
Lecture 11

Dynamic Programming II

11.1 Overview

In this lecture we continue our discussion of dynamic programming, focusing on using it for a
variety of path-finding problems in graphs. Topics in this lecture include:

• The Bellman-Ford algorithm for single-source (or single-sink) shortest paths.

• Matrix-product algorithms for all-pairs shortest paths.

• The Floyd-Warshall algorithm for all-pairs shortest paths.

• Dynamic programming for TSP.

11.2 Introduction

As a reminder of basic terminology: a graph is a set of nodes or vertices, with edges between some
of the nodes. We will use V to denote the set of vertices and E to denote the set of edges. If there
is an edge between two vertices, we call them neighbors. The degree of a vertex is the number of
neighbors it has. Unless otherwise specified, we will not allow self-loops or multi-edges (multiple
edges between the same pair of nodes). As is standard with discussing graphs, we will use n = |V |,
and m = |E|, and we will let V = {1, . . . , n}.

The above describes an undirected graph. In a directed graph, each edge now has a direction (and
as we said earlier, we will sometimes call the edges in a directed graph arcs). For each node, we
can now talk about out-neighbors (and out-degree) and in-neighbors (and in-degree). In a directed
graph you may have both an edge from u to v and an edge from v to u.

We will be especially interested here in weighted graphs where edges have weights (which we will
also call costs or lengths). For an edge (u, v) in our graph, let’s use len(u, v) to denote its weight.
The basic shortest-path problem is as follows:

Definition 11.1 Given a weighted, directed graph G, a start node s and a destination node t, the
s-t shortest path problem is to output the shortest path from s to t. The single-source shortest

40

11.3. THE BELLMAN-FORD ALGORITHM 41

path problem is to find shortest paths from s to every node in G. The (algorithmically equivalent)
single-sink shortest path problem is to find shortest paths from every node in G to t.

We will allow for negative-weight edges (we’ll later see some problems where this comes up when
using shortest-path algorithms as a subroutine) but will assume no negative-weight cycles (else the
shortest path can wrap around such a cycle infinitely often and has length negative infinity). As a
shorthand in our drawings, if there is an edge of length ℓ from u to v and also an edge of length ℓ

from v to u, we will often just draw them together as a single undirected edge. So, all such edges
must have positive weight.

11.3 The Bellman-Ford Algorithm

We will now look at a Dynamic Programming algorithm called the Bellman-Ford Algorithm for
the single-sink (or single-source) shortest path problem. We will assume the graph is represented
as an adjacency list: an array of size n where entry v is the list of arcs exiting from node v (so,
given a node, we can find all its neighbors in time proportional to the number of neighbors).

Let us develop the algorithm using the following example:
t

15 30

10

3060

40 −40

0

4

21

53

How can we use Dyanamic Programming to find the shortest path from all nodes to t? First of all,
as usual for Dynamic Programming, let’s just compute the lengths of the shortest paths first, and
afterwards we can easily reconstruct the paths themselves. The idea for the algorithm is as follows:

1. For each node v, find the length of the shortest path to t that uses at most 1 edge, or write
down ∞ if there is no such path.

This is easy: if v = t we get 0; if (v, t) ∈ E then we get len(v, t); else just put down ∞.

2. Now, suppose for all v we have solved for length of the shortest path to t that uses i − 1 or
fewer edges. How can we use this to solve for the shortest path that uses i or fewer edges?

Answer: the shortest path from v to t that uses i or fewer edges will first go to some neighbor
x of v, and then take the shortest path from x to t that uses i−1 or fewer edges, which we’ve
already solved for! So, we just need to take the min over all neighbors x of v.

3. How far do we need to go? Answer: at most i = n − 1 edges.

Specifically, here is pseudocode for the algorithm. We will use d[v][i] to denote the length of the
shortest path from v to t that uses i or fewer edges (if it exists) and infinity otherwise (“d” for
“distance”). Also, for convenience we will use a base case of i = 0 rather than i = 1.

Bellman-Ford pseudocode:

initialize d[v][0] = infinity for v != t. d[t][i]=0 for all i.

11.4. ALL-PAIRS SHORTEST PATHS 42

for i=1 to n-1:

for each v != t:

d[v][i] = min
(v,x)∈E

(len(v,x) + d[x][i-1])

For each v, output d[v][n-1].

Try it on the above graph!

We already argued for correctness of the algorithm. What about running time? The min operation
takes time proportional to the out-degree of v. So, the inner for-loop takes time proportional to
the sum of the out-degrees of all the nodes, which is O(m). Therefore, the total time is O(mn).

So far we have only calculated the lengths of the shortest paths; how can we reconstruct the paths
themselves? One easy way is (as usual for DP) to work backwards: if you’re at vertex v at distance
d[v] from t, move to the neighbor x such that d[v] = d[x] + len(v, x). This allows us to reconstruct
the path in time O(m + n) which is just a low-order term in the overall running time.

11.4 All-pairs Shortest Paths

Say we want to compute the length of the shortest path between every pair of vertices. This is
called the all-pairs shortest path problem. If we use Bellman-Ford for all n possible destinations t,
this would take time O(mn2). We will now see two alternative Dynamic-Programming algorithms
for this problem: the first uses the matrix representation of graphs and runs in time O(n3 log n);
the second, called the Floyd-Warshall algorithm uses a different way of breaking into subproblems
and runs in time O(n3).

