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An Algorithms-based 
Intro to Machine 
Learning, part II 

Avrim Blum 
 

 CMU 15-451/651 lecture 11/14/13 
Last time / today 

Last time: looked at model where data is 
coming from some probability distribution. 

– Take a sample S, find h with low 𝑒𝑟𝑟𝑠(ℎ). 
– Ask: when can we be confident that 𝑒𝑟𝑟𝐷(ℎ) is 

low too?  (Or more generally, that the gap 
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆 ℎ  is low.) 

– Gives us confidence in our predictions. 

Today: what if we don’t assume the future 
looks like the past.  What can we say then? 

Online learning 
• What if we don’t want to make assumption 

that data is coming from some fixed 
distribution?  Or any assumptions on data? 

• Can no longer talk about past performance 
predicting future results. 

• Can we hope to say anything interesting at 
all?? 

Idea: regret bounds.   
Show that our algorithm does nearly as well 
as best predictor in some large class. 

Using “expert” advice 

• We solicit n “experts” for their advice. (Will the 
market go up or down?) 

• We then want to use their advice somehow to 
make our prediction.  E.g., 

Say we want to predict the stock market. 

Basic question: Is there a strategy that allows us to do 
nearly as well as best of these in hindsight? 

[“expert” = someone with an opinion.  Not necessarily 
someone who knows anything.] 

Simpler question 
• We have n “experts”. 

• One of these is perfect (never makes a mistake).  
We just don’t know which one. 

• Can we find a strategy that makes no more than 
lg(n) mistakes? 

Answer: sure.  Just take majority vote over all 
experts that have been correct so far. 

Each mistake cuts # available by factor of 2. 

Note: this means ok for n to be very large. 

What if no expert is perfect? 

Intuition: Making a mistake doesn't completely 
disqualify an expert. So, instead of crossing 
off, just lower its weight. 

 

Weighted Majority Alg: 
–  Start with all experts having weight 1. 

–  Predict based on weighted majority vote. 

–  Penalize mistakes by cutting weight in half. 
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Analysis: do nearly as well as best 
expert in hindsight 

•  M = # mistakes we've made so far. 

•  m = # mistakes best expert has made so far. 

•  W = total weight (starts at n). 
 

•  After each mistake, W drops by at least 25%. 

    So, after M mistakes, W is at most n(3/4)M. 

•  Weight of best expert is (1/2)m. So, 

So, if m is small, then M is pretty small too. 

Randomized Weighted Majority 
2.4(m + lg n) not so good if the best expert makes a 

mistake 20% of the time. Can we do better? Yes. 

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case. 

• Also, generalize ½ to 1- e.  

M = expected 
#mistakes 

Analysis 
• Say at time t we have fraction Ft of weight on 

experts that made mistake. 

• So, we have probability Ft of making a mistake, and 
we remove an eFt fraction of the total weight. 
– Wfinal = n(1-e F1)(1 - e F2)... 

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] · ln(n) - e t Ft 

      (using ln(1-x) < -x) 

                       = ln(n) - e M.             ( Ft = E[# mistakes]) 

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m). 

• Now solve: ln(n) - e M > m ln(1-e). 

What can we use this for? 
• Can use for repeated play of matrix game: 

– Consider cost matrix where all entries 0 or 1. 

– Rows are different experts.  Start each with 
weight 1. 
• Notice that the RWM algorithm is equivalent to “pick 

an expert with prob 𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗𝑗 , and go with it”. 

• Can apply when experts are actions rather than 
predictors.   

• 𝐹𝑡 = fraction of weight on rows that had “1” in 
adversary’s column. 

– Analysis shows do nearly as well as best row in 
hindsight! 

What can we use this for? 
In fact, alg/analysis extends to costs in [0,1], not 
just {0,1}.   

– We assign weights 𝑤𝑖, inducing probabilities 
𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗 .𝑗  

– Adversary chooses column. Gives cost vector 𝑐 . 
We pay (expected cost) 𝑝 ⋅ 𝑐 . 

– Update: 𝑤𝑖 ← 𝑤𝑖 1 − 𝜖𝑐𝑖 . 
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In fact, gives a proof of the minimax theorem… 

RWM 
Nice proof of minimax thm (sketch) 
• Suppose for contradiction it was false. 

• This means some game G has VC > VR: 
– If Column player commits first, there exists 

a row that gets the Row player at least VC. 

– But if Row player has to commit first, the 
Column player can make him get only VR. 

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - . 

VC 

VR 

Proof sketch, contd 
• Now, consider randomized weighted-majority 

alg, against Col who plays optimally against 
Row’s distrib. 

• In T steps, 

– Alg gets ≥ [best row in hindsight] −𝜖𝑇 –  log (𝑛)/e    

– BRiH ≥ 𝑇𝑉𝐶  [Best against opponent’s empirical 
distribution] 

– Alg ≤ 𝑇𝑉𝑅  [Each time, opponent knows your 
randomized strategy] 

– Gap is T. Contradicts assumption if use e = /2, 
once 𝑇 >  log (𝑛)/𝜖2. 


