
15-451/651: Design & Analysis of Algorithms November 5, 2013
Lecture #21 last changed: November 5, 2013

Suppose we are given an NP-complete problem to solve. Even though (assuming P 6= NP) we
can’t hope for a polynomial-time algorithm that always gets the best solution, can we develop
polynomial-time algorithms that always produce a “pretty good” solution? In this lecture we
consider such approximation algorithms, for several important problems. Specific topics in this
lecture include:

• 2-approximation for vertex cover via greedy matchings.

• 2-approximation for vertex cover via LP rounding.

• Greedy O(log n) approximation for set-cover.

• Approximation algorithms for MAX-SAT.

1 Introduction

Suppose we are given a problem for which (perhaps because it is NP-complete) we can’t hope for
a fast algorithm that always gets the best solution. We can’t just throw our hands in the air and
say “We can’t do anything!” We should do something smart.

In particular, can we hope for a fast algorithm that guarantees to get at least a “pretty good”
solution? E.g., can we guarantee to find a solution that’s within 10% of optimal? If not that, then
how about within a factor of 2 of optimal? Or, anything non-trivial?

As seen in the last two lectures, the class of NP-complete problems are all equivalent in the
sense that a polynomial-time algorithm to solve any one of them would imply a polynomial-time
algorithm to solve all of them (and, moreover, to solve any problem in NP). However, the difficulty
of getting a good approximation to these problems varies quite a bit. In this lecture we will
examine several important NP-complete problems and look at to what extent we can guarantee to
get approximately optimal solutions, and by what algorithms.

2 Vertex Cover

Recall that a vertex cover in a graph is a set of vertices such that every edge is incident to (touches)
at least one of them. The vertex cover problem is to find the smallest such set of vertices.

Definition 1 Vertex-Cover: Given a graph G, find the smallest set of vertices such that every
edge is incident to at least one of them. Decision problem: “Given G and integer k, does G contain
a vertex cover of size ≤ k?”

For instance, this problem is like asking: what is the fewest number of guards we need to place in
a museum in order to cover all the corridors.

1



a

b

c

d

e

f

Exercise: Find a vertex cover in the graph above of size 3. Show that there is no vertex cover of size
2 in this graph.

As we saw last time (via a reduction from Independent Set), this problem is NP-hard. However,
it turns out that for any graph G we can at least get within a factor of 2. That is, if the graph G
has a vertex cover of size k∗, we can return a vertex cover of size at most 2k∗.

Let’s start first, though, with some strategies that don’t work.

Strawman Alg #1: Pick an arbitrary vertex with at least one uncovered edge incident to it, put
it into the cover, and repeat.

What would be a bad example for this algorithm? [Answer: how about a star graph]

Strawman Alg #2: How about picking the vertex that covers the most uncovered edges. This
is very natural, but unfortunately it turns out this doesn’t work either, and it can produce a
solution Ω(log n) times larger than optimal.1

How can we get factor of 2? It turns out there are actually several ways. We will discuss here two
quite different algorithms. Interestingly, while we have several algorithms for achieving a factor of
2, nobody knows if it is possible to efficiently achieve a factor 1.99.

Algorithm 1: Pick an arbitrary edge. We know any vertex cover must have at least 1 endpoint
of it, so let’s take both endpoints. Then, throw out all edges covered and repeat. Keep going
until there are no uncovered edges left.

Theorem 2 The above algorithm is a factor 2 approximation to Vertex-Cover.

Proof: What Algorithm 1 finds in the end is a matching (a set of edges no two of which share
an endpoint) that is “maximal” (meaning that you can’t add any more edges to it and keep it a
matching). This means if we take both endpoints of those edges. we must have a vertex cover. In
particular, if the algorithm picked k edges, the vertex cover found has size 2k. But, any vertex cover
must have size at least k since it needs to have at least one endpoint of each of these edges, and
since these edges don’t touch, these are k different vertices. So the algorithm is a 2-approximation
as desired.

