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An Algorithms-based 
Intro to Machine 
Learning, part I 

Avrim Blum 
 

 CMU 15-451/651 lecture 11/12/13 

[Based on portions of intro lectures in 15-859(B) Machine Learning 
Theory, and on a talk given at the National Academy of Sciences 
“Frontiers of Science” symposium.] 

Plan for today 

• Machine Learning intro: basic questions 
and issues & models. 

• A formal analysis of “Occam’s razor”. 
• Support-vector machines 
• Perceptron algorithm 

 

Machine learning can be used to... 
• recognize speech, 
• identify patterns in data, 
• steer a car, 
• play games, 
• adapt programs to users, 
• improve web search, ... 

From a scientific perspective: can we develop 
models to understand learning as a computational 
problem, and what types of guarantees might we 
hope to achieve? 

A typical setting 
• Imagine you want a computer program to 

help filter which email messages are spam 
and which are important. 

• Might represent each message by n features. 
(e.g., return address, keywords, spelling, etc.) 

• Take sample S of data, labeled according to 
whether they were/weren’t spam. 

• Goal of algorithm is to use data seen so far 
produce good prediction rule (a “hypothesis”) 
h(x) for future data.  

The concept learning setting 
E.g.,  

Given data, some reasonable rules might be: 
•Predict SPAM if ¬known AND (money OR pills) 
 

•Predict SPAM if money + pills – known > 0. 
 

•... 

a positive  
example 

a negative  
example 

Big questions 

(A)How might we automatically generate 
rules that do well on observed data? 

[algorithm design] 
 

(B)What kind of confidence do we have 
that they will do well in the future? 

[confidence bound / sample complexity] 
 

for a given learning alg, how much data do we 
need, and how can we design alg to need less? 
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Algorithm design portion 
• How about this problem of learning a linear 

separator?   
– Want to solve for weight vector w such that 𝑤 ⋅ 𝑥 ≥ 1 

for all positive x, and 𝑤 ⋅ 𝑥 ≤ −1 for all negative x. 

• Any ideas? 

+ 

+ 

+ 

+ 

- 

- 
- 

- 

- 

Use linear programming! 

Algorithm design portion 
• How about this problem of learning a linear 

separator?   
– Want to solve for weight vector w such that 𝑤 ⋅ 𝑥 ≥ 1 

for all positive x, and 𝑤 ⋅ 𝑥 ≤ −1 for all negative x. 

• Any ideas? 

• Additional issues: no perfect separator, margins. 

• “Support Vector Machine”: 
– 𝑤 ⋅ 𝑥 ≥ 1 − 𝜖𝑖 for positive ex i. 

– 𝑤 ⋅ 𝑥 ≤ −1 + 𝜖𝑖 for negative ex i. 

– 𝜖𝑖 ≥ 0.   Minimize  𝜖𝑖 + 𝑐 𝑤
2

𝑖   

   (convex optimization) 

+ 

+ 

+ 

+ 

- 

- 

- 

- 
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Now, for the confidence question, we’ll need some 
connection between future data and past data. 

Natural formalization (PAC) 

• We are given sample S = {(x,y)}. 
– View labels y as being produced by some target 

function f.  

• Alg does optimization over S to produce 
some hypothesis (prediction rule) h. 

• Assume S is a random sample from some 
probability distribution D. Goal is for h to 
do well on new examples also from D. 

I.e., Prx~D[h(x)f(x)] < e. 

Email msg Spam or not? 

Example of analysis: Decision Lists 

Say we suspect there might be a good prediction 
rule of this form.  

1. Design an efficient algorithm A that will find a 
consistent DL if one exists. 

2. Show that if S is of reasonable size, then 
Pr[exists consistent DL h with err(h) > e] < d. 

3. This means that A is a good algorithm to use if 
f is, in fact, a DL. 

     (a bit of a toy example since would want to 
extend to “mostly consistent” DL) 

How can we find a consistent DL? 

if (x1=0) then -, else 
if (x2=1) then +, else 

if (x4=1) then +, else - 

Decision List algorithm 
• Start with empty list. 

• Find if-then rule consistent with data.  
 (and satisfied by at least one example) 

• Put rule at bottom of list so far, and cross off 
examples covered. Repeat until no examples remain. 

