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Abstract

Allowing access to resources, including data and hardware, without compromis-
ing their security is a fundamental challenge in computer science. Because of the
number and complexity of authorization policies in access control systems, it is
clear that ad hoc methods for specifying and enforcing policies cannot inspire a
high degree of trust. Authorization logics have been proposed as a theoretically
sound alternative.

However, for an authorization logic to be useful in practice, it should be able
to model most, if not all, naturally occurring policy features. One common fea-
ture is the time-dependency of authorizations. For example, a user may only be
permitted to access a given resource on workdays. Surprisingly, of the numerous
proposals for access control logics, we know of no logic that incorporates time
internally.

In an attempt to fill this void, this thesis develops a logic with explicit time
that permits reasoning about complex, yet natural, time-dependent authoriza-
tions. The logic is then extended to account for authorizations that may be
used only once. A careful study of the meta-theory of both logics is conducted,
and the logics’ rich expressive power is demonstrated through several examples.
Finally, a proof checker for the latter logic is formalized and discussed.



Chapter 1

Introduction

The tension between protecting an object and allowing it to be used or displayed
is a fundamental one, even for objects that are not digital. For example, how can
intruders be prevented from reading a classified document while still allowing
the members of that document’s security compartment to read and edit it? Or,
how can the public be prevented from using a departmental photocopier, while
still allowing members of the department to use it?

Because of this fundamental tension, organizations usually establish policies
that delineate the conditions under which an object can be accessed. These
policies, along with a mechanism for their enforcement, constitute an access
control system. But an access control system is valuable only if it can be trusted
to be correct: the policies must allow only what is desired by the organization
and the system must correctly enforce all of the policies.

As access control systems become more widespread and more complex, it
is increasingly clear that ad hoc methods can no longer guarantee a sufficient
level of trust in the system’s correctness: a formal approach to access control
is needed. One promising avenue is the use of logic for specifying policies.
Given an appropriately defined logic, policies can be encoded as concrete logical
structures, rather than relying on abstract policy descriptions.

But why is logic a solid foundation for access control? The specification of
policies in a logic provides three important benefits. First, once written in a
formal logic, policies have precisely specified meanings. The ambiguity inherent
in a natural language formulation no longer exists. Instead, the semantics of
the logic define the meaning of a policy exactly.

Second, by expressing them in a logic, access control policies can be enforced
by proof-carrying authorization (PCA) [6, 7]. In a PCA-based access control
system, each resource is guarded by a resource monitor. A user requesting
access to a resource must present the corresponding resource monitor with a
formal proof of why she is authorized, under the system’s policies, to access
that resource. The monitor then checks this proof for correctness. If the proof
is correct, access is granted; if the proof is incorrect, access is denied.

In PCA, then, the logical model of access control coincides with access con-
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trol in the real world: access is granted in practice if, and only if, it is granted
formally by the logical forms of the policies. In this way, a PCA-based imple-
mentation of an access control system is guaranteed to correctly adhere to that
system’s policies, whatever they may be.

Third, policies written in a logic can be subjected to extensive meta-analysis.
For example, non-interference properties of the logic can be proven and used
in this analysis, as demonstrated by Garg and Pfenning [23]. Potentially un-
intended consequences of the policies can then be discovered by automated, or
semi-automated, policy analysis tools based on these properties. This and other
meta-analyses increase confidence in policies’ correctness.

To take advantage of these benefits, it is crucial that the underlying autho-
rization logic be able to model as many policy motifs as possible. In some cases,
if the logic cannot express a critical feature of some policy, that feature could
be enforced by extra-logical methods. But by abandoning the use of logic and
reverting to ad hoc methods, the above benefits will no longer apply to that
feature. Specifically, although a PCA proof may be correct according to the
logic’s rules, access may still be denied due to the failure of the extra-logical
checks. This destroys the correspondence between the logical model of access
and access in practice. Even worse, meta-analysis of the formal policies cannot
be used to guarantee their correctness with respect to an informal specification
because the logic does not model a critical feature.

For this reason, when designing an authorization logic, common policy mo-
tifs should be considered for inclusion. One such motif is time. It is often
desirable to limit the times during which a resource can be accessed or to grant
authorizations that expire. For example, students should not be able to view
the solutions to a homework assignment until after the due date. Because of the
ubiquity of such time-dependent access control policies, one would hope that an
authorization logic incorporating time exists.

Surprisingly, of the numerous logics [2, 4, 6, 14, 21–23, 28, 29] and languages [10,
18, 38] proposed in the access control literature, few allow time-dependent poli-
cies. Those that do handle time, such as SecPAL [10], do so using extra-logical
mechanisms: we know of no authorization logic that incorporates time inter-
nally. This void motivates us to develop an authorization logic with time.

Because time-dependent authorizations typically use explicit times, such as
“between 9am and 5pm” or “during the month of May 2008,” the logic developed
in this thesis incorporates explicit time intervals rather than relative times, such
as “at some time in the future.” For this reason, the logic is dubbed η logic,
where η (spelled “eta”) stands for Explicit T ime Authorization.

η logic borrows ideas from constructive hybrid logic [11, 13, 16, 36] to model
time intervals as possible worlds in which propositions may be true. Accordingly,
the @ connective of hybrid logic is used to relativize the truth of a proposition to
a time interval, as in A@I. η logic also adopts techniques from constraint-based
reasoning [26, 37] to manage an inclusion relation between intervals.

Another common policy motif is that of consumable credentials. One often
wants to allow only a finite number of accesses. For example, students might be
freely authorized to make 250 photocopies per semester and must purchase the
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authorization to make additional copies. That is, a finite number of accesses
are free of charge.

An authorization logic that can express changes of state would be able to
account for such policies. Linear logic [17, 25] is a logic that can model con-
sumable resources. For this reason, logics of authorization that include ideas
from linear logic have been proposed [14, 22]. To incorporate linear policies in
addition to time-dependent ones, η logic is extended with techniques from linear
authorization logics. Thus, η logic is actually a family of logics comprised of a
non-linear η logic, ηN logic, and a linear η logic, ηL logic.

In summary, this thesis makes two conceptual contributions. First, an autho-
rization logic that directly incorporates time is developed and its applicability
to natural time-dependent policies is demonstrated. Second, the linear version
of η logic shows that linearity can peacefully coexist with explicit time. This
was not initially obvious because both linearity and time “consume” objects:
linearity by usage and time by expiration.

This thesis also makes a small practical contribution. The natural deduction
proof checker presented shows that a full-fledged PCA implementation of ηL

logic should be easily constructible, at least in a centralized system.

1.1 Related Work

Authorization Logics and Languages. We provide only a brief overview
of the vast literature on logics and languages for access control. For more
information, the reader is referred to a survey by Abadi [1].

The study of access control logics was initiated by Abadi, Burrows, and
Lampson [4, 28] in two landmark papers. This work was the first to introduce
the “says” connective for modeling the policies of principals, a connective found
in nearly all authorization logics that followed. The work also considered an
algebra over principals to model groups, delegation, and jointly made policies.
η logic does not include such an algebra in this thesis, and instead relies on uni-
versal quantification to account for groups and limited delegation, as in earlier
work [23].

Breaking from the classical pattern of the work of Abadi et al., Garg and
Pfenning [23] were the first to propose a constructive authorization logic. In
addition, they proved several non-interference theorems for their logic. Garg et
al. [22] continued this study by adding linearity and knowledge to their logic.
η logic is primarily derived from these constructive authorization logics. The
affirmation judgment, linearity, judgmental formulation, and constructive phi-
losophy are all adopted from those works.

Subsequently, Abadi interpreted work on the Dependency Core Calculus [3]
as a calculus of access control, obtaining a logic with lax-like modalities [2]
similar to that of Garg and Pfenning. However, Abadi significantly extended
the earlier work by describing a different, but related, non-interference theo-
rem, proof terms through the Curry-Howard isomorphism, and second order
quantification.
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Notable policy languages for access control include SecPAL [10] and Binder [18].
SecPAL is the only authorization logic or language that we know of to handle
time. However, in SecPAL, time restrictions are enforced by an external con-
straint mechanism and not reasoned about within the language. Binder extends
the datalog logic programming language with constructs for reasoning about
authorization.

Logics for Time. Incorporating time into logics has been the subject of much
study. The most common class is that of temporal logic [30] in which times are
relative to each other. Most temporal logics include the �, ♦, and © modalities
for representing all future times, some future time, and the next time (in a
discrete system), relative to the current time. But, having only these relative
modalities, temporal logics cannot refer to absolute times. Temporal logics
were indeed briefly considered for the design of a time-dependent authorization
logic in this thesis. However, because access control policies typically refer to
absolute, and not relative, times, this approach was rejected.

Closely related to traditional temporal logic is interval temporal logic [32],
which represents an interval as a discrete sequence of events. Again, these times
are relative and seem unsuitable for authorization policies.

In a departure from the temporal logic paradigm, Kanovich et al. [27] have
modeled real-time systems using linear logic and a distinguished predicate Time(t)
to represent the time t. While this approach permits the absolute representation
of time that appears necessary for access control policies, it still seems too weak
in a different way. For example, it is not clear how to express a conjunction of
A occurring at time tA and B occurring at time tB .

Closest in spirit to η logic is Temporal Annotated Constraint Logic Program-
ming (TACLP) [20]. TACLP contains a connective similar to the @ connective
of η logic, but only allows it to annotate atomic propositions with time intervals.
TACLP also differs from η logic in that the former is not an authorization logic;
the fundamental interaction between time and authorization handled by η logic
is nontrivial, and is therefore a unique contribution of η logic.

