
15-451/651: Design & Analysis of Algorithms October 24, 2013
Lecture #18 last changed: October 28, 2013

In this lecture we describe a very nice algorithm due to Seidel for Linear Programming in low-
dimensional spaces. We then discuss the general notion of Linear Programming Duality, a powerful
tool that you should definitely master.

1 Seidel’s LP algorithm

We now describe a linear-programming algorithm due to Raimund Seidel that solves the 2-dimensional
(i.e., 2-variable) LP problem in O(m) time (recall, m is the number of constraints), and more gen-
erally solves the d-dimensional LP problem in time O(d!m).

Setup: We have d variables x1, . . . , xd. We are given m linear constraints in these variables
a1 · x ≤ b1, . . . ,am · x ≤ bm along with an objective c · x to maximize. (Using boldface to denote
vectors.) Our goal is to find a solution x satisfying the constraints that maximizes the objective.
In the example above, the region satisfying all the constraints is given in gray, the arrow indicates
the direction in which we want to maximize, and the cross indicates the x that maximizes the
objective.

(You should think of sweeping the green dashed line, to which the vector c is normal, in the direction
of c, until you reach the last point that satisfies the constraints.)

The idea: Here is the idea of Seidel’s algorithm. Let’s add in the constraints one at a time, and
keep track of the optimal solution for the constraints so far. Suppose, for instance, we have found
the optimal solution x∗ for the first m− 1 constraints (let’s assume for now that the constraints so
far do not allow for infinitely-large values of c·x) and we now add in the mth constraint am ·x ≤ bm.
There are two cases to consider:

Case 1: If x∗ satisfies the constraint, then x∗ is still optimal. Time to perform this test: O(d).

Case 2: If x∗ doesn’t satisfy the constraint, then the new optimal point will be on the (d − 1)-
dimensional hyperplane am · x = bm, or else there is no feasible point.

As an example, consider the situation below, before and after we add in the linear constraint
am · x ≤ bm colored in red. This causes the feasible region to change from the light blue region to
the smaller gray region, and the optimal point to move.

1



Let’s now focus on the case d = 2 and consider the time it takes to handle Case 2 above. With
d = 2, the hyperplane am · x = bm is just a line, and let’s call one direction “right” and the
other “left”. We can now scan through all the other constraints, and for each one, compute its
intersection point with this line and whether it is “facing” right or left (i.e., which side of that point
satisfies the constraint). We find the rightmost intersection point of all the constraints facing to
the right and the leftmost intersection point of all that are facing left. If they cross, then there is
no solution. Otherwise, the solution is whichever endpoint gives a better value of c ·x (if they give
the same value – i.e., the line am · x = bm is perpendicular to c – then say let’s take the rightmost
point). In the example above, the 1-dimensional problem is the one in the figure below, with the
green constraints “facing” one direction and the blue ones facing the other way. The direction of c
means the optimal point is given by the “lowest” green constraint.

The total time taken here is O(m) since we have m − 1 constraints to scan through and it takes
O(1) time to process each one.

2



Right now, this looks like an O(m2)-time algorithm for d = 2, since we have potentially taken O(m)
time to add in a single new constraint if Case 2 occurs. But, suppose we add the constraints in a
random order? What is the probability that constraint m goes to Case 2?

Notice that the optimal solution to all m constraints (assuming the LP is feasible and bounded) is
at a corner of the feasible region, and this corner is defined by two constraints, namely the two sides
of the polygon that meet at that point. If both of those two constraints have been seen already,
then we are guaranteed to be in Case 1. So, if we are inserting constraints in a random order, the
probability we are in Case 2 when we get to constraint m is at most 2/m. This means that the
expected cost of inserting the mth constraint is at most:

E[cost of inserting mth constraint] ≤ (1− 2/m)O(1) + (2/m)O(m) = O(1).

This is sometimes called “backwards analysis” since what we are saying is that if we go backwards
and pluck out a random constraint from the m we have, the chance it was one of the constraints
that mattered was at most 2/m.