If this fails, then: 
•No rule consistent with remaining data. 
•So no DL consistent with remaining data. 
•So, no DL consistent with original data. 

OK, fine.  Now why should we expect it 
to do well on future data? 
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Confidence/sample-complexity 

• Consider some DL h with err(h)>e, that we’re 
worried might fool us. 

• Chance that h survives |S| examples is at 
most (1-e)|S|. 

• Let |H| = number of DLs over n Boolean 
features.  |H| < (4n+2)!. (really crude bound) 

 

  So, Pr[some DL h with err(h)>e is consistent] 
    ≤|H|(1-e)|S|. 

 

• This is <0.01 for |S| > (1/e)[ln(|H|) + ln(100)] 

                        or about (1/e)[n ln n + ln(100)] 

Example of analysis: Decision Lists 

Say we suspect there might be a good prediction 
rule of this form.  

1. Design an efficient algorithm A that will find a 
consistent DL if one exists. 

2. Show that if |S| is of reasonable size, then 
Pr[exists consistent DL h with err(h) > e] < d. 

3. So, if f is in fact a DL, then whp A’s hypothesis 
will be approximately correct.  “PAC model” 

Confidence/sample-complexity 

• What’s great is there was nothing special 
about DLs in our argument. 

 

• All we said was: “if there are not too many 
rules to choose from, then it’s unlikely one 
will have fooled us just by chance.” 

 

• And in particular, the number of examples 
needs to only be proportional to log(|H|). 

(big difference between 100 and e100.) 

Occam’s razor 
William of Occam (~1320 AD): 
 

 “entities should not be multiplied 
unnecessarily” (in Latin) 

 

Which we interpret as: “in general, prefer 
simpler explanations”. 

 

Why?  Is this a good policy?  What if we 
have different notions of what’s simpler? 

Occam’s razor (contd) 
A computer-science-ish way of looking at it: 

 

• Say “simple” = “short description”. 

• At most 2s explanations can be < s bits long. 

• So, if the number of examples satisfies: 

   m > (1/e)[s ln(2) + ln(100)] 

    

   Then it’s unlikely a bad simple explanation 
will fool you just by chance. 

 

Think of as 

10x #bits to 

write down h.  

Occam’s razor (contd)2 

• Even if we have different notions of what’s 
simpler (e.g., different representation 
languages), we can both use Occam’s razor. 
 

• Of course, there’s no guarantee there will 
be a short explanation for the data.  That 
depends on your representation. 

Nice interpretation: 
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Regularization 
• Very important notion in machine learning: 

basically a generalization of Occam’s razor. 

+ 

+ 

+ 

+ 

- - 

- 

- 

+ 

Minimize  [error on training set] + [complexity term] 

Typically hard to do 
exactly, so minimize 

an upper bound 

“Regularizer”: bounds the 
amount of overfitting. 

𝐸𝑟𝑟𝐷 ℎ    =         𝐸𝑟𝑟𝑆 ℎ                   + [𝐸𝑟𝑟𝐷 ℎ − 𝐸𝑟𝑟𝑆 ℎ ] 

Support-vector machines 
• An instantiation of this for the case of 

linear separators in high dimensions. 

Minimize  [error on training set] + [complexity term] 

Typically hard to do 
exactly, so minimize 

an upper bound 

“Regularizer”: bounds the 
amount of overfitting. 

+ 

+ 

+ 

+ 

- - 

- 

- 

+ 

• E.g., “bag of words”, “bag of phrases” 

Support-vector machines 
• Issue #1: minimizing error on S is NP-hard. 

So, replace with upper bound: “hinge loss”. 

Minimize  [error on training set] + [complexity term] 

Typically hard to do 
exactly, so minimize 

an upper bound 

“Regularizer”: bounds the 
amount of overfitting. 

+ 

+ 

+ 

+ 
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- 

- 
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• Issue #2: what to use as complexity term? 

Support-vector machines 
• “Hinge loss”:  𝜖𝑖𝑖 , where: 

– 𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜖𝑖 for positive 𝑥𝑖 ∈ 𝑆. 

– 𝑤 ⋅ 𝑥𝑖 ≤ −1+ 𝜖𝑖 for negative 𝑥𝑖 ∈ 𝑆. 

– 𝜖𝑖 ≥ 0. 