Hybrid Logic. To represent the interval at which a proposition is true, η
logic borrows ideas from hybrid logic [11]. Hybrid logic extends modal logic by
allowing the possible worlds to appear within propositions.

As η logic is constructive, it is most closely related to the constructive hybrid
logics presented by Bräuner and de Paiva [13] and Chadha et al. [16]. Reed [36]
also describes a constructive hybrid logical framework that inspired the hybrid
features of η logic.

Constraint-Based Reasoning. The incorporation of constraints into the
proof theory of η logic is heavily derived from earlier work by Saranlı and Pfen-
ning [37] on a logic for robotic planning and work by Jia [26] in the context of
reasoning about memory invariants. Jia’s comments on the tradeoffs of includ-
ing disjunctive constraints informed the decision to keep the constraints of η
logic simple.
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Linear Logic. In his influential paper on the subject, Girard pioneered linear
logic [25], a logic for modeling consumable resources and other kinds of mutable
state. Later, Chang et al. [17] introduced a judgmental reconstruction of intu-
itionistic linear logic by refining the hypothetical judgment. As ηL logic is also
based on judgmental principles, a similar refinement is used.

The inclusion of linearity in an authorization logic to model finitely-usable
credentials is certainly not unique to ηL logic; it was first adopted by Garg et
al. [22] and independently discovered by Cederquist et al. [14].

Enforcing the single-use nature of consumable certificates in an implementa-
tion of a linear authorization logic is relatively straightforward if the certificates
are stored in a central database. Bowers et al. [12] discuss the more difficult
problem of coordinating accurate consumption of distributed certificates, and
suggest contract-signing protocols as a solution.

Proof-Carrying Authorization. Appel and Felten [6] introduced proof-
carrying authorization (PCA) as a mechanism for enforcing access control poli-
cies via higher-order logic. In their interpretation, security policies are written
in an application-specific logic and encoded in higher-order logic. Then, before
access will be granted, the user must construct a correct, explicit proof of why
the security policies justify access. Thus, access in practice and access in the
logic coincide. To take advantage of this correspondence, we intend that η logic
be amenable to PCA enforcement.

Previous implementations of PCA have been used to control access to web-
pages [7] and offices [8, 9]. Recently, Vaughan et al. [38] have designed a strongly
typed language that directly incorporates PCA. It would be interesting to ex-
plore how time could be added to this language by using ideas from η logic.

Organization of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 reviews a non-
linear logic of authorization that does not use time. Examples are given to clarify
the use of the logic and demonstrate the need for time-dependent policies. In
Chapter 3, we develop ηN logic. Examples highlight the increased expressive
power of ηN logic and indicate the need for linear policies. Meta-theoretic prop-
erties of the logic are proven, increasing our confidence in the logic’s soundness.
Chapter 4 extends the previous logic by adding linearity. As the examples show,
linearity increases the expressive power even more. The meta-theoretic prop-
erties are also extended to account for linearity. Finally, Chapter 5 presents a
natural deduction formulation of ηL logic and briefly describes the corresponding
implementation.
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Chapter 2

Preliminaries:
Garg-Pfenning
Authorization Logic

η logic draws very heavily from a constructive, proof-theoretic authorization
logic developed by Garg and Pfenning [23]. Before presenting η logic, it will
be useful to review this logic (hereafter GP logic). This review will allow us to
introduce concepts from proof-theoretic authorization logics, including the key
concept of affirmation, will familiarize the reader with the expression of access
control policies in an authorization logic through two examples, and will afford
us an opportunity to present some meta-theory.

2.1 Logical System

Proof-theoretic logics, as an alternative to axiomatic logics, were first introduced
by Gentzen [24]. These logics make the meanings of propositions exact by
precisely specifying how each form of proposition may be verified. By coinciding
a logic’s semantics with its syntactic proofs, proof theory provides a high degree
of assurance in that logic’s correctness.

Later, Martin-Löf introduced a distinction between judgments and proposi-
tions [31]. Under this formulation, a judgment is an object of knowledge and is
made evident by a formal proof. Propositions, then, are the subjects of judg-
ments.

GP logic adheres to both of these fundamental ideas in an effort to keep the
meanings of proofs clean and direct. (For details on this judgmental approach,
the reader is referred to a discussion by Pfenning and Davies [33].) We begin
by reviewing the first-order terms and sorts of the logic. Next, we introduce the
truth and affirmation judgments that form the foundation of GP logic. This
introduction is carefully separated from the description of the logic’s proposi-
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tions, to emphasize Martin-Löf’s distinction. Finally, we present the proof rules
of GP logic as a Gentzen-style sequent calculus.

2.1.1 First-order Terms and Sorts

To account for atomic propositions built from predicates and for universal and
existential quantification, GP logic contains terms t which are classified by sorts
s. That term t has sort s is denoted by the judgment t:s.

The particular sorts and terms available in GP logic are left open-ended,
with the exception that a sort principal of principals is specifically assumed.
Principals are the entities, typically users or machines, that can make statements
of affirmation. The meta-variable K is used to stand for an arbitrary principal.

Because we will want to be able to reason parametrically with terms, GP
logic introduces a context1, Σ, to track the parameters in scope and their re-
spective sorts. The syntax of a parameter context is:

Σ ::= · | Σ, x:s

Thus, a parameter context is simply a map of parameter-sort pairings: it may
be empty, written as ·; or, it may be a parameter context Σ followed by the
ascription of a sort s to a parameter x, written as Σ, x:s. To avoid ambiguities,
we assume that all parameters declared in Σ are distinct from x; this convention
can be maintained by implicitly α-renaming variables.

Since GP logic includes parameters, the judgment t:s must be extended to
account for parameters, in addition to ground terms. The new judgment is:

Σ ` t:s

meaning that term t has sort s in parameter context Σ. In particular, Σ, x:s `
x:s holds. Also, [t/x] stands for the capture-avoiding substitution of term t for
all occurrences of the free variable x. In particular, [t/x]A is the proposition A
with all free occurrences of x replaced by t.

2.1.2 Judgments

In GP logic, it is necessary to reason about the truth of propositions. That is,
statements of the form “Proposition A is true” are objects of knowledge and
the subjects of proofs. Following Martin-Löf’s philosophy, GP logic therefore
includes the judgment form A true, which presupposes that A is a well-formed
proposition. For syntactic simplicity, the modifier true will often be dropped, so
that A will implicitly stand for the judgment A true.

However, the truth of propositions is not a sufficiently expressive notion
upon which to base an authorization logic. In addition to reasoning about
objective truths, it is necessary to reason about principals’ policies or intents.
The approach taken by GP logic is to add a new judgment form K affirms A,

1Although this meaning is distinct from its usage in the access control literature, we will
continue to use this terminology, as it is common in logic and type theory.
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meaning that “Principal K affirms that proposition A is true.” A principal,
then, issues a policy by affirming the truth of that policy. The affirmation
K affirms A should not be interpreted narrowly as a direct statement of A by
K. Instead, it may follow indirectly from other affirmations made by K. For
example, in an implementation, K affirmsA will be established either directly by
a digital certificate signed by K containing A or indirectly by a logical derivation
stemming from such certificates.

These judgments of truth and affirmation are the basic judgment forms of
GP logic. However, they are of little use in isolation; in a logic, we need to be
able to reason from hypotheses. The mechanism that GP logic uses is termed
a hypothetical judgment or sequent, an extension of a basic judgment that
explicitly lists the allowable assumptions.

Specifically, GP logic uses two hypothetical judgment forms:

Σ; Γ =⇒ A true

Σ; Γ =⇒ K affirms A

where Σ is a context of the parameters, ascribed with sorts, that may appear
free in Γ, K, and A; and Γ is an unordered set of hypotheses of the form A true.
In the following sections, we write γ in place of the basic judgment appearing
to the right of =⇒ when its form does not matter; γ may stand for either A true
or K affirms A.

The first of the above hypothetical judgments may be read “Under the hy-
potheses of Γ, proposition A is true, parametrically in the terms of Σ.” Similarly,
the second hypothetical judgment states “Under the hypotheses of Γ, principal
K affirms that proposition A is true, parametrically in the terms of Σ.”

2.1.3 Propositions

The syntax of propositions in GP logic is:

A,B ::= P | A ∧B | > | A ∨B | A ⊃ B | ∀x:s.A | ∃x:s.A | 〈K〉A

GP logic contains nearly all of the ordinary connectives from first-order logic:
atomic propositions, P ; conjunction, A ∧ B; truth, >; implication, A ⊃ B;
universal quantification, ∀x:s.A; and existential quantification, ∃x:s.A. But
falsehood, ⊥, is conspicuously absent. Falsehood is omitted from ηN logic for
practical reasons that will be discussed in Section 3.1.4, and, for consistency, it
is also omitted here. However, it should be noted that adding falsehood does
not affect the logic itself; the meta-theorems presented in Section 2.3 have been
verified with falsehood included.

Despite the close similarity of these propositions to those of first-order logic,
there is one form of proposition that is unique to authorization logics: 〈K〉A,
read “K says A”. This proposition internalizes the affirmation judgment Kaffirms
A, meaning that it is semantically equivalent to K affirmsA, but is a proposition
rather than a judgment.
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Having an affirmation proposition allows affirmations to be combined with
logical connectives, such as implication. For example, we could not combine
the judgment K affirms A with the proposition B via implication because this
would violate Martin-Löf’s distinction between judgments and propositions:
only propositions, and not judgments, can be operated on by the logical con-
nectives. But we can combine the proposition 〈K〉A with the proposition B via
implication as (〈K〉A) ⊃ B.