So, Seidel’s algorithm is as follows. Place the constraints in a random order and insert them one at
a time, keeping track of the best solution so far as above. We just showed that the expected cost
of the ith insert is O(1) (or if you prefer, we showed T (m) = O(1) + T (m − 1) where T (i) is the
expected cost of a problem with i constraints), so the overall expected cost is O(m).

1.1 Handling Special Cases, and Extension to Higher Dimensions

(We will not be testing you on this part, but you should try to understand it all the same.)

What if the LP is infeasible? There are two ways we can analyze this. One is that if the LP
is infeasible, then it turns out this is determined by at most 3 constraints. So we get the same
as above with 2/m replaced by 3/m. Another way to analyze this is imagine we have a separate
account we can use to pay for the event that we get to Case 2 and find that the LP is infeasible.
Since that can only happen once in the entire process (once we determine the LP is infeasible, we
stop), this just provides an additive O(m) term. To put it another way, if the system is infeasible,
then there will be two cases for the final constraint: (a) it was feasible until then, in which case we
pay O(m) out of the extra budget (but the above analysis applies to the the (feasible) first m− 1
constraints), or (b) it was infeasible already in which case we already halted so we pay 0.

What about unboundedness? One way we can deal with this is put everything inside a bounding
box −λ ≤ xi ≤ λ (so, for instance, if all ci are positive then the initial x∗ = (λ, . . . , λ)) where we
view λ symbolically as a limit quantity. For example, in 2-dimensions, if c = (0, 1) and we have a
constraint like 2x1 + x2 ≤ 8, then we would see it is not satisfied by (λ, λ), intersect the contraint
with the box and update to x∗ = (4− λ/2, λ).

So far we have shown that for d = 2, the expected running time of the algorithm is O(m). For
general values of d, there are two main changes. First, the probability that constraint m enters
Case 2 is now d/m rather than 2/m. Second, we need to compute the time to perform the update
in Case 2. Notice, however, that this is a (d− 1)-dimensional linear programming problem, and so
we can use the same algorithm recursively, after we have spent O(dm) time to project each of the
m − 1 constraints onto the (d − 1)-dimensional hyperplane am · x = bm. Putting this together we
have a recurrence for expected running time:

T (d,m) ≤ T (d,m− 1) +O(d) +
d

m
[O(dm) + T (d− 1,m− 1)].

This then solves to T (d,m) = O(d!m).

3



2 Linear Programming Duality

Consider the following LP

P = max(2x1 + 3x2)

s.t. 4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0

4x1 + 8x2 ≤ 12

2x1 + x2 ≤ 3

3x1 + 2x2 ≤ 4

max 2x1 + 3x2

In an attempt to solve P we can produce upper bounds on its optimal value.

• Since 2x1 + 3x2 ≤ 4x1 + 8x2 ≤ 12, we know OPT(P ) ≤ 12.

• Since 2x1 + 3x2 ≤ 1
2(4x1 + 8x2) ≤ 6, we know OPT(P ) ≤ 6.

• Since 2x1 + 3x2 ≤ 1
3((4x1 + 8x2) + (2x1 + x2)) ≤ 5, we know OPT(P ) ≤ 5.

In each of these cases we take a positive linear combination of the constraints, looking for better
and better bounds on the maximum possible value of 2x1 + 3x2. We can formalize this, letting
y1, y2, y3 be the coefficients of our linear combination. Then we must have

4y1 + 2y2 + 3y2 ≥ 2

8y1 + y2 + 2y3 ≥ 3

y1, y2, y3 ≥ 0

and we seek min(12y1 + 3y2 + 4y3)

This too is an LP! We refer to this LP as the “dual” and the original LP as the “primal”. We
designed the dual to serve as a method of constructing an upper bound on the optimal value of the
primal, so if y is a feasible solution for the dual and x is a feasible solution for the primal, then
2x1 + 3x2 ≤ 12y1 + 3y2 + 4y3. If we can find two feasible solutions that make these equal, then we
know we have found the optimal values of these LP.

4



In this case the feasible solutions x1 = 1
2 , x2 = 5

4 and y1 = 5
16 , y2 = 0, y3 = 1

4 give the same value
4.75, which therefore must be the optimal value.

