
1

An Algorithms-based
Intro to Machine
Learning, part II

Avrim Blum

 CMU 15-451/651 lecture 11/14/13
Last time / today

Last time: looked at model where data is
coming from some probability distribution.

– Take a sample S, find h with low 𝑒𝑟𝑟𝑠(ℎ).
– Ask: when can we be confident that 𝑒𝑟𝑟𝐷(ℎ) is

low too? (Or more generally, that the gap
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆 ℎ is low.)

– Gives us confidence in our predictions.

Today: what if we don’t assume the future
looks like the past. What can we say then?

Online learning
• What if we don’t want to make assumption

that data is coming from some fixed
distribution? Or any assumptions on data?

• Can no longer talk about past performance
predicting future results.

• Can we hope to say anything interesting at
all??

Idea: regret bounds.
Show that our algorithm does nearly as well
as best predictor in some large class.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the
market go up or down?)

• We then want to use their advice somehow to
make our prediction. E.g.,

Say we want to predict the stock market.

Basic question: Is there a strategy that allows us to do
nearly as well as best of these in hindsight?

[“expert” = someone with an opinion. Not necessarily
someone who knows anything.]

Simpler question
• We have n “experts”.

• One of these is perfect (never makes a mistake).
We just don’t know which one.

• Can we find a strategy that makes no more than
lg(n) mistakes?

Answer: sure. Just take majority vote over all
experts that have been correct so far.

Each mistake cuts # available by factor of 2.

Note: this means ok for n to be very large.

What if no expert is perfect?

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority Alg:
– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

2

Analysis: do nearly as well as best
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

 So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

So, if m is small, then M is pretty small too.

Randomized Weighted Majority
2.4(m + lg n) not so good if the best expert makes a

mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick

70:30) Idea: smooth out the worst case.

• Also, generalize ½ to 1- e.

M = expected
#mistakes

Analysis
• Say at time t we have fraction Ft of weight on

experts that made mistake.

• So, we have probability Ft of making a mistake, and
we remove an eFt fraction of the total weight.
– Wfinal = n(1-e F1)(1 - e F2)...

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] · ln(n) - e t Ft

 (using ln(1-x) < -x)

 = ln(n) - e M. (Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m).

• Now solve: ln(n) - e M > m ln(1-e).

What can we use this for?
• Can use for repeated play of matrix game:

– Consider cost matrix where all entries 0 or 1.

– Rows are different experts. Start each with
weight 1.
• Notice that the RWM algorithm is equivalent to “pick

an expert with prob 𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗𝑗 , and go with it”.

• Can apply when experts are actions rather than
predictors.

• 𝐹𝑡 = fraction of weight on rows that had “1” in
adversary’s column.

– Analysis shows do nearly as well as best row in
hindsight!

What can we use this for?
In fact, alg/analysis extends to costs in [0,1], not
just {0,1}.

– We assign weights 𝑤𝑖, inducing probabilities
𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗 .𝑗

– Adversary chooses column. Gives cost vector 𝑐 .
We pay (expected cost) 𝑝 ⋅ 𝑐 .

– Update: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 .

World – life – fate - opponent

RWM

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

E[cost] ≤ 1 + 𝜖 𝑂𝑃𝑇 +
1

𝜖
log 𝑛

In T steps, E[cost] ≤ 𝑂𝑃𝑇 + 𝜖𝑇 +
1

𝜖
log 𝑛

3

In fact, gives a proof of the minimax theorem…

RWM
Nice proof of minimax thm (sketch)
• Suppose for contradiction it was false.

• This means some game G has VC > VR:
– If Column player commits first, there exists

a row that gets the Row player at least VC.

– But if Row player has to commit first, the
Column player can make him get only VR.

• Scale matrix so payoffs to row are
in [-1,0]. Say VR = VC - .

VC

VR

Proof sketch, contd
• Now, consider randomized weighted-majority

alg, against Col who plays optimally against
Row’s distrib.

• In T steps,

– Alg gets ≥ [best row in hindsight] −𝜖𝑇 – log (𝑛)/e

– BRiH ≥ 𝑇𝑉𝐶 [Best against opponent’s empirical
distribution]

– Alg ≤ 𝑇𝑉𝑅 [Each time, opponent knows your
randomized strategy]

– Gap is T. Contradicts assumption if use e = /2,
once 𝑇 > log (𝑛)/𝜖2.