2.1.4 Inference Rules

GP logic possesses a proof-theoretic semantics, and its proof rules are thus
critically important. They, and not any other external semantics, establish
the meaning of the truth and affirmation judgments. We therefore proceed to
present the proof rules of GP logic.

Each inference rule is written in the form:

J1 J2 · · · Jn

J
label

This notation means that if the premise judgments J1, J2, . . . , Jn are evident,
then the conclusion judgment J is also evident by the rule named label. Note
that n may be 0. In this case, the rule has the form:

J
label

and the conclusion judgment J is always evident: such rules are axioms.
With the notation explained, we can now describe the inference rules of GP

logic. We begin by examining the meaning of hypotheses through the init rule.

Σ; Γ, P =⇒ P
init

We would expect that an assumption A true could be used to immediately con-
clude A true. This is, in fact, the case. However, for technical reasons relating
to proof search, we do not adopt this in its full generality as an inference rule,
but instead use the above init rule which restricts the direct use of hypotheses to
atomic propositions P . We can recover the more general form as a meta-theorem
(Theorem 2.1, Section 2.3).

Next, we consider the rules for the affirmation judgment and its internaliza-
tion as a proposition.

Σ; Γ =⇒ A

Σ; Γ =⇒ K affirms A
affirms

When is an affirmation judgment evident? That is, when can we conclude that
a principal K affirms the truth of proposition A? If A is true, it is made evident
by a proof. When this proof is presented to K, K is confronted with irrefutable
evidence of the truth of A. K cannot possibly deny the truth of A, for doing
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so would violate K’s rationality. Instead, K must affirm it. Thus, one way of
establishing K affirms A is to establish A true. This is captured by the above
affirms rule.

In a sequent calculus, the meaning of each logical connective ? is defined by
a set of right rules and a set of left rules. Right rules show how A ? B true may
be established, and left rules show how a hypothesis A ? B true may be used.
For the 〈〉 connective, there is one right rule and one left rule:

Σ; Γ =⇒ K affirms A

Σ; Γ =⇒ 〈K〉A
〈〉R

Σ; Γ, 〈K〉A,A =⇒ K affirms B

Σ; Γ, 〈K〉A =⇒ K affirms B
〈〉L

The right rule, 〈〉R, specifies that 〈K〉A true may be established by evidence that
K affirms A holds. This is consistent with our above claim that the proposition
〈K〉A is the internalization of the judgment K affirms A. We now know how to
verify 〈K〉A true, but how does one use the hypothesis 〈K〉A true?

The left rule, 〈〉L, gives instructions for how the hypothesis 〈K〉A true may
be used. Because 〈K〉A true represents the knowledge that K affirms A true,
from K’s perspective, A may as well be true. So, provided that we are reasoning
about an affirmation made by K, that is, provided that we are inside K’s mind,
the hypotheses 〈K〉A true and A true are equivalent.

This rule also holds principals accountable for their statements. Having
affirmed A true, principal K cannot refute it, and so 〈K〉A may be used as
A true when reasoning about an affirmation made by K.

We now review the inference rules for implication and universal quantifica-
tion. A reader familiar with the sequent calculus presentation of first-order logic
may skip this discussion; there is nothing unique to GP logic in the remaining
rules.

First, we give the rules for implication.

Σ; Γ, A =⇒ B

Σ; Γ =⇒ A ⊃ B
⊃R

Σ; Γ, A ⊃ B =⇒ A Σ; Γ, A ⊃ B,B =⇒ γ

Σ; Γ, A ⊃ B =⇒ γ
⊃L

The implication A ⊃ B may be intuitively thought of as a plan for converting
a proof of A true to a proof of B true. Such a conversion can be established
by assuming that a proof of A true is given and constructing a proof of B true
from this assumption. This is captured by the right rule, ⊃R. The conversion
intuition also suggests that the hypothesis A ⊃ B true can be used by executing
this plan. Given A true, the plan A ⊃ B true can be carried out to produce
B true. This intuition is formalized in the left rule, ⊃L.

Next, we give the rules for universal quantification.

Σ, x:s; Γ =⇒ A

Σ; Γ =⇒ ∀x:s.A ∀R
Σ ` t:s Σ; Γ,∀x:s.A, [t/x]A =⇒ γ

Σ; Γ,∀x:s.A =⇒ γ
∀L

The right rule, ∀R, states that ∀x:s.A true may be verified by establishing A true
for all possible terms of sort s. This is done by introducing a new parameter
x of sort s and establishing A true parametrically in x. Just as the implication
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Initial Rule

Σ; Γ, P =⇒ P
init

Affirmation and 〈K〉A

Σ; Γ =⇒ A

Σ; Γ =⇒ K affirms A
affirms

Σ; Γ =⇒ K affirms A

Σ; Γ =⇒ 〈K〉A
〈〉R

Σ; Γ, 〈K〉A,A =⇒ K affirms B

Σ; Γ, 〈K〉A =⇒ K affirms B
〈〉L

Other Connectives

Σ; Γ =⇒ A Σ; Γ =⇒ B

Σ; Γ =⇒ A ∧B
∧R

Σ; Γ, A ∧B,A =⇒ γ

Σ; Γ, A ∧B =⇒ γ
∧L1

Σ; Γ, A ∧B,B =⇒ γ

Σ; Γ, A ∧B =⇒ γ
∧L2

Σ; Γ =⇒ > >R

Σ; Γ =⇒ A

Σ; Γ =⇒ A ∨B
∨R1

Σ; Γ =⇒ B

Σ; Γ =⇒ A ∨B
∨R2

Σ; Γ, A ∨B,A =⇒ γ Σ; Γ, A ∨B,B =⇒ γ

Σ; Γ, A ∨B =⇒ γ
∨L

Σ; Γ, A =⇒ B

Σ; Γ =⇒ A ⊃ B
⊃R

Σ; Γ, A ⊃ B =⇒ A Σ; Γ, A ⊃ B,B =⇒ γ

Σ; Γ, A ⊃ B =⇒ γ
⊃L

Σ, x:s; Γ =⇒ A

Σ; Γ =⇒ ∀x:s.A ∀R
Σ ` t:s Σ; Γ,∀x:s.A, [t/x]A =⇒ γ

Σ; Γ,∀x:s.A =⇒ γ
∀L

Σ ` t:s Σ; Γ =⇒ [t/x]A
Σ; Γ =⇒ ∃x:s.A ∃R

Σ, x:s; Γ,∃x:s.A,A =⇒ γ

Σ; Γ,∃x:s.A =⇒ γ
∃L

Figure 2.1: The inference rules for Garg-Pfenning logic.
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A ⊃ B can be thought of as a plan for converting a proof of A true to a proof of
B true, the right rule, ∀R, suggests that ∀x:s.A can be thought of as a plan for
creating a proof of [t/x]A true for any term t of sort s. So, assuming such a plan
and given a term t of sort s, the plan can be carried out to produce [t/x]A true.
This intuition is captured by the left rule, ∀L.

The remaining connectives of GP logic and their rules are taken directly from
first-order logic, as for implication and universal quantification. A summary of
all of the inference rules in GP logic is given Figure 2.1.

Before concluding this section, we illustrate some properties of GP logic. We
write =⇒ A if, for all Σ, Σ; · =⇒ A true is derivable, and write 6=⇒ A otherwise.
Also, A ≡ B abbreviates (A ⊃ B) ∧ (B ⊃ A).

1. =⇒ A ⊃ (〈K〉A)

2. =⇒ (〈K〉〈K〉A) ⊃ (〈K〉A)

3. =⇒ (〈K〉(A ⊃ B)) ⊃ ((〈K〉A) ⊃ (〈K〉B))

4. 6=⇒ (〈K〉A) ⊃ A

5. 6=⇒ A

Properties 1–3 show that 〈K〉 is similar to a lax modality [19]. Property 4 high-
lights the difference between truth and affirmation: truth is always affirmed
(as shown in Property 1), but an affirmation by some principal does not entail
truth. Finally, property 5 establishes the consistency of GP logic by demon-
strating that an arbitrary proposition is not true a priori.

2.2 Examples

Now that we have presented the judgments and crucial inference rules of GP
logic, the reader should be sufficiently prepared to consider a few examples
of policies written in GP logic. First, we present an example that will recur
throughout the remainder of this thesis: controlling access to academic offices.
Although this example is relatively small, it will still demonstrate the use of
affirmation in GP logic, and, in later chapters, highlight the increased expressive
power of η logic. Second, we examine the application of GP logic to chemical
laboratory inspections.

In these examples, we adopt the conventions that ∨ and ⊃ are right associa-
tive, and that binding precedence decreases in the order: 〈〉, ∨, ⊃, ∀.

2.2.1 Office Entry

In this example, we describe two hypothetical policies for the Grey system [8, 9],
an architecture for controlling entry to academic offices that was developed and
is currently deployed at Carnegie Mellon University. In the Grey system, each
office door is equipped with a processor that controls access to the office through
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PCA. Following the standard PCA methodology, the office door will unlock only
if the principal requesting access presents the doorfront processor with a correct
proof that, under the security policies of the system, she is authorized to enter.