In general, we might start off with a “primal” LP:

maximize cTx (1)

subject to Ax ≤ b

x ≥ 0,

As above, the x variables are constrained to non-negative. If you go through an essentially identical
exercise, you will get the dual LP is:

minimize yTb (2)

subject to yTA ≥ cT

y ≥ 0,

The “magic” theorem that we will not prove in this course, but that is not difficult to show is this:
under some mild assumptions (that the primal LP is feasible and bounded) the optimal solution to
the dual LP has value exactly equal to the primal optimal value. This is called “strong duality”;
let’s give a geometric intuition of why this is true in the next section.

2.1 A Geometric Viewpoint

Given a set of constraints like a1 · x ≤ b1 and a2 · x ≤ b2, notice that you can add them to create
more constraints that have to hold, like (a1+a2)·x ≤ b1+b2, or (0.7a1+2.9a2)·x ≤ (0.7b1+2.9b2).
In fact, any positive linear combination has to hold.

To get a feel of what this looks like geometrically, say we start with constraints x1 ≤ 1 and x2 ≤ 1.
These imply x1 + x2 ≤ 2 (the red inequality), x1 + 2x2 ≤ 3 (the green one), etc.

x2 ≤ 1

x1 ≤ 1
x1 + x2 ≤ 2

x1 + 2x2 ≤ 3

0

(0, 0)

1 2

1

2

In fact, you can create any constraint running through the intersection point (1, 1) that has the
entire feasible region on one side by using different positive linear combinations of these inequalities.

Now, suppose you have a linear program in n variables (we’ve switched back from “d” to “n”) with
objective c · x to maximize. As we’ve discussed, unless the feasible region is unbounded (and let’s
assume for this entire discussion that the feasible region is bounded), the optimum point will occur
at some vertex x∗ of the feasible region, which is an intersection of n of the constraints, and have
some value v∗ = c · x∗.

5



Consider the n inequality constraints that define the vertex x∗, say these are

a1 · x ≤ b1, a2 · x ≤ b2, . . . , an · x ≤ bn,

so that for each i ∈ {1, 2, . . . , n} the point x∗ satisfies the equalities

a1 · x = b1, a2 · x = b2, . . . , an · x = bn.

An interesting fact is that just as in the simple example above, if you take these n inequality
constraints that define the vertex x∗ and look at all positive linear combinations of these, you can
again create any constraint you want going through x∗ that has the entire feasible region on one
side. One such constraint is c · x ≤ v∗. It goes through x∗ (since we have c · x∗ = v∗) and every
point in the feasible region is contained in it (since no feasible point has value more than v∗). So it
is possible to create the constraint c ·x ≤ v∗ using some positive linear combination of the ai ·x ≤ bi
constraints.

Why is this interesting? We’ve shown a short proof (a “succinct certificate”) that x∗ is optimal.
Indeed, if I gave you a solution x∗ and claimed it was optimal for the given constraints and the
objective function c · x, it is not clear how I would convince you that indeed this is the highest
value I can get. In 2-dimensions I could draw a figure, but in higher dimensions things get more
difficult. But what we’ve just shown is that I can exhibit a positive linear combination of the given
constraints that creates the constraint c · x ≤ v∗ = c · x∗, hence showing we can’t do any better.1

How do we find this positive linear combination of the constraints? Hey, it’s actually just another
linear program. Let’s see how. Suppose we want to find the best possible bound c · x ≤ v for as
small a value v as possible. So, let’s say the original LP had the m constraints

a1 · x ≤ b1, a2 · x ≤ b2, . . . , am · x ≤ bm,

written compactly as Ax ≤ b.2 What’s our goal? We want to find positive values y1, y2, . . . , ym
such that ∑

i

yiai = c.

From this positive linear combination we can infer the upper bound

c · x = (
∑
i

yiai) · x ≤
∑
i

yibi.

And we want this upper bound to be as “tight” (i.e., small) as possible, so let’s solve the LP:

min
∑
i

biyi subject to
∑
i

yiai = c.

(In matrix notation, if y is a m × 1 column vector consisting of the yi variables, then we want to
minimize yTb subject to yTA = c.)