Here is now another 2-approximation algorithm for Vertex Cover:

1The bad examples for this algorithm are a bit more complicated however. One such example is as follows. Create
a bipartite graph with a set SL of t nodes on the left, and then a collection of sets SR,1, SR,2, . . . of nodes on the
right, where set SR,i has bt/ic nodes in it. So, overall there are n = Θ(t log t) nodes. We now connect each set SR,i

to SL so that each node v ∈ SR,i has i neighbors in SL and no two vertices in SR,i share any neighbors in common
(we can do that since SR,i has at most t/i nodes). Now, the optimal vertex cover is simply the set SL of size t, but
this greedy algorithm might first choose SR,t then SR,t−1, and so on down to SR,1, finding a cover of total size n− t.
Of course, the fact that the bad cases are complicated means this algorithm might not be so bad in practice.

2



Algorithm 2: First, solve a fractional version of the problem. Have a variable xi for each vertex
with constraint 0 ≤ xi ≤ 1. Think of xi = 1 as picking the vertex, and xi = 0 as not picking
it, and in-between as “partially picking it”. Then for each edge (i, j), add the constraint that
it should be covered in that we require xi + xj ≥ 1. Then our goal is to minimize

∑
i xi.

We can solve this using linear programming. This is called an “LP relaxation” because
any true vertex cover is a feasible solution, but we’ve made the problem easier by allowing
fractional solutions too. So, the value of the optimal solution now will be at least as good as
the smallest vertex cover, maybe even better (i.e., smaller), but it just might not be legal any
more. [Give examples of triangle-graph and star-graph]

Now that we have a super-optimal fractional solution, we need to somehow convert that into
a legal integral solution. We can do that here by just picking each vertex i such that xi ≥ 1/2.
This step is called rounding of the linear program (which literally is what we are doing here
by rounding the fraction to the nearest integer — for other problems, the “rounding” step
might not be so simple).

Theorem 3 The above algorithm is a factor 2 approximation to Vertex-Cover.

Proof: Claim 1: the output of the algorithm is a legal vertex cover. Why? [get at least 1 endpt of
each edge]

Claim 2: The size of the vertex cover found is at most twice the size of the optimal vertex cover.
Why? Let OPTfrac be the value of the optimal fractional solution, and let OPTV C be the size of
the smallest vertex cover. First, as we noted above, OPTfrac ≤ OPTV C . Second, our solution has
cost at most 2 · OPTfrac since it’s no worse than doubling and rounding down. So, put together,
our solution has cost at most 2 ·OPTV C .

Interesting fact: nobody knows any algorithm with approximation ratio 1.9. Best known is 2 −
O(1/

√
log n), which is 2− o(1).

Current best hardness result: Hastad shows 7/6 is NP-hard. Improved to 1.361 by Dinur and Safra.
Beating 2-epsilon has been related to some other open problems (it is “unique games hard”), but
is not known to be NP-hard.

3 Set Cover

The Set-Cover problem is defined as follows:

Definition 4 Set-Cover: Given a domain X of n points, and m subsets S1, S2, . . . , Sm of these
points. Goal: find the fewest number of these subsets needed to cover all the points. The decision
problem also provides a number k and asks whether it is possible to cover all the points using k or
fewer sets.

Set-Cover is NP-Complete. However, there is a simple algorithm that gets an approximation
ratio of lnn (i.e., that finds a cover using at most a factor lnn more sets than the optimal solution).

Greedy Algorithm (Set-Cover): Pick the set that covers the most points. Throw out all the
points covered. Repeat.

What’s an example where this algorithm doesn’t find the best solution?

Theorem 5 If the optimal solution uses k sets, the greedy algorithm finds a solution with at most
k lnn sets.