For this example, we postulate the existence of an administrating principal,
admin, that controls entry to the various faculty, staff, and student offices in
his administrative domain. For simplicity, we also assume that the ownership
relation between principals and offices is an injective function, so that each office
can be named according to its owner.

Only one predicate is used here: may enter. may enter(K2,K1) means that
principal K2 is allowed to enter K1’s office.

One reasonable policy to include in such a system is the authorization of
every principal to enter her own office. Because admin controls each office, this
policy is expressed in GP logic as:

own : 〈admin〉(∀K:principal.may enter(K, K)) true

This policy may be read as “The administrator says that each principal K
may enter her own office.” Although extremely simple, this policy exhibits an
important point. Because the certificate corresponding to an affirmation must
be an independent object, it cannot contain free variables. Thus, any quantifiers
must appear inside the top-level affirmation, as seen in the own policy. For
example, the following logically equivalent formulation is difficult to enforce,
as it requires one certificate from admin for each member of the potentially
expandable set of principals:

∀K:principal.〈admin〉may enter(K, K) true

Another reasonable feature to have in an office access control system is the
ability of each office owner to decide who may enter her office. To accomplish
this, the administrator can agree to trust office owners’ access control decisions:

trust : 〈admin〉(∀K1:principal.∀K2:principal.
〈K1〉may enter(K2,K1) ⊃

may enter(K2,K1)) true

This policy may be read as “The administrator says that, for all pairs of princi-
pals K1 and K2, if K1 says K2 may enter K1’s office, then K2 may indeed enter
K1’s office.” The trust policy expresses a kind of delegation: K1 now speaks for
admin on matters of K1’s office.

To clarify how the trust policy can be used, consider a professor Alice and
her graduate student Bob. Suppose that Alice is out of the office on May 7,
2008. Bob needs to retrieve a paper from Alice’s office that he and Alice are
collaborating on. He calls Alice and she agrees to issue the following credential:

C : 〈Alice〉may enter(Bob,Alice) true

Bob then approaches Alice’s door and requests entry to her office using his cell
phone. Before the door will unlock, Bob must submit a correct proof of

ΣA,B; own, trust, C =⇒ 〈admin〉may enter(Bob,Alice) true
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where ΣA,B assigns sort principal to all principals in the system. That is, Bob
must prove that the administrator allows him to enter Alice’s office. Bob’s
phone constructs the required proof by simply applying the trust hypothesis to
the C hypothesis (up to an approximation). The doorfront processor checks this
proof, and, since it is correct, unlocks the door.

Although this policy serves its purpose, it is a rather coarse approximation
of the behavior desired in general. It is likely that Alice wants the credential C
to allow Bob access to her office only on May 7, 2008. If he needs access at a
later time, he should be required to contact Alice again. But, under GP logic,
once Alice issues credential C, Bob will be able to enter her office at any time,
even months or years after May 7, 2008!

As noted previously, time might be handled in such a system using extra-
logical checks. But then, the proof does not accurately reflect the true state
of the system: access might be denied even though the proof is correct. This
inaccuracy, even for such a simple example as office entry, motivates the devel-
opment of η logic. We will revisit this example in Section 3.2.1 and show that,
in η logic, users can restrict access to their offices by time.

2.2.2 Chemical Laboratory Inspections

We now consider a more complicated example. Inspection duties of the United
States Occupational Safety and Health Administration (OSHA) include the
oversight of chemical laboratories. As a rough approximation, the inspection
process can be thought of as a verification that all employees of the laboratory
are “safe” in some appropriately defined way. OSHA will certify the laboratory
only if this safety can be guaranteed.

To model the inspection process in GP logic, we assume the existence of a
sort, lab, of chemical laboratories and the existence of a distinguished principal
OSHA. The following predicates are required:

is employee(K, L) Principal K is an employee of lab L.
is manager(K, L) Principal K is a manager of lab L.
is technician(K, L) Principal K is a technician of lab L.
is janitor(K, L) Principal K is a janitor of lab L.
is safe(K, L) Principal K is safe in lab L.
is certified(L) Lab L is certified and may continue operating.

It is reasonable to assume that OSHA classifies each employee of a laboratory
according to his job description. We assume that the three classes established
by OSHA are: manager, technician, and janitor. This classification policy can
be expressed as:

job : 〈OSHA〉(∀L:lab.∀K:principal.
is employee(K, L) ⊃

(is manager(K, L) ∨
is technician(K, L) ∨
is janitor(K, L))) true
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This policy provides a method for distinguishing the job that an employee holds.
Employees holding different positions may be “safe” under different conditions.
For example, janitors may be exposed to chemicals but need not operate lab
equipment, while technicians will handle chemicals and operate equipment. For
this reason, a janitor might be “safe” if he can access safety procedures for all
chemicals in the lab, but he need not (and perhaps should not) access equipment
manuals. On the other hand, a technician would need to be able to access both
chemical safety procedures and equipment manuals to be “safe.”

OSHA’s certification policy can then be expressed as:

certify : 〈OSHA〉(∀L:lab.
(∀K:principal.is employee(K, L) ⊃ is safe(K, L)) ⊃

is certified(L)) true

This can be read as “OSHA says that a lab L is certified if, for all employees K
of lab L, K is safe in lab L.”

In many policies, credentials are required to establish a result. Note that, in
the certify policy, however, the requirement is a kind of conditional credential:
the safety of a principal K in lab L is only needed when K is an employee of L.
Because this condition exists, it is possible, using the case analysis induced by
the job policy, to take the specific job of K into account when determining K’s
safety.

2.3 Meta-theory

One of the key advantages of a proof-theoretic logic is its singular amenability
to a rigorous meta-theoretic analysis. Meta-theorems are stated as natural and
desirable properties of the logic—properties that one would expect to hold. The
proofs of these properties serve as a “sanity check” on the design of the logic;
if some expected property fails to hold, perhaps the logic’s design should be
reconsidered.

As a proof-theoretic logic, the meta-theory of GP logic can be explored in
this way. There are two reasonable properties for GP logic. First, as alluded
to in the discussion of the init rule (cf. Section 2.1.4), for any proposition A,
from the assumption that A is true, it should be possible to establish that A is
true. For atomic propositions P , this is captured explicitly in the init inference
rule. For arbitrary propositions A, this is stated and proved as the following
theorem.

Theorem 2.1 (Identity). For any proposition A, Σ; Γ, A true =⇒ A true.

Second, the logic should possess the cut elimination property. One cut rule
for GP logic states that a proof of A true can be used to replace the hypothesis
A true in a proof of γ to yield a direct proof of γ. For this reason, a cut rule
might be intuitively thought of as a method for creating and using lemmata:
the proof of A true functions as the lemma and the hypothesis A true in the
proof of γ corresponds to the use of the lemma in proving the main theorem.
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Since GP logic also permits conclusions of the form K affirms A, a cut rule
for affirmation is also needed. K affirms A can replace the hypothesis A true in
a proof of K affirms B since, from K’s perspective, truth and K’s affirmations
are equivalent.

Cut elimination means that an explicit cut rule is not needed in the logic: any
uses of the rule are unnecessary. The following theorem states the admissibility
of cut. Because cut elimination follows from this by a straightforward induction,
often only the admissibility of cut is formally stated and proven.

Theorem 2.2 (Admissibility of Cut).
1. If Σ; Γ =⇒ A true and Σ; Γ, A true =⇒ γ, then Σ; Γ =⇒ γ.
2. If Σ; Γ =⇒ K affirms A and Σ; Γ, A true =⇒ K affirms B, then Σ; Γ =⇒

K affirms B.

The proofs and associated lemmata for the above meta-theorems are given
in [23].

2.4 Conclusion

In hopes of adequately preparing the reader for the following discussion of η
logic, this chapter has reviewed a proof-theoretic authorization logic developed
by Garg and Pfenning [23]. We have also seen the application of GP logic to
two disparate systems: office access control and chemical laboratory inspections.
Finally, we have presented the meta-theory of GP logic and explained its im-
portance as an expression of the logic’s soundness. We now proceed to develop
ηN logic, which is heavily based on principles from GP logic reviewed in this
chapter.
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Chapter 3

ηN Logic

As reviewed in the preceding chapter, an authorization logic can form a theo-
retically sound basis for access control systems. However, as demonstrated in
the office entry example, it is necessary that the logic express time-dependent
policies in order to facilitate more accurate models of access control in practice.

In this chapter, we develop an authorization logic with explicit time, ηN

logic, by modifying GP logic. After giving a formal description of ηN logic, we
present two applications of the logic to systems with time-dependent policies.
Finally, we carry out a careful study of the logic’s meta-theory and establish a
formal correspondence with GP logic.

3.1 Logical System

ηN logic synthesizes ideas from several diverse logics. The concept of affirmation
is borrowed from GP logic, the notion of truth relativized to an interval is
inspired by the use of worlds in hybrid logic, and the combination of constraints
and proof theory is adapted from constraint-based logics.

The presentation of the logic is therefore broken into several sections. We
begin by discussing first-order terms and sorts, followed by a description of the
system of constraints. Next, we introduce the judgments and propositions of the
logic. Finally, we construct a proof-theoretic semantics for the logic by giving
the inference rules.

3.1.1 First-order Terms and Sorts

The basic system for first-order terms and sorts remains as it was in GP logic.
Σ is still a context listing the parameters in scope and their respective sorts.
We continue to write Σ ` t:s for the judgment that term t has sort s and [t/x]A
for the substitution of term t for the free variable x in proposition A.

