CMU 15-451/651 lecture 11/12/13

An Algorithms-based Intro to Machine Learning, part I

Avrim Blum

[Based on portions of intro lectures in 15-859(B) Machine Learning Theory, and on a talk given at the National Academy of Sciences "Frontiers of Science" symposium.]

Plan for today

- Machine Learning intro: basic questions and issues & models.
- A formal analysis of "Occam's razor".
- Support-vector machines
- Perceptron algorithm

Machine learning can be used to...

- recognize speech,
- identify patterns in data,
- steer a car,
- play games,
- adapt programs to users,
- improve web search, ...

From a scientific perspective: can we develop models to understand learning as a computational problem, and what types of guarantees might we hope to achieve?

A typical setting

- Imagine you want a computer program to help filter which email messages are spam and which are important.
- Might represent each message by n features. (e.g., return address, keywords, spelling, etc.)
- Take sample S of data, labeled according to whether they were/weren't spam.
- Goal of algorithm is to use data seen so far produce good prediction rule (a "hypothesis") h(x) for future data.

I.e., $\Pr_{x\sim D}[h(x)\neq f(x)] < \varepsilon$.

x_1	<u>x</u> 2	<u>x</u> 3	<i>x</i> ₄	<i>x</i> 5	label
1	0	0	T	T	+
0	1	1	0	0	-
1	-1	1	0	0	+ +
0	0	0	1	0	
1	1	0	1	1	<u> </u>
1	0	0	0	1	<u>-</u>

Decision List algorithm
• Start with empty list.
 Find if-then rule consistent with data. (and satisfied by at least one example)
• Put rule at bottom of list so far, and cross off examples covered. Repeat until no examples remain.
If this fails, then: •No rule consistent with remaining data. •So no DL consistent with remaining data. •So, no DL consistent with original data. OK, fine. Now why should we expect it to do well on future data?

Confidence/sample-complexity

- Consider some DL h with err(h)>ε, that we're worried might fool us.
- Chance that h survives |S| examples is at most $(1-\epsilon)^{|S|}$.
- Let |H| = number of DLs over n Boolean features. |H| < (4n+2)!. (really crude bound)

So, $Pr[some DL h with err(h) \ge is consistent] \le |H|(1-\varepsilon)^{|S|}$.

 This is <0.01 for |S| > (1/ε)[ln(|H|) + ln(100)] or about (1/ε)[n ln n + ln(100)]

Confidence/sample-complexity

- What's great is there was nothing special about DLs in our argument.
- All we said was: "if there are not too many rules to choose from, then it's unlikely one will have fooled us just by chance."
- And in particular, the number of examples needs to only be proportional to log(|H|).
 (big difference between 100 and e¹⁰⁰.)

Occam's razor

William of Occam (~1320 AD):

"entities should not be multiplied unnecessarily" (in Latin)

Which we interpret as: "in general, prefer simpler explanations".

Why? Is this a good policy? What if we have different notions of what's simpler?

Occam's razor (contd)

A computer-science-ish way of looking at it:

- Say "simple" = "short description".
- At most 2^s explanations can be < s bits long.
- So, if the number of examples satisfies:

Think of as $m > (1/\epsilon)[s \ln(2) + \ln(100)]$

Then it's unlikely a bad simple explanation will fool you just by chance.

Occam's razor (contd)²

Nice interpretation:

- Even if we have different notions of what's simpler (e.g., different representation languages), we can both use Occam's razor.
- Of course, there's no guarantee there will be a short explanation for the data. That depends on your representation.

Perceptron algorithm

 Note: this doesn't prove why |w|² is a good thing to minimize in SVM optimization, but gives a feel for why the existence of such large margin separators means the world is "nice".

Some Courses

- 10-601 "Machine Learning"
 - Find out about a lot of different practical algorithms. Some of the theory. Implement algs and run them on data.
- 15-859(B) "Machine Learning Theory"
 - My course 😊
 - More focused on the kinds of guarantees you can prove. Algorithms as the answer to a question. Hwks more like 15-451.
- 10-701 "Machine Learning"
 - Mix of both. Serious commitment.