
15-451/651: Design & Analysis of Algorithms
Lecture #8 (draft!!) September 18, 2013

Today’s specials:

• A reminder of the depth-first search (DFS) algorithm and its properties.
• Arranging the nodes of a DAG so that edges go from left to right.
• An algorithm for finding stongly connected components in a digraph.

1 Introduction

Depth First Search: you’ve seen this before, in 15-210, if not even earlier. Given a graph, it is a
procedure that visits all the vertices of a graph. And you can build on this in many ways, to give
algorithms to:

• Determine the connected components of a graph.

• (*) Find cycles in a directed or undirected graph.

• Find the biconnected components of an undirected graph.

• (*) Topologically sort a directed graph.

• Determine if a graph is planar, and finding an embedding of it if it is.

• (*) Find the strong components of a directed graph.

If the graph has n vertices and m edges then depth first search can be used to solve all of these
problems in time O(n + m), that is, linear in the size of the graph. In this lecture we will do the
final item on this list: find strong components of the graph1 – though along the way we’ll touch
upon the other starred topics while reviewing some basic properties of DFS.

2 Depth First Search

First, some notation. We have a directed or undirected graph G = (V,E). We assume n
nodes/vertices and m edges. If it is directed, we refer to the edges as arcs to emphasize they
are ordered. We write an arc as (u, v) or just uv — the arrow goes from u to v. Node u is the tail
of the arc uv and v the head.

The input will be assumed to be in the adjacency-list format, where the adjacency lists are linked
lists. (We won’t need the linked list structure in this lecture.) Let adj(v) denote the adjacency list
of vertex v — for directed graphs we assume it contains all the edges going out of A.

OK. DFS. Depth First Search. The simplest graph algorithm in the book, but it has a lot of power
to it. In this lecture, we’ll only consider directed graphs, the version for undirected graphs is almost
identical.

Initialize: for each v in V

mark(v) = F

DFS(v) // Invariant: v has not been marked

mark(v) = T

1Strong components are directed analogs of connected components; we’ll define them later in this lecture.

1



for each arc (vw) in adjacency-list(v) {

if mark(w) == F then DFS(w)

}

Basically, we look at each arc and if the other side has not already been visited yet, we recursively
visit it. Here’s an example. The labeled nodes are the ones visited by calling DFS(A). The dashed
edges are the ones not traversed, the dotted ones were not even looked at.

A

B

C

D E

F

A node w is reachable from v in G if there is a path v = v0, v1, v2, . . . , vk = w such that each
(vi, vi+1) is an arc of G.

Fact 1 When DFS(v) terminates, it has visited (marked) all the nodes that can be reached from v.

Proof: The simple proof is by induction. We will terminate because every call to DFS(v) is to an
unmarked node, and each such call marks a node. There are n nodes, hence n calls, before we stop.

Now suppose some node w that is reachable from v and is not marked when DFS(v) terminates.
Since w is reachable, there is a path v = v0, v1, v2, . . . , vk = w from v to w, and a first node vi
on this path that is not marked. But this is impossible, because we marked vi−1 and would have
examined the arc (vi−1, vi). �

Of course, it may be the case that not all the nodes in G are reachable from v. So really we should
do the following

DFS-graph(graph G)

for all v in V, mark(v) = F.

While there exists an unmarked node v

DFS(v)

This process will visit all the nodes of the graph (just by the definition of the procedure). Here’s
the old example.

A

B

C

D E

F

G

H

I

It will help to have a few more pieces of data defined, which will make reasoning about DFS much
easier. One is active(v), which is a flag that indicates that v is currently on the recursion stack.
Two other numbers are pre(v) and post(v) which are “times” at which we add v to the recursion
stack, and when we remove v from it. (In 15-210, these were the times at which you enter v and
exit v.)