The sort principal of principals is carried over from GP logic. ηN logic in-
cludes two additional sorts: the sort time of times and the sort interval of time
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intervals. Application-specific sorts can be added as needed.
Times are the components that comprise the time intervals about which ηN

logic reasons. Because the logic does not depend on it, a concrete structure for
times is not given, but instead left to be specified by individual applications.
However, one may intuitively think of times as points on the real line. Times
are usually represented by t; it should be clear from the context whether a given
occurrence of t indicates an arbitrary term or a time.

Intervals, represented with the meta-variable I, are sets of time about which
reasoning occurs. Despite the use of the terminology “interval,” these sets of
time need not be intervals in the mathematical sense; that is, they need not
have the form [t1, t2] = {x | t1 ≤ x ≤ t2} or the related open interval forms.
ηN logic is flexible enough to permit the use of arbitrary sets of time. However,
we overlook the slight abuse of terminology since sets that are strictly intervals
appear naturally in many applications.

3.1.2 Constraints

As will be seen in Section 3.1.5, the rules of ηN logic will require an inclusion
relation for intervals. Because interval parameters are permitted in the logic,
it is not sufficient to simply adopt a mathematical definition of interval inclu-
sion. Instead, a constraint domain is incorporated in the logic. The superset
constraint form I ⊇ I ′ is required, but the remainder of this domain is left
open-ended: other constraint forms may be freely added for application-specific
purposes. The meta-variable C denotes an arbitrary constraint form.

Because it will be necessary to assume that certain constraints hold during
reasoning, a constraint context is introduced, with the following syntax:

Ψ ::= · | Ψ, C

Thus, each constraint context Ψ is a (possibly empty) set of constraints. Re-
ordering of the members of Ψ is freely permitted.

We will use the constraint entailment judgment

Σ; Ψ |= C

to mean “Under the constraints of Ψ, constraint C holds, parametrically in the
members of Σ.” Note that the context Σ is required because Ψ and C may
contain parameters from Σ.

Because the structure of intervals is left abstract, even the particular decision
procedure used to solve superset constraints remains relatively unspecified: any
system satisfying the following six basic properties can be used as the constraint
domain. These properties are required for the meta-theory that will be presented
in Section 3.3.

(Hypothesis) Σ; Ψ, C |= C.
(Weakening) If Σ; Ψ |= C, then Σ,Σ′; Ψ,Ψ′ |= C.
(Cut) If Σ; Ψ |= C and Σ;Ψ, C |= C ′, then Σ; Ψ |= C ′.

18



(Substitution) If Σ ` t:s and Σ, x:s; Ψ |= C, then Σ; [t/x]Ψ |= [t/x]C.
(Reflexivity) Σ; Ψ |= I ⊇ I.
(Transitivity) If Σ; Ψ |= I ⊇ I ′ and Σ;Ψ |= I ′ ⊇ I ′′, then Σ; Ψ |= I ⊇ I ′′.

3.1.3 Judgments

Our goal in designing ηN logic is to allow reasoning about explicit time within an
authorization logic. Instead of reasoning about the truth of propositions, as was
done in GP logic, it is necessary to reason about the truth of propositions during
explicit time intervals. Therefore, the objects of knowledge in ηN logic are not
statements of the form “Proposition A is true,” but rather “Proposition A is
true during interval I.” According to Martin-Löf’s philosophy, the logic should
therefore include a judgment form that relativizes truth to a time interval. We
choose to write A[I] for the judgment meaning “Proposition A is true during
interval I.”

In addition to its truth judgment form, A true, GP logic includes an affirma-
tion judgment form, K affirms A, to model principals’ intents and policies. It is
therefore natural to include affirmation in ηN logic, since it is still necessary to
model policies. But how should affirmation interact with explicit time intervals?

By adopting the reasonable notion that everything can be relativized to
a time interval, it can be concluded that each affirmation made by a principal
occurs on some time interval. Moreover, a principal cannot affirm a proposition,
but must instead affirm a judgment. Combining these two ideas naturally leads
to statements of the form “During interval I, principal K affirms the truth of
proposition A on interval I ′” as objects of knowledge. Using the @ connective
described in the next two sections, the previous statement will be equivalent
to “During interval I, principal K affirms the truth of proposition A @ I ′ on
interval I.” As a result, it is sufficient to consider only statements of the latter
form: if the interval of truth is different than the interval of affirmation, it can
be embedded in the proposition.

We therefore arrive at the judgment form (K affirms A) at I meaning that
“During interval I, principal K affirms the truth of proposition A on I.” Since,
as mentioned previously, principals do not affirm propositions, but instead affirm
judgments, it would be more precise to write the affirmation judgment form as
(K affirms A[I]) at I. But because the two intervals are the same, we can elide
the first interval.

Because reasoning from assumptions is needed, ηN logic extends the basic
judgment forms A[I] and (K affirms A) at I to permit hypotheses. The hypo-
thetical judgment forms are:

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ (K affirms A) at I

where Σ is a context ascribing sorts to the parameters that may appear in Ψ,
Γ, K, A, and I; Ψ is a constraint context containing the constraints assumed
to hold; and Γ is a set of hypotheses of the form A[I]. In the following sections,
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we will write γ in place of the basic judgment to the right of =⇒ when its form
does not matter.

The first hypothetical judgment form means “Assuming that the constraints
in Ψ hold and under the assumptions in Γ, proposition A is true during interval
I, parametrically in the members of Σ.” Similarly, the second hypothetical
judgment form means “Assuming that the constraints in Ψ hold and under the
assumptions in Γ, during interval I, principal K affirms that proposition A is
true on I, parametrically in the members of Σ.”

3.1.4 Propositions

The propositions in ηN logic are given by the following grammar:

A,B ::= P | A ∧B | > | A ∨B | A ⊃ B | ∀x:s.A | ∃x:s.A | 〈K〉A
| A @ I | C ⊃̇A | C ∧̇A

These propositions include those of GP logic. Just as 〈K〉A internalizes the
judgment KaffirmsA in GP logic, 〈K〉A internalizes the judgment (KaffirmsA)at
I in ηN logic. Although the formal meanings of the connectives must shift with
the change from time-independent basic judgments to time-dependent ones, the
connectives still retain their intuitive meanings. For example, A∧B still behaves
like a pair of A and B. This is made precise by the formal correspondence
between GP logic and a fragment of ηN logic established in Section 3.3.2.

There are three new proposition forms in ηN logic: A@ I, C ⊃̇A, and C ∧̇A.
The proposition A @ I internalizes the new judgment A[I], allowing us to legit-
imately combine it with the other logical connectives. For example, although
(A[I]) ⊃ B would violate the distinction between judgments and propositions,
(A @ I) ⊃ B is a well-formed proposition.

C⊃̇A and C∧̇A are constraint implication and constraint conjuction proposi-
tions, respectively, adapted from Saranlı and Pfenning’s Constrained Intuition-
istic Linear Logic [37]. They permit the constraint domain to interact with the
rest of the logic.

It should be noted that falsehood, ⊥, is not included in the logic, stemming
from the need to avoid security risks. If falsehood was included and, by some
accident of policy management, a contradiction existed for any interval I, even
an arbitrarily small one, then the judgment ⊥[I] would be derivable. From
this judgment, any user would be able to give a valid proof of any judgment,
including those allowing him to access protected resources even at times outside
of I.1 We therefore exclude falsehood from the logic to prevent this scenario
from ever arising.

One consequence of the absence of falsehood is that policies to explicitly
deny a group of users access cannot be written; only policies that explicitly
allow a group of users access can be written. Stated differently, only whitelists,
and not blacklists, can be created.

1The admissibility of cut requires that a ⊥[I] hypothesis prove judgments at arbitrary
intervals, not just at I.
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3.1.5 Inference Rules

Following the presentation of GP logic, we now state a few key proof rules and
attempt to provide some intuition for them. We postpone the inference rules
for the well-formedness of propositions, judgments, and contexts to Section 5.1
to avoid obscuring the key proof rules.

We begin by presenting the init rule that defines the nature of hypotheses:

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, P [I] =⇒ P [I ′]
init

We would expect that, from the assumption that proposition A is true on inter-
val I, it should be possible to prove that A is true on I. More generally, since
truth on an interval refers to truth over the whole of that interval, it should be
possible to prove that A is true on any subinterval I ′ of I from this assumption.
The init rule captures this intuition, though, as in GP logic, it is restricted to
atomic propositions P for technical reasons relating to proof search. The init
rule in its full generality is proven admissible in Theorem 3.2 (cf. Section 3.3.1).

Next, consider the new connective: @.

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ, A @ I[I ′], A[I] =⇒ γ

Σ; Ψ; Γ, A @ I[I ′] =⇒ γ
@L

The right rule, @R, shows that establishing A[I] is sufficient evidence for A @
I[I ′], for any interval I ′. The left rule, @L, allows the hypothesis A @ I[I ′] to
be used as A[I].

Taken together, these rules imply an equivalence between A[I] and A@ I[I ′]
for any I ′, and also show that A @ I internalizes the hybrid judgment A[I]. For
example, establishing that “In 2008, it is true that ‘During 1815–1821, Napoleon
Bonaparte is in exile’” is equivalent to establishing that “During 1815–1821,
Napoleon Bonaparte is in exile.” In other words, whether it is true now that
Napoleon was in exile depends only on whether it was true then that Napoleon
was in exile.

