER by comparing each element to p as in
Quicksort. While we are at it, count the number L of elements going in to LESS.

3. (a) If L = k − 1, then output p.

(b) If L > k − 1, output QuickSelect(LESS, k).

(c) If L < k − 1, output QuickSelect(GREATER, k − L− 1)

Theorem 2.1 The expected number of comparisons for QuickSelect is O(n).

Before giving a formal proof, let’s first get some intuition. If we split a candy bar at random
into two pieces, then the expected size of the larger piece is 3/4 of the bar. If the size of the
larger subarray after our partition was always 3/4 of the array, then we would have a recurrence
T (n) ≤ (n − 1) + T (3n/4) which solves to T (n) < 4n. Now, this is not quite the case for our
algorithm because 3n/4 is only the expected size of the larger piece. That is, if i is the size of the
larger piece, our expected cost to go is really E[T (i)] rather than T (E[i]). However, because the
answer is linear in n, the average of the T (i)’s turns out to be the same as T (average of the i’s).
Let’s now see this a bit more formally.

Proof (Theorem 2.1): Let T (n, k) denote the expected time to find the kth smallest in an array
of size n, and let T (n) = maxk T (n, k). We will show that T (n) < 4n.

First of all, it takes n−1 comparisons to split into the array into two pieces in Step 2. These pieces
are equally likely to have size 0 and n − 1, or 1 and n − 2, or 2 and n − 3, and so on up to n − 1
and 0. The piece we recurse on will depend on k, but since we are only giving an upper bound, we
can imagine that we always recurse on the larger piece. Therefore we have:

T (n) ≤ (n− 1) +
2

n

n−1∑

i=n/2

T (i)

= (n− 1) + avg [T (n/2), . . . , T (n− 1)] .

We can solve this using the “guess and check” method based on our intuition above. Assume
inductively that T (i) ≤ 4i for i < n. Then,

T (n) ≤ (n− 1) + avg [4(n/2), 4(n/2 + 1), . . . , 4(n − 1)]

≤ (n− 1) + 4(3n/4)

< 4n,

and we have verified our guess.
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2.3 A deterministic linear-time algorithm

What about a deterministic linear-time algorithm? For a long time it was thought this was im-
possible – that there was no method faster than first sorting the array. In the process of trying
to prove this claim it was discovered that this thinking was incorrect, and in 1972 a deterministic
linear time algorithm was developed.

The idea of the algorithm is that one would like to pick a pivot deterministically in a way that
produces a good split. Ideally, we would like the pivot to be the median element so that the two
sides are the same size. But, this is the same problem we are trying to solve in the first place! So,
instead, we will give ourselves leeway by allowing the pivot to be any element that is “roughly” in
the middle: at least 3/10 of the array below the pivot and at least 3/10 of the array above. The
algorithm is as follows:

DeterministicSelect: Given array A of size n and integer k ≤ n,

1. Group the array into n/5 groups of size 5 and find the median of each group. (For
simplicity, we will ignore integrality issues.)

2. Recursively, find the true median of the medians. Call this p.

3. Use p as a pivot to split the array into subarrays LESS and GREATER.

4. Recurse on the appropriate piece.

Theorem 2.2 DeterministicSelect makes O(n) comparisons to find the kth smallest in an array

of size n.

Proof: Let T (n, k) denote the worst-case time to find the kth smallest out of n, and T (n) =
maxk T (n, k) as before.

Step 1 takes time O(n), since it takes just constant time to find the median of 5 elements. Step
2 takes time at most T (n/5). Step 3 again takes time O(n). Now, we claim that at least 3/10 of
the array is ≤ p, and at least 3/10 of the array is ≥ p. Assuming for the moment that this claim
is true, Step 4 takes time at most T (7n/10), and we have the recurrence:

T (n) ≤ cn + T (n/5) + T (7n/10), (2.1)

for some constant c. Before solving this recurrence, lets prove the claim we made that the pivot will
be roughly near the middle of the array. So, the question is: how bad can the median of medians
be?

Let’s first do an example. Suppose the array has 15 elements and breaks down into three groups
of 5 like this:

{1, 2, 3, 10, 11}, {4, 5, 6, 12, 13}, {7, 8, 9, 14, 15}.

In this case, the medians are 3, 6, and 9, and the median of the medians p is 6. There are five
elements less than p and nine elements greater.

In general, what is the worst case? If there are g = n/5 groups, then we know that in at least ⌈g/2⌉
of them (those groups whose median is ≤ p) at least three of the five elements are ≤ p. Therefore,
the total number of elements ≤ p is at least 3⌈g/2⌉ ≥ 3n/10. Similarly, the total number of elements
≥ p is also at least 3⌈g/2⌉ ≥ 3n/10.
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cn

← total 9cn/10cn/5 7cn/10

← total (81/100)cn

← ......

Figure 2.1: Stack of bricks view of recursions tree for recurrence 2.1.

Now, finally, let’s solve the recurrence. We have been solving a lot of recurrences by the “guess
and check” method, which works here too, but how could we just stare at this and know that the
answer is linear in n? One way to do that is to consider the “stack of bricks” view of the recursion
tree discussed in Appendix A.

In particular, let’s build the recursion tree for the recurrence (2.1), making each node as wide as
the quantity inside it:

Notice that even if this stack-of-bricks continues downward forever, the total sum is at most

cn(1 + (9/10) + (9/10)2 + (9/10)3 + . . .),

which is at most 10cn. This proves the theorem.

Notice that in our analysis of the recurrence (2.1) the key property we used was that n/5+7n/10 <
n. More generally, we see here that if we have a problem of size n that we can solve by performing
recursive calls on pieces whose total size is at most (1 − ǫ)n for some constant ǫ > 0 (plus some
additional O(n) work), then the total time spent will be just linear in n. This gives us a nice
extension to our “Master theorem” from Appendix A.

Theorem 2.3 For constants c and a1, . . . , ak such that a1 + . . . ak < 1, the recurrence

T (n) ≤ T (a1n) + T (a2n) + . . . T (akn) + cn

solves to T (n) = O(n).