Here is the depth first search procedure:

2



i← 0
for all x ∈ V do pre(v)← 0, post(v)← 0, active(v)← 0
for all x ∈ V do

if pre(x) = 0 then DFS(x)

DFS(v)
i← i + 1
pre(v)← i
active(v)← 1
for all w ∈ adj(v) do

if pre(w) = 0 then DFS(w) [(v, w) is a tree arc ]
else if pre(w) > pre(v) then [(v, w) is a forward arc ]
else if active(w) = 0 then [(v, w) is a cross arc]
else [(v, w) is a back arc]

active(v)← 0
i← i + 1
post(v)← i

end DFS

Below is our running example with the node labelings and the arc classification: the solid arcs are
tree arcs, dashed arcs are forward arcs, the dotted arcs are cross arcs, and the dot-dashed arcs are
back-arcs.

[1, 12]

[2, 9]

[3, 8]

[4, 7] [5, 6]

[10, 11]

[13, 18]

[14, 17]

[15, 16]

Just as above, this process examines all arcs and vertices. The call DFS(v) is made exactly once
for each vertex of the graph. Each arc is placed into exactly one of four classes by the algorithm:
tree arcs, forward arcs, cross arcs, and back arcs. This classification of the arcs is not a property
of the graph alone. It also depends on the ordering of the vertices in adj(v) and on the ordering of
the vertices in the loop that calls the DFS procedure.

The tree arcs have the property that either zero or one of them points to a given vertex. Therefore,
they define a collection of trees, called the depth-first spanning forest of the graph. The root of
each tree is the vertex with the lowest pre number (the one that was searched first). These rooted
trees allow us to define the ancestor and descendant relations among vertices. The four types of
arcs are related to the spanning forest as follows:

• The forward arcs are arcs from a vertex to a descendant of it that are not tree arcs. This
is because the test pre(w) > pre(v) indicates that w was explored after the call to DFS(v).
Since the call to DFS(v) is not yet complete w must be a descendant of v. Moreover, the
exploration of w must be complete (it must have been popped from the execution stack for
us to return to v), so we’ll have post(w) < post(v). To summarize, forward arcs have

pre(v) < pre(w) < post(w) < post(v)

This pattern is also true for tree arcs.

3



• The cross arcs are arcs from a vertex v to a vertex w such that the subtrees rooted at v
and w are disjoint. This follows because active(w) = 0 so the exploration of w is complete,
and was complete before the call to DFS(v), so we’ll have post(w) < post(v) < pre(v).
Therefore v is not in a subtree rooted at w. Vertex w is not in a subtree rooted at v because
pre(w) < pre(v). To summarize, for cross arcs vw

pre(w) < post(w) < pre(v) < post(v)

• The back arcs are arcs from a vertex to an ancestor of it. The fact that active(w) = 1
indicates that the w is on the recursion stack and is thus an ancestor of v. So for back arcs,
we’ll have

pre(w) < pre(v) < post(v) < post(w).

Observe that from this discussion that just looking at the pre/post numbers for two vertices x and
y, we can correctly answer the question:

Is x an ancestor of y in the DFS tree? Or is y an ancestor of x? Or are they unrelated?

Exercise: A tree T rooted at some node r naturally defines an ancestor-descendent relation on the
nodes. Show that you can label each node with labels of size O(logn) bits so that you can answer
queries of the form “is x an ancestor of y in the T , or is y an ancestor of x, or are they unrelated?” in
constant time. (Assume comparing O(logn)-bit integers takes constant time.)

3 Topological Ordering for Directed Acyclic Graphs

You know what a directed acyclic graph (DAG) is, right? A directed graph that does not have any
directed cycles. I.e., no directed path that starts at v and ends at v, except of course the path of
length 0. No “non-trivial” path. Below’s a DAG and its DFS.

[1, 8]

[2, 5]

[3, 4]

[6, 7]

[9, 10]

[11, 14]
[12, 13]A

B

C D

E
F

G

Lemma 2 A digraph G is a DAG if and only if DFS on the graph has no back arcs.

Proof: One direction is immediate: if there is a back arc (which goes from an descendent to an
ancestor), it creates a cycle. On the other hand, if there is a cycle C in G, consider the earliest
node in C visited by DFS (the one with the lowest pre number). Call it v. Since all nodes in C
are reachable from v, they will be visited before time post(v), and will be descendents of v. But
then v’s predecessor u on the cycle would have resulted in the back arc uv. �

Look back at the classification of arcs into tree/forward, back, and cross. In a DAG there are no
back arcs. This means all the arcs vw in the graph have the property that post(w) < post(v). In
words, the head of each arc has a smaller post number than the tail. So here’s a way to output a
total ordering of the vertices in G, so that all arcs in G go from left to right:

Run DFS on G.
Output the vertices in decreasing order of their post numbering.