Next, we examine the constraint connectives. First, the rules for constraint
implication:

Σ; Ψ, C; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ⊃̇A[I] ⊃̇R

Σ; Ψ |= C Σ; Ψ; Γ, C ⊃̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ⊃̇A[I] =⇒ γ
⊃̇L

C ⊃̇ A represents the proposition A with the constraint precondition C. Thus,
as formalized in the ⊃̇R rule, verifying C ⊃̇ A[I] involves verifying that A is
true during interval I under the assumption that constraint C holds. The ⊃̇L
rule states that to establish A[I] from C ⊃̇ A[I], one must simply establish the
constraint precondition C.

The other constraint connective is constraint conjunction.

Σ; Ψ |= C Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ∧̇A[I] ∧̇R

Σ; Ψ, C; Γ, C ∧̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ∧̇A[I] =⇒ γ
∧̇L
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The ∧̇R rule requires that the constraint C hold and that A be true during
interval I, reminiscent of the right rule for ordinary conjunction. The ∧̇L rule
allows the hypothesis C ∧̇A[I] to be used by projecting out the two component
hypotheses: C and A[I].

Next, we consider the rules for the affirmation judgment (K affirms A) at I
and its internalization as 〈K〉A.

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ (K affirms A) at I

affirms
Σ; Ψ; Γ =⇒ (K affirms A) at I

Σ; Ψ; Γ =⇒ 〈K〉A[I]
〈〉R

Σ; Ψ; Γ, 〈K〉A[I], A[I] =⇒ (K affirms B) at I ′ Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, 〈K〉A[I] =⇒ (K affirms B) at I ′
〈〉L

The affirms rule indicates that, during interval I, every principal K is prepared
to affirm the truth of A on I if confronted with incontrovertible evidence of it:
K cannot possibly ignore the evidence and must therefore affirm A[I].

The right rule, 〈〉R, shows that 〈K〉A internalizes the affirmation judgment
(K affirms A) at I. That is, by establishing (K affirms A) at I, one may conclude
that the proposition 〈K〉A is true on interval I.

The left rule, 〈〉L, shows how to use an affirmation made by K during interval
I. As in GP logic, the distinction between K’s affirmations and truth disappears
when trying to prove an affirmation made by K. However, with time-dependent
affirmations, the disappearance of this distinction is only valid for affirmations
made by K during a superinterval I of the interval I ′ for the affirmation made
by K that is being established. Without the interval constraint, this rule would
be incorrect. If I is not a superinterval of I ′, one cannot be assured that K still
affirms A during all of interval I ′.

Next, we examine implication. Implication interacts very strongly with time,
as evidenced by the combination of parameters, constraints, and hybrid worlds
in its right and left rules:

Σ, i:interval; Ψ, I ⊇ i; Γ, A[i] =⇒ B[i]
Σ; Ψ; Γ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ, A ⊃ B[I] =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ, A ⊃ B[I], B[I ′] =⇒ γ

Σ; Ψ; Γ, A ⊃ B[I] =⇒ γ
⊃L

The judgment A ⊃ B[I] may be intuitively thought of as a plan for converting
A to B that is available during any subinterval of I. Such a conversion can be
established by deriving B[i] under the assumption A[i], parametrically in the
arbitrary subinterval i of I. The parameter and corresponding constraint ensure
that the conversion is valid at every time in I. This intuition is formalized in
the right rule, ⊃R.

The conversion intuition also appears in the left rule, ⊃L. The plan A ⊃ B[I]
for converting A to B can be carried out to produce B[I ′] from A[I ′], provided
I ′ is a subinterval of I. The rule is incorrect without the subinterval proviso
because the plan would not be available at an arbitrary I ′.
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Initial Rule

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, P [I] =⇒ P [I ′]
init

A @ I

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ, A @ I[I ′], A[I] =⇒ γ

Σ; Ψ; Γ, A @ I[I ′] =⇒ γ
@L

Constraints

Σ; Ψ, C; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ⊃̇A[I] ⊃̇R

Σ; Ψ |= C Σ; Ψ; Γ, C ⊃̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ⊃̇A[I] =⇒ γ
⊃̇L

Σ; Ψ |= C Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ C ∧̇A[I] ∧̇R

Σ; Ψ, C; Γ, C ∧̇A[I], A[I] =⇒ γ

Σ; Ψ; Γ, C ∧̇A[I] =⇒ γ
∧̇L

Affirmation and 〈K〉A

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ (K affirms A) at I

affirms
Σ; Ψ; Γ =⇒ (K affirms A) at I

Σ; Ψ; Γ =⇒ 〈K〉A[I]
〈〉R

Σ; Ψ; Γ, 〈K〉A[I], A[I] =⇒ (K affirms B) at I ′ Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, 〈K〉A[I] =⇒ (K affirms B) at I ′
〈〉L

Other Connectives

Σ; Ψ; Γ =⇒ A[I] Σ;Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∧B[I] ∧R

Σ; Ψ; Γ, A ∧B[I], A[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L1

Σ; Ψ; Γ, A ∧B[I], B[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L2

Σ; Ψ; Γ =⇒ >[I] >R

Σ; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ A ∨B[I]

∨R1

Σ; Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∨B[I]

∨R2

Σ; Ψ; Γ, A ∨B[I], A[I] =⇒ γ Σ; Ψ; Γ, A ∨B[I], B[I] =⇒ γ

Σ; Ψ; Γ, A ∨B[I] =⇒ γ
∨L

Figure 3.1: The inference rules for ηN logic.
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Other Connectives, cont.

Σ, i:interval; Ψ, I ⊇ i; Γ, A[i] =⇒ B[i]
Σ; Ψ; Γ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ, A ⊃ B[I] =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ, A ⊃ B[I], B[I ′] =⇒ γ

Σ; Ψ; Γ, A ⊃ B[I] =⇒ γ
⊃L

Σ, x:s; Ψ; Γ =⇒ A[I]
Σ; Ψ; Γ =⇒ ∀x:s.A[I] ∀R

Σ ` t:s Σ; Ψ; Γ,∀x:s.A[I], [t/x]A[I] =⇒ γ

Σ; Ψ; Γ,∀x:s.A[I] =⇒ γ
∀L

Σ ` t:s Σ; Ψ; Γ =⇒ [t/x]A[I]
Σ; Ψ; Γ =⇒ ∃x:s.A[I] ∃R

Σ, x:s; Ψ; Γ,∃x:s.A[I], A[I] =⇒ γ

Σ; Ψ; Γ,∃x:s.A[I] =⇒ γ
∃L

Figure 3.1: The inference rules for ηN logic, continued.

The remaining connectives interact with time in straightforward ways. One
such connective is conjunction:

Σ; Ψ; Γ =⇒ A[I] Σ;Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∧B[I] ∧R

Σ; Ψ; Γ, A ∧B[I], A[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L1

Σ; Ψ; Γ, A ∧B[I], B[I] =⇒ γ

Σ; Ψ; Γ, A ∧B[I] =⇒ γ
∧L2

To show that A ∧ B is true on interval I, it is sufficient to show both that A
is true on I and that B is true on I; this is captured by the ∧R rule. The left
rules, ∧L1 and ∧L2, show that both A and B are true on I if A∧B is true on I.
These right and left rules do not manipulate the interval annotations; they are
the same as the rules in first-order logic for conjunction, but are tagged with
intervals.

Note that these rules and the rules for ⊃ imply the usual equivalence of
curried and uncurried implications: A ⊃ (B ⊃ C)[I] and (A ∧B) ⊃ C[I] entail
each other.

The remaining proof rules follow the pattern of the rules for conjunction,
and are given in Figure 3.1.

Before concluding this section, we state some properties of ηN logic. We
write =⇒ A if, for all Σ, Ψ, and I ′′, Σ; Ψ; · =⇒ A[I ′′] is derivable, and write
6=⇒ A otherwise. Also, A ≡ B abbreviates (A ⊃ B) ∧ (B ⊃ A).

First, as in GP logic, 〈K〉 is similar to a lax modality [19] and 〈K〉A does
not imply A in general:

1. =⇒ A ⊃ (〈K〉A)

2. =⇒ (〈K〉〈K〉A) ⊃ (〈K〉A)
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3. =⇒ (〈K〉(A ⊃ B)) ⊃ ((〈K〉A) ⊃ (〈K〉B))

4. 6=⇒ (〈K〉A) ⊃ A

Next, we state a few properties of the @ connective:

5. 6=⇒ (A @ I) ⊃ (A @ I ′)

6. =⇒ (I ⊇ I ′) ⊃̇ ((A @ I) ⊃ (A @ I ′))

7. =⇒ (A @ I) ≡ (A @ I @ I ′)

8. =⇒ ((A ∧B) @ I) ≡ ((A @ I) ∧ (B @ I))

9. =⇒ ((A ∨B) @ I) ≡ ((A @ I) ∨ (B @ I))

10. =⇒ ((A ⊃ B) @ I) ⊃ ((A @ I) ⊃ (B @ I))

11. 6=⇒ ((A @ I) ⊃ (B @ I)) ⊃ ((A ⊃ B) @ I)

12. 6=⇒ ((〈K〉A) @ I) ⊃ (〈K〉(A @ I))

13. 6=⇒ (〈K〉(A @ I)) ⊃ ((〈K〉A) @ I)

Property 5 shows that truth on one interval does not entail truth on another
interval, in general; the intervals may be unrelated. When the intervals are
related by inclusion, the entailment does hold, as in property 6. Property 7
indicates that only the innermost @ I matters. This relates to the previously
mentioned equivalence between A[I] and A@I[I ′]. Properties 8 and 9 show that
@ naturally distributes over ∧ and ∨, intuitive and desirable properties. Prop-
erties 10 and 11 demonstrate that @ distributes over ⊃ only in one direction.
Properties 12 and 13 state that @ does not commute with 〈K〉.