3



Proof: Since the optimal solution uses k sets, there must some set that covers at least a 1/k
fraction of the points. The algorithm chooses the set that covers the most points, so it covers at
least that many. Therefore, after the first iteration of the algorithm, there are at most n(1− 1/k)
points left. Again, since the optimal solution uses k sets, there must some set that covers at least
a 1/kfraction of the remainder (if we got lucky we might have chosen one of the sets used by the
optimal solution and so there are actually k − 1 sets covering the remainder, but we can’t count
on that necessarily happening). So, again, since we choose the set that covers the most points
remaining, after the second iteration, there are at most n(1 − 1/k)2 points left. More generally,
after t rounds, there are at most n(1− 1/k)t points left. After t = k lnn rounds, there are at most
n(1− 1/k)k lnn < n(1/e)lnn = 1 points left, which means we must be done.

Notice how the above analysis is similar to the analysis we used of Edmonds-Karp #1. Also, you
can get a slightly better bound by using the fact that after k ln(n/k) rounds, there are at most
n(1/e)ln(n/k) = k points left, and (since each new set covers at least one point) you only need to go
k more steps. This gives the somewhat better bound of k ln(n/k) + k. So, we have:

Theorem 6 If the optimal solution uses k sets, the greedy algorithm finds a solution with at most
k ln(n/k) + k sets.

In fact, it’s been proven that unless everything in NP can be solved in time nO(log logn), then you
can’t get better than (1− ε) ln(n) for any constant ε > 0 [Feige].

4 Max-SAT

The Max-SAT problem is defined as follows:

Definition 7 Max-SAT: Given a CNF formula (like in SAT), try to maximize the number of
clauses satisfied.

To make things cleaner, let’s assume we have reduced each clause [so, (x ∨ x ∨ y) would become
just (x ∨ y), and (x ∨ ¬x) would be removed]

Theorem 8 If every clause has size exactly 3 (this is sometimes called the MAX-exactly-3-
SAT problem), then there is a simple randomized algorithm can satisfy at least a 7/8 fraction of
clauses. So, this is for sure at least a 7/8-approximation.

Proof: Just try a random assignment to the variables. Each clause has a 7/8 chance of being
satisfied. So if there are m clauses total, the expected number satisfied is (7/8)m. If the assignment
satisfies less, just repeat. Since the number of clauses satisfied is bounded (it’s an integer between
0 and m), with high probability it won’t take too many tries before you do at least as well as the
expectation.

How about a deterministic algorithm? Here’s a nice way we can do that. First, let’s generalize the
above statement to talk about general CNF formulas.

Claim 9 Suppose we have a CNF formula of m clauses, with m1 clauses of size 1, m2 of size
2, etc. (m = m1 + m2 + . . .). Then a random assignment satisfies

∑
kmk(1 − 1/2k) clauses in

expectation.

Proof: linearity of expectation.

4



Theorem 10 There is an efficient deterministic algorithm that given a CNF formula of m clauses,
with m1 clauses of size 1, m2 of size 2, etc. (m = m1 +m2 + . . .) will find a solution satisfying at
least

∑
kmk(1− 1/2k) clauses.

Proof: Here is the deterministic algorithm. Look at x1: for each of the two possible settings (0
or 1) we can calculate the expected number of clauses satisfied if we were to go with that setting,
and then set the rest of the variables randomly. (It is just the number of clauses already satisfied
plus

∑
kmk(1− 1/2k), where mk is the number of clauses of size k in the “formula to go”.) Fix x1

to the setting that gives us a larger expectation. Now go on to x2 and do the same thing, setting
it to the value with the highest expectation-to-go, and then x3 and so on. The point is that since
we always pick the setting whose expectation-to-go is larger, this expectation-to-go never decreases
(since our current expectation is the average of the ones we get by setting the next variable to 0 or
1).

This is called the “conditional expectation” method. The algorithm itself is completely deter-
ministic — in fact we could rewrite it to get rid of any hint of randomization by just viewing∑

kmk(1− 1/2k) as a way of weighting the clauses to favor the small ones, but our motivation was
based on the randomized method.

Interesting fact: getting a 7/8 + ε approximation for any constant ε > 0 (like .001) for MAX-
exactly-3-SAT is NP-hard.

In general, the area of approximation algorithms and approximation hardness is a major area of
algorithms research.

5