For example, the DAG above will result in the following ordering.

4



E F D A C B G

Exercise: Naively, the above algorithm asks us to sort the post numbers, which would take O(n logn)
time. Show that the algorithm can be implemented in O(m + n) time by slightly altering the DFS
procedure.

Exercise: Now suppose you forgot to alter the DFS procedure. You ran DFS, got the post numbers,
and now you read the second line. You don’t want to spend O(n logn) time to sort the n post numbers.
How can you sort them in O(n) time?

Such an ordering on the nodes where all the arcs point in the same direction (say from left to right)
is called a topological ordering. We’ve just shown that the graphs for which a topological ordering
exists is precisely DAGs. And the exercise shows we can output a topological ordering in O(m+n)
time.

Exercise: A source in a digraph is a node that has no arcs coming into it. A sink is a node that has
no arcs leaving it. Prove that each DAG must have at least one source and at least one sink. Show a
digraph (that is not a DAG) that has no sources and no sinks.

Exercise: Prove that the following algorithm also outputs a topological ordering: Find a sink v in the
current DAG. Recursively output an ordering on G− v (the graph with v deleted). Output v at the end.

Exercise: Prove that the following algorithm also outputs a topological ordering: Find a source v in
the current DAG. Output v. Recursively output an ordering on G− v (the graph with v deleted).

Exercise: Can you implement the algorithms outlined in the above exercises in O(m + n) time?

4 Strong Connected Components

Call two vertices v and w equivalent , denoted v ≡ w if there exists a path from v to w and one
from w to v. The relation “≡” so defined is an equivalence relation because it satisfies the following
three properties:

1. Reflexivity: w ≡ w. This is because a path of length zero goes from w to w and vice versa.

2. Symmetry: If v ≡ w then w ≡ v. This follows immediately from the definition.

3. Transitivity: If v ≡ w and w ≡ x then v ≡ x. If there is a path from v to w, and one from w
to x, then there is a path from v to x. The same reasoning shows that there is a path from
x to v.

This equivalence relation induces a partitioning of the vertices of the graph into components in
which each pair of vertices in a component are equivalent. These are called the strongly connected
components or strong components of the graph. It is standard to abbreviate this as SCCs.

On the left is an example of a directed graph partitioned into its SCCs. Then if we contract the
SCCs into single nodes, we get the graph on the right, which you notice is a DAG with one source
and two sinks. This DAG structure is not a fluke, as we show next.

5



Fact 3 Shrinking each SCC of a graph G into a single node gives us a DAG.

Proof: (Sketch) If there were a cycle in the shrunk graph containing the nodes corresponding to
SCCs S1 and S2 then we could reach from some node in S1 to some node in S2 (and vice versa).
And hence we could reach from all nodes in S1 to all nodes in S2 and vice versa. So S1 and S2

should have been in the same SCC to begin with. �

Our goal is to devise an algorithm which will compute the SCCs of a graph. There is a very close
relationship between the strong components of a graph and the depth first spanning forest of the
graph. We shall present an algorithm that uses depth first search to find the strong components of
the graph.

Here’s the idea behind our algorithm (called Kosaraju’s algorithm).2 There’s this DAG of SCCs of
G. Suppose we knew a vertex v in the sink SCC. If we run DFS from v, we would see exactly the
nodes in the sink SCC.3 We could then delete these nodes. This would leave a smaller graph G′

with the same set of SCCs as G (except the one we just deleted). We repeat — find a vertex v′ in
a sink SCC in G′, use DFS to find the entire sink SCC, delete it and keep going.

A nice and clean idea. Two things to worry about. (a) How do we find a node in this sink SCC?
(b) How to find this in linear time? (c) And then, how to run the entire algorithm in linear time?
OK, one thing at a time.

4.1 Finding a Node in the Sink SCC

The crucial idea here is the following observation.

Lemma 4 In a run of DFS on digraph G, the vertex with the highest post number belongs to the
source SCC.