Finally, ηN logic is consistent:

14. 6=⇒ A

3.2 Examples

With ηN logic formalized, we can now illustrate its application to time-dependent
access control policies by considering two examples. First, we revisit the office
entry example and refine its policies to incorporate time. Second, we examine
a journal publication system.

In these examples, we adopt the conventions that ⊃ and ⊃̇ are right asso-
ciative, and that binding precedence decreases in the order: 〈〉; @; ⊃ and ⊃̇;
∀.
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3.2.1 Office Entry

Recall, from Section 2.2.1, the office entry example that was based on the Grey
system. This example assumed an administrating principal, admin, that con-
trolled entry to the offices, named each office according to its owner, and used
the predicate may enter, where may enter(K2,K1) meant that K2 may enter
K1’s office. The two policies proposed for a PCA architecture based on GP
logic were:

own : 〈admin〉(∀K:principal.may enter(K, K)) true

trust : 〈admin〉(∀K1:principal.∀K2:principal.
〈K1〉may enter(K2,K1) ⊃

may enter(K2,K1)) true

The first of these policies allowed every office owner to enter her own office. The
second policy allowed an office owner to make decisions about who may enter
her office, decisions which the administrator trusted.

The above GP logic policies were sufficient for controlling who could enter
an office, but not for controlling when that person could enter. This deficiency
resulted from the inability of GP logic to reason with time internally. Now that
we have developed ηN logic as an authorization logic with time, it is natural to
check that the new logic is expressive enough to handle time-based office entry
policies.

First, consider creating a ηN logic analogue of the own policy. Because ηN

logic includes all connectives from GP logic and because these connectives retain
their intuitive meanings, a natural attempt uses the same proposition as own:

〈admin〉(∀K:principal.may enter(K, K))[?]

At this moment, the judgment is incomplete: the time interval over which the
proposition is true has not yet been specified (indicated by ‘?’).

What interval should be used? It must be the same as the interval over
which the policy will be valid. If the administrator wants to allow each office
owner to enter her own office only during interval I, then the interval for this
policy should be I. In the setting of academic offices, it would seem unusual
for an office owner to be prevented from entering her office at any time. So, in
this specific instance, the interval is (−∞,∞). The ηN logic analogue of own is
then:

own′ : 〈admin〉(∀K:principal.may enter(K, K))[(−∞,∞)]

This policy means that “At all times, the administrator says that each principal
K may enter her own office at any time.”

Note that the administrator need not commit to a policy for an extended
period of time. For example, suppose that the administrator only wants to
commit to allowing an office owner to enter her own office during 2008. The
administrator would issue the policy with 2008 as its validity interval. If the
administrator later chooses to extend the policy through 2009, he can reissue the
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same policy with the new interval 2009. If, instead, the administrator chooses
not to renew the policy, he simply does nothing: the 2008 version will no longer
be valid in 2009.

Next, consider creating an analogue of the trust policy. Again, we use the
same proposition as in trust. For concreteness, we choose (−∞,∞) as the va-
lidity interval, but it should be noted that any desired interval could be used.
The policy is then:

trust′ : 〈admin〉(∀K1:principal.∀K2:principal.
〈K1〉may enter(K2,K1) ⊃

may enter(K2,K1))[(−∞,∞)]

This policy means that “At all times, the administrator says that, for all pairs
of principals K1 and K2, if K1 says K2 may enter K1’s office at some time, then
K2 may indeed enter K1’s office at that time.”

With this policy, we can now reconsider the situation of the professor Alice
and her graduate student Bob. Recall that Alice is out of the office on May 7,
2008 and that Bob needs to retrieve a paper from Alice’s office. Alice agrees
to authorize Bob to enter her office, but only for that day. So, she issues the
following credential:

C′ : 〈Alice〉may enter(Bob,Alice)[5/7/08]

At some time t, Bob will approach Alice’s office door and request access using
his cell phone. Before the door will unlock, he must present a correct proof of:

ΣA,B; ·; own′, trust′, C′ =⇒ 〈admin〉may enter(Bob,Alice)[[t, t]]

where ΣA,B assigns the sort principal to all principals in the system. Provided
that t is some time during May 7, 2008 (formally, |= 5/7/08 ⊇ [t, t]) Bob’s phone
can construct a correct proof by applying the trust′ policy to the credential C′
that Alice supplied, and Bob will be granted access. If t is not during May
7, 2008 (formally 6|= 5/7/08 ⊇ [t, t]), there is no correct proof of the required
judgment, and Bob will not be granted access.

As is evident from this example, ηN logic permits the expression of a richer
set of policies than is possible in GP logic. However, the logic is still not
sufficiently expressive. The deficiency occurs even in this small office entry
example. Alice can now restrict the times during which Bob may access her
office, but it is not possible to restrict the number of times Bob may enter.
Specifically, because the credential C′ is never consumed during use, Bob may
enter the office as many times as he wants on May 7, 2008 by repeatedly using
C′.

Because ηN logic models the expiration of, but not the consumption of,
credentials, the above deficiency motivates us to extend the logic with linearity,
just as Garg and Pfenning cleanly added linearity to an authorization logic
without time [22]. This effort toward a linear η logic that can model consumable
credentials is the focus of the following chapter.
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3.2.2 Journal Publication

To further demonstrate the increased expressiveness of ηN logic, consider a peer-
review publication system as employed by academic journals. This example uses
time in a more complex way than the previous example and also illustrates the
use of time-based constraints and constraint implication.

We postulate the existence of two application-specific sorts: the sort journal
of academic journals and the sort article of journal articles. To ease the notation,
we also use the syntax t ∈ I as an abbreviation for the constraint I ⊇ [t, t]. The
following predicates are required:

is approved(A,K, J) Article A is approved by principal K for
publication in journal J .

is reviewer(R,A, J) Principal R is the reviewer for article A
submitted to journal J .

is editor(E, J) Principal E is an editor for journal J .
is published(A, J) Article A is published in journal J .

Journal J appoints E as an editor for term I by issuing the credential
〈J〉is editor(E, J)[I]. One of an editor’s duties is to assign reviewers to articles
submitted to the journal. Editor E assigns principal R as the reviewer for article
A from time t onward by issuing the credential 〈E〉is reviewer(R,A, J)[[t,∞)].
For simplicity, we assume that each article has at most one reviewer, justifing
the reference to a reviewer of an article as the reviewer.

Another one of an editor’s duties is to process reviews as they come back
from reviewers. Editor E accomplishes this by signing the following credential:

approve : 〈E〉(∀R:principal.∀ta:time.
〈R〉is approved(A,R, J) @ [ta, ta] ⊃
is reviewer(R,A, J) @ [ta, ta] ⊃
(ta ∈ IE) ⊃̇

is approved(A,E, J) @ [ta,∞))[(−∞,∞)]

If principal R decides to approve article A for publication in journal J , he can
submit a positive review at time ta by issuing 〈R〉is approved(A,R, J)[[ta, ta]].
Provided that editor E agrees that R is the reviewer of article A at time ta and
that ta ∈ IE , E will accept R’s review and approve the article for publication
from time ta onward. If R is not the reviewer of article A or if ta /∈ IE , then
the review will not be accepted.

Note that, unlike the policies we have previously seen, approve is not a fixed
policy, but rather a template. When E signs the credential, he must instantiate
IE with the interval over which he will accept reviews.

In a similar way, each journal must specify the conditions under which it
accepts articles approved by editors. This is done by issuing the following cre-
dential:
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publish : 〈J〉(∀E:principal.∀ta:time.
〈E〉is approved(A,E, J) @ [ta, ta] ⊃
is editor(E, J) @ [ta, ta] ⊃
(ta ∈ IJ) ⊃̇

is published(A, J) @ [ta,∞))[(−∞,∞)]

If principal E approves article A for publication in journal J , he issues the cre-
dential 〈E〉is approved(A,E, J)[[ta, ta]]. If journal J has appointed E as editor
during time ta and if ta ∈ IJ , J will accept editor E’s approval and publish the
article from ta onward. Again, this policy is a template: J must instantiate IJ

with the interval during which it will accept articles for publication.

3.3 Meta-theory and Correspondence to GP Logic

As a proof-theoretic logic, ηN logic permits a rigorous study of its meta-theory.
We examine three properties here: identity, subsumption, and admissibility of
cut. In addition, we easily establish a formal correspondence between a fragment
of ηN logic and GP logic, which is not surprising given the parentage relationship
between the two logics.

3.3.1 Meta-theory

The meta-theory for ηN logic is slightly more complicated than that of GP logic
because of the addition of time. But, it still serves to increase confidence in the
soundness of the logic by providing a kind of “sanity check.”