11.4.1 All-pairs Shortest Paths via Matrix Products

Given a weighted graph G, define the matrix A = A(G) as follows:

• A[i, i] = 0 for all i.

• If there is an edge from i to j, then A[i, j] = len(i, j).

• Otherwise (i 6= j and there is no edge from i to j), A[i, j] = ∞.

I.e., A[i, j] is the length of the shortest path from i to j using 1 or fewer edges.1 Now, following
the basic Dynamic Programming idea, can we use this to produce a new matrix B where B[i, j] is
the length of the shortest path from i to j using 2 or fewer edges?

Answer: yes. B[i, j] = mink(A[i, k] + A[k, j]). Think about why this is true!

I.e., what we want to do is compute a matrix product B = A × A except we change “*” to “+”
and we change “+” to “min” in the definition. In other words, instead of computing the sum of
products, we compute the min of sums.

1There are multiple ways to define an adjacency matrix for weighted graphs — e.g., what A[i, i] should be and
what A[i, j] should be if there is no edge from i to j. The right definition will typically depend on the problem you
want to solve.

11.5. TSP 43

What if we now want to get the shortest paths that use 4 or fewer edges? To do this, we just need
to compute C = B × B (using our new definition of matrix product). I.e., to get from i to j using
4 or fewer edges, we need to go from i to some intermediate node k using 2 or fewer edges, and
then from k to j using 2 or fewer edges.

So, to solve for all-pairs shortest paths we just need to keep squaring O(log n) times. Each matrix
multiplication takes time O(n3) so the overall running time is O(n3 log n).

11.4.2 All-pairs shortest paths via Floyd-Warshall

Here is an algorithm that shaves off the O(log n) and runs in time O(n3). The idea is that instead of
increasing the number of edges in the path, we’ll increase the set of vertices we allow as intermediate
nodes in the path. In other words, starting from the same base case (the shortest path that uses no
intermediate nodes), we’ll then go on to considering the shortest path that’s allowed to use node 1
as an intermediate node, the shortest path that’s allowed to use {1, 2} as intermediate nodes, and
so on.

// After each iteration of the outside loop, A[i][j] = length of the

// shortest i->j path that’s allowed to use vertices in the set 1..k

for k = 1 to n do:

for each i,j do:

A[i][j] = min(A[i][j], (A[i][k] + A[k][j]);

I.e., you either go through node k or you don’t. The total time for this algorithm is O(n3). What’s
amazing here is how compact and simple the code is!

11.5 TSP

The NP-hard Traveling Salesman Problem (TSP) asks to find the shortest route that visits all
vertices in the graph. To be precise, the TSP is the shortest tour that visits all vertices and returns
back to the start.2 Since the problem is NP-hard, we don’t expect that Dynamic Programming
will give us a polynomial-time algorithm, but perhaps it can still help.

Specifically, the naive algorithm for the TSP is just to run brute-force over all n! permutations
of the n vertices and to compute the cost of each, choosing the shortest. (We can reduce this to
(n − 1)! permutations by always using the same start vertex, but we still pay Θ(n) to compute
the cost of each permutation, so the overall running time is O(n!).) We’re going to use Dynamic
Programming to reduce this to “only” O(n22n).

Any ideas? As usual, let’s first just worry about computing the cost of the optimal solution, and
then we’ll later be able to add in some hooks to recover the path. Also, let’s work with the shortest-
path metric where we’ve already computed all-pairs-shortest paths (so we can view our graph as
a complete graph with weights between any two vertices representing the shortest path between
them). This is conveninent since it means a solution is really just a permutation. Finally, let’s fix
some start vertex s.

2Note that under this definition, it doesn’t matter which vertex we select as the start. The Traveling Salesman

Path Problem is the same thing but does not require returning to the start. Both problems are NP-hard.

11.5. TSP 44

Now, here is one fact we can use. Suppose someone told you what the initial part of the solution
should look like and we want to use this to figure out the rest. Then really all we need to know
about it for the purpose of completing it into a tour is the set of vertices visited in this initial
segment and the last vertex t visited in the set. We don’t really need the whole ordering of the
initial segment. This means there are “only” n2n subproblems (one for every set of vertices and
ending vertex t in the set). Furthermore, we can compute the optimal solution to a subproblem in
time O(n) given solutions to smaller subproblems (just look at all possible vertices t′ in the set we
could have been at right before going to t and take the one that minimizes the cost so far (stored
in our lookup table) plus the distance from t′ to t).

Here is a top-down way of thinking about it: if we were writing a recursive piece of code to solve
this problem, then we would have a bit-vector saying which vertices have been visited so far and
a variable saying where we are now, and then we would mark the current location as visited and
recursively call on all possible (i.e., not yet visited) next places we might go to. Naively this would
take time Ω(n!). However, by storing the results of our computations we can use the fact that
there are “only” n2n possible (bit-vector, current-location) pairs, and so only that many different
recursive calls made. For each recursive call we do O(n) work inside the call, for a total of O(n22n)
time.3

The last thing is we just need to recompute the paths, but this is easy to do from the computations
stored in the same way as we did for shortest paths.

3For more, see http://xkcd.com/399/