Let us summarize: we started off with the “primal” LP,

maximize cTx (3)

subject to Ax ≤ b

1It’s like showing that a flow is maximal by exhibiting a matching min-cut proving we can’t do better. Or showing
a minimax optimal policy for a row-player in a zero-sum game is best possible by showing a matching minimax
optimal policy for the column player. This analogy is actually no coincidence: maxflow-mincut is a special case of
what we’re showing.

2We use “≥” for vectors to mean that the LHS is greater than or equal to the RHS in every coordinate, and
similarly for “≤”.

6



and were trying to find the best bound on the optimal value of this LP. And to do this, we wrote
the “dual” LP:

minimize yTb (4)

subject to yTA = cT

y ≥ 0.

Note that this primal/dual pair looks slightly different from the pair (1) and (2). There the primal
had non-negativity constraints, and the dual had an inequality. Here the variables of the primal
are allowed to be negative, and the dual has equalities. But these are just cosmetic differences; the
basic principles are the same.

2.2 Shortest Paths

In recitation yesterday, you saw the following LP for computing an s-t shortest path:

max
∑

v dv (5)

subject to ds = 0

dv − du ≤ w(u, v) ∀(u, v) ∈ E

Since we’re setting ds to zero, we could rewrite the LP as

max
∑

v:v 6=s dv (6)

subject to dv − du ≤ w(u, v) ∀(u, v) ∈ E, s 6∈ {u, v}
dv ≤ w(s, v) ∀(s, v) ∈ E
−du ≤ w(u, s) ∀(u, s) ∈ E

We take the dual of this LP. Let us define Eout
s := {(s, v) ∈ E}, Ein

s := {(u, s) ∈ E}, and
Erest := E \ (Eout

s ∪ Ein
s ). For every arc e = (u, v) we will have a variable ye. We want to get the

best upper bound on
∑

v 6=s dv using the constraints, so we should find a solution to∑
e∈Erest

yuv(dv − du) +
∑

e∈Eout
s

ysvdv −
∑

e∈Ein
s

yusdu =
∑
v 6=s

dv (7)

(this is like yTA = c) and we want to minimize∑
(u,v)∈E

yuv w(u, v). (8)

(This is like minyTb.) Hey, the objective function (8) is pretty, but what about the craziness in (7)?
It’s not so bad, let’s see what it is saying. Let’s just collect all copies of each of the variables dv,
and it’s saying ∑

v 6=s

dv

 ∑
(u,v)∈E

yuz −
∑

(v,w)∈E

yvw

 =
∑
v 6=s

dv.

and since these equalities must hold regardless of the dv values, this is really the same as∑
(u,v)∈E

yuv −
∑

(v,w)∈E

yvw = 1 ∀v 6= s.

7



So the final dual LP is:

min
∑

u,v∈E
yuv w(u, v) (9)

subject to
∑

(u,v)∈E

yuv −
∑

(v,w)∈E

yvw = 1 ∀v 6= s

Hence, if you think of uuv as the flow being sent along the arc (u, v), this is saying that every node
except s has excess 1. So s is sending (n − 1) units of flow, one unit ends up at each other node.
And we are minimizing the total cost of the flow, where the cost of sending flow on arc e is w(e).
Since there are no capacity constraints, we should send flow along the shortest paths to minimize
the cost of this unit of flow. The dual LP is finding the shortest path from s to v, for each v 6= s.

2.2.1 Relating it to the Other LP from Recitation

Recall that we wrote this LP for the shortest s-t path:

LPt := min
∑

e cexe (10)

subject to
∑

w:(s,w)∈E xsw = 1∑
v:(v,t)∈E xvt = 1∑
v:(u,v)∈E xuv =

∑
v:(v,w)∈E xvw ∀w ∈ V \ {s, t} (11)

xe ≥ 0.

It’s sending one unit of flow from s to t. And the objective function value is the shortest s-t path
length. If you take one such LP for each t 6= s and sum them up, you get the LP in (9). And it’s
computing the sum of the shortest path distances from s to everyone else.

Of course, (9) is the dual of the LP (5). Which is also computing the sum of the shortest path
distances from s to everyone else. Strong duality strikes again.

8