Minimize  [error on training set] + [complexity term] 

Typically hard to do 
exactly, so minimize 

an upper bound 

“Regularizer”: bounds the 
amount of overfitting. 

+ 

+ 

+ 

+ 
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- 
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- 

- 

+ 
+ 

𝑤 ⋅ 𝑥 = 0 

𝑤 

pe
na

lt
y 

𝑤 ⋅ 𝑥 (for positive 𝑥) 

 𝜖𝑖
𝑖

 

1/|𝑤| = “margin of 
separation” 

𝑐 ⋅ 𝑤 2 

Q: How to connect 𝑤 2 to 
the amount of overfitting?  

Perceptron algorithm 
• Suppose there exists a feasible soln 
𝑤∗ s.t. 𝑤∗ ⋅ 𝑥 ≥ 1 for all 𝑥 ∈ 𝑆, where 
𝑥 ≤ 1 for all 𝑥 ∈ 𝑆. 

• The Perceptron algorithm is an online 
algorithm that will find a feasible 𝑤 
and make only 𝑂( 𝑤∗ 2) mistakes. 

+ 

+ 

+ 

+ 

- 

- 
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+ 
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𝑤 

+ 

+ 

+ 
+ 

- 

- - 

- 

- 

+ 

+ 
𝑤∗ 

Perceptron algorithm: 

• Start with weight vector 𝑤 = 0. 

• Mistake on positive 𝑥: let 𝑤 ← 𝑤 + 𝑥. 

• Mistake on negative 𝑥: let 𝑤 ← 𝑤 − 𝑥.  

Proof: • After each update, 𝑤 ⋅ 𝑤∗ increases by ≥ 1. 

 

Because: 𝑤 + 𝑥 ⋅ 𝑤∗ =
𝑤 ⋅ 𝑤∗ + 𝑥 ⋅ 𝑤∗ ≥
         𝑤 ⋅ 𝑤∗ + 1. 

• After each update, 𝑤 ⋅ 𝑤 increases by ≤ 3. 

 Because: 𝑤 + 𝑥 ⋅ 𝑤 + 𝑥 = 𝑤 ⋅ 𝑤 + 2 𝑤 ⋅ 𝑥 + 𝑥 ⋅ 𝑥 ≤ 𝑤 ⋅ 𝑤 + 3. 

Perceptron algorithm 
• Suppose there exists a feasible soln 
𝑤∗ s.t. 𝑤∗ ⋅ 𝑥 ≥ 1 for all 𝑥 ∈ 𝑆, where 
𝑥 ≤ 1 for all 𝑥 ∈ 𝑆. 

• The Perceptron algorithm is an online 
algorithm that will find a feasible 𝑤 
and make only 𝑂( 𝑤∗ 2) mistakes. 
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𝑤 

+ 

+ 
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- - 

- 
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+ 
𝑤∗ 

Perceptron algorithm: 

• Start with weight vector 𝑤 = 0. 

• Mistake on positive 𝑥: let 𝑤 ← 𝑤 + 𝑥. 

• Mistake on negative 𝑥: let 𝑤 ← 𝑤 − 𝑥.  

Proof: • After each update, 𝑤 ⋅ 𝑤∗ increases by ≥ 1. 

 • After each update, 𝑤 ⋅ 𝑤 increases by ≤ 3. 

 ⇒ After 𝑀 mistakes: 𝑀 ≤ 𝑤 ⋅ 𝑤∗ ≤ 𝑤 𝑤∗ ≤ 3𝑀
1

2|𝑤∗|. 

So: 𝑀 ≤ 3 𝑤∗ 2 
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• Note: this doesn’t prove why 𝑤 2 is a good thing 
to minimize in SVM optimization, but gives a feel 
for why the existence of such large margin 
separators means the world is “nice”.  

Perceptron algorithm Some Courses 

• 10-601 “Machine Learning” 
– Find out about a lot of different practical 

algorithms.  Some of the theory.  Implement 
algs and run them on data. 

• 15-859(B) “Machine Learning Theory” 
– My course  
– More focused on the kinds of guarantees you 

can prove.  Algorithms as the answer to a 
question.  Hwks more like 15-451. 

• 10-701 “Machine Learning” 
– Mix of both.  Serious commitment. 