Here are two different DFS runs on the same graph with the highest post number in the source
component.

2Kosaraju’s algorithm is due to S. Rao Kosaraju. There’s no paper associated with it, though — it just appears
in the classic textbook of Aho, Hopcroft, and Ullman, attributed to him.

3Why? Clearly we’d see at least the nodes in the same SCC as v. The worry is that we might see more — nodes
which are reachable from v but can’t reach v. That is, we might see nodes that lie in a different SCC. This is why
we chose v from a sink SCC. There are no other SCCs reachable from v’s SCC. So we’ll see exactly the nodes in v’s
SCC.

6



[2, 13] [7, 10]

[3, 12]

[4, 5]
[1, 24]

[6, 11]

[8, 9]

[14, 23]

[15, 20]

[16, 19]
[17, 18]

[21, 22]
[1, 16]

[2, 13]

[3, 8]

[4, 7]
[5, 6]

[9, 12]
[10, 11]

[14, 15]

[17, 24]

[18, 23]
[19, 22]

[20, 21]

Oh, that sounds goo . . . Wait, what? The source SCC? Didn’t we want the sink SCC? For our
scheme the source SCC won’t do at all. The whole point was that starting DFS from a node in
a sink SCC will explore exactly that SCC (which we can peel off and repeat). Starting it from a
source SCC might explore a lot more.

This is actually easy to fix. Look at the inverted digraph G← which is obtained by just reversing
the directions of all arcs in G. A sink SCC in G is then a source SCC in the inverted graph G←.
This trick allows us to find a sink SCC in G.

So back to proving Lemma 4. The proof is immediate once you’ve proved the following claim.

Claim 5 If C1 and C2 are SCCs in G with an edge from some node in C1 to some node in C2,
then the highest post number in C1 is greater than the highest post number in C2.

Proof: Look at the first node in C1 ∪ C2 that DFS visits. Say it is node v1 ∈ C1, then post(v1)
will have the highest post number among all these nodes. Else we visit some v2 ∈ C2 before any of
the nodes in C1 — then DFS will visit all nodes in C2 before it exits v2, and none in C1 (because
none of the nodes in C1 are reachable from v2). In this latter case even all the pre numbers of C1

will be later than all the post numbers of C2. �

Good, good. So this says that a single DFS suffices to find a node in a source component of G.
And the inverted digraph idea tells us that we can use this to find some node in a sink component
Cs of G. You remember the inverted digraph idea, right? We took the inverted digraph G← and
ran DFS on it to get the post numbers on the nodes. For each v ∈ V , let’s denote post(v) on this
inverted graph by postG←(v).

Look at the vertex in G with the highest value of postG←(v), call this vs. Call the associated sink
CSS Cs. Now run DFS(vs) — this will get stuck precisely after exploring Cs, and this DFS will
just take time proportional to the number of arcs and nodes within the Cs.

4.2 Finishing the Rest in Linear Time Too

OK, so one SCC down, all the rest to go. And what about the rest?

Well, the final piece of the puzzle is also simple. Let G′ be the graph obtained by deleting the
nodes and arcs of Cs from the graph G. The vertex with the highest postG←(v) number among
those remaining in G′ will be in a sink CSS of G′. (You see why? It again follows from Claim 5.)
We can now peel off this component, and repeat. The time to peel off each SCC is proportional to
the number of arcs within the SCC. Adding over all the SCCs, the total time is again O(m + n).

The algorithm is now easily summarized.

Compute the post numbers in the graph G←, call the numbers postG←(·).
Initialize H ← G

7



Repeat until H is empty
Let v be the vertex in H with the highest postG←(·) value
Run DFS(v) in H to find the associated sink SCC C, and delete it from H.

Again, the first step is just DFS, and each step of the loop can be charged to the nodes and edges
of the component removed from H in that iteration.

Short and simple. And it’s all achieved just by using the simple properties of the DFS algorithm
and numbering scheme.

Exercise: Note that when we are running DFS, we have the flexibility of choosing the start node (and
also every time DFS stops before it explores the entire graph, choosing the next node to begin DFS at).
Use this observation to implement the above algorithm using 2 DFSs.

8