Before considering the core meta-theorems, we must state a few lemmata
that will be used in the following meta-theoretic proofs:

Lemma 3.1.
1. If Σ; Ψ; Γ =⇒ γ, then Σ,Σ′; Ψ,Ψ′; Γ,Γ′ =⇒ γ.
2. If Σ; Ψ, I ⊇ I ′′; Γ =⇒ γ and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ, I ′ ⊇ I ′′; Γ =⇒ γ.
3. If Σ; Ψ |= C and Σ; Ψ, C; Γ =⇒ γ, then Σ; Ψ; Γ =⇒ γ.
4. If Σ ` t : s and Σ, x:s; Ψ; Γ =⇒ γ, then Σ; [t/x]Ψ; [t/x]Γ =⇒ [t/x]γ.

Proof. All parts follow by structural induction on the given derivation.

As in GP logic, we are still interested in verifying the identity principle.
However, with the shift in underlying judgments to hybrid, time-dependent
forms, the statement of the theorem must change. For any proposition A, it
should be possible to conclude from the hypothesis A[I] that A[I ′], provided
I ′ is a subinterval of I. This generalizes the init rule, and is formalized in the
following theorem.

Theorem 3.2 (Identity). For all propositions A, if Σ; Ψ |= I ⊇ I ′, then
Σ; Ψ; Γ, A[I] =⇒ A[I ′].

Proof. By structural induction on A.
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A natural time-dependent property to expect of ηN logic is the notion of
subsumption. For example, whenever one can prove that A is true on interval
I, it should be possible, for any subinterval I ′ of I, to construct a similar proof
that A is true on I ′. This can be easily generalized to affirmations. Because this
type of subsumption occurs in proof conclusions and not assumptions, it appears
to the right of the =⇒ symbol in a hypothetical judgment. It is therefore termed
right subsumption.

Theorem 3.3 (Right Subsumption).
1. If Σ; Ψ; Γ =⇒ A[I] and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ =⇒ A[I ′].
2. If Σ; Ψ; Γ =⇒ (K affirms A) at I and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ =⇒

(K affirms A) at I ′.

Proof. By simultaneous structural induction on the first given derivation.

Subsumption can also occur for hypotheses. If interval I is a superinterval
of I ′, the assumption that A is true on interval I is at least as powerful as
assuming that A is true on I ′: the former assumption contains as much (and
possibly more) information as the latter. Because hypotheses appear on the left
side of the =⇒ symbol in a hypothetical judgment, this kind of subsumption is
termed left subsumption.

Theorem 3.4 (Left Subsumption). If Σ; Ψ; Γ, A[I ′] =⇒ γ and Σ; Ψ |= I ⊇ I ′,
then Σ; Ψ; Γ, A[I] =⇒ γ.

Proof. By nested induction on the structures of A and the first given derivation.

Finally, we can reconsider cut elimination in the context of ηN logic. The
admissibility of cut for the truth judgment remains relatively unchanged: a
proof of A[I] can replace the assumption A[I] of any other proof. However, the
admissibility of cut for the affirmation judgment changes in a significant way.
As argued in the description of the 〈〉L rule, an affirmation made by K during
interval I is equivalent to truth, but only if we are currently reasoning about the
beliefs that K holds during a subinterval I ′. Thus, a proof of (K affirms A) at I
can replace the assumption A[I] in a proof of (K affirms B) at I ′, provided that
I is a superinterval of I ′.

Theorem 3.5 (Admissibility of Cut).
1. If Σ; Ψ; Γ =⇒ A[I] and Σ; Ψ; Γ, A[I] =⇒ γ, then Σ; Ψ; Γ =⇒ γ.
2. If Σ; Ψ; Γ =⇒ (K affirms A) at I, Σ; Ψ; Γ, A[I] =⇒ (K affirms B) at I ′, and

Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ =⇒ (K affirms B) at I ′.

Proof. By simultaneous nested induction on the structures of A and the given
derivations.

The above meta-theorems have been mechanically verified using the Twelf
logical framework [34]. The Twelf proofs are available at http://www.andrew.
cmu.edu/user/hdeyoung/etalogic/twelf.
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3.3.2 Correspondence to GP Logic

Upon careful comparison of the rules of GP logic and the rules of ηN logic, a
correspondence becomes evident. For example, consider the ∧R and 〈〉L rules:

GP Logic ηN Logic

Σ; Γ =⇒ A Σ; Γ =⇒ B

Σ; Γ =⇒ A ∧B
∧R

Σ; Ψ; Γ =⇒ A[I] Σ;Ψ; Γ =⇒ B[I]
Σ; Ψ; Γ =⇒ A ∧B[I] ∧R

Σ; Γ, 〈K〉A,A =⇒ K affirms B

Σ; Γ, 〈K〉A =⇒ K affirms B
〈〉L

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ, 〈K〉A[I], A[I] =⇒ (K affirms B) at I ′

Σ; Ψ; Γ, 〈K〉A[I] =⇒ (K affirms B) at I ′
〈〉L

Because there are no notions of time or constraints in GP logic, the correspon-
dence does not extend to these constructs.

The above intuition suggests that GP logic can be encoded into ηN logic. Let
~I denote a list of time intervals. Also, if Γ = A1, . . . , An is a GP logic context
and ~I = I1, . . . , In, let Γ[~I] be the ηN logic context A1[I1], . . . , An[In].2 Finally,
define a translation for parameter contexts such that Σ is Σ with interval and
time parameters removed.

This permits us to state the following theorem.

Theorem 3.6.
1. If Σ; Γ =⇒ A and Σ; Ψ |= I ⊇ I ′ for all I ∈ ~I, then Σ; Ψ; Γ[~I] =⇒ A[I ′].
2. If Σ; Γ =⇒ K affirmsA and Σ; Ψ |= I ⊇ I ′ for all I ∈ ~I, then Σ; Ψ; Γ[~I] =⇒

(K affirms A) at I ′.

Proof. By simultaneous structural induction on the first given derivation.

Informally, this theorem states that by choosing appropriate intervals for the
hypotheses and conclusion of a hypothetical judgment, it is possible to translate
a valid GP logic derivation into a valid ηN logic derivation. In particular, if
the lattice imposed by interval inclusion contains a greatest element, possibly
written (−∞,∞), then that greatest element can be used for each hypothesis
and conclusion in the constructed ηN logic derivation.

It is natural to consider whether the converse of the above theorem holds.
Specifically, is it possible to derive Σ; Γ =⇒ A in GP logic and verify that
Σ; Ψ |= I ⊇ I ′ holds for each I ∈ ~I, whenever Σ;Ψ; Γ[~I] =⇒ A[I ′] is derivable in
ηN logic? (An analogous converse can be stated for affirmation consequents.)

The full converse does not hold: it is not the case that Σ;Ψ |= I ⊇ I ′ for
each I ∈ ~I. When ·; · 6|= I1 ⊇ I2, the following is a simple counterexample.

·; · |= I2 ⊇ I2

·; ·;A[I1], P [I2] =⇒ P [I2]
init

2There is an implicit identity translation from GP logic propositions to ηN logic proposi-
tions here.
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However, as the following theorem shows, a partial converse does indeed hold.

Theorem 3.7.
1. If Σ; Ψ; Γ[~I] =⇒ A[I ′], then Σ; Γ =⇒ A.
2. If Σ; Ψ; Γ[~I] =⇒ (K affirms A) at I ′, then Σ; Γ =⇒ K affirms A.

Proof. By simultaneous structural induction on the given derivation.

Due to the difficulty of reasoning about context translations in Twelf and the
existence of a translation from Γ to Γ[~I] in these theorems, the above theorems
have not been mechanically verified. This is an opportunity for future work.

3.4 Conclusion

In this chapter, we have derived an authorization logic with explicit time from
GP logic, as reviewed in Chapter 2. We illustrated its ability to model complex
time-dependent policies through office entry and journal publication examples.
We also studied the logic’s meta-theory and established a correspondence to
GP logic. In addition, we noted the logic’s inability to model restrictions on the
number of accesses. The effort to correct this deficiency is the focus of the next
chapter.
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Chapter 4

ηL Logic

In the previous chapter, we developed a non-linear authorization logic with
explicit time and demonstrated its increased expressive power in the contexts
of office entry and journal publication. In addition, we studied the logic’s meta-
theoretic properties and proved that it subsumes GP logic.

However, we also saw that even ηN logic is not sufficiently rich to model
many natural access control policies. In particular, policies that place limits
on the number of accesses or require finitely useable credentials could not be
expressed in the logic.

To express such use-limited policies in a time-independent setting, previous
work [22] has combined an authorization logic with linear logic, allowing the
authorization constructs to model access control and the linear constructs to
model usage limits. In this chapter, we follow this approach and combine ηN

logic with linear logic to yield a logic that can model both time-dependent and
use-limited policies.

Following a brief overview of linear logic, we present the formal system of
ηL logic. The new logic’s increased expressiveness is demonstrated through
several examples. Finally, we study a few meta-theoretic properties of the logic,
including the admissibility of cut.

4.1 An Overview of Linear Logic

Recall the office entry example from Section 3.2.1 in which an office owner could
issue a credential to give a trusted colleague access to his office. For example,
we described a scenario in which Alice could allow Bob to enter her office on
only May 7, 2008 by issuing the credential:

〈Alice〉may enter(Bob,Alice)[5/7/08]

Bob could then use this credential in conjunction with the trust′ policy to derive

〈admin〉may enter(Bob,Alice)[[t, t]]
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for any time t during May 7, 2008. However, because the assumption corre-
sponding to Alice’s credential is persistent, Bob can enter her office an unlimited
number of times on that day.

Instead, Alice would like to ensure that Bob can enter only once and only on
that day. If the assumption corresponding to Alice’s credential could somehow
be consumed upon its first use, then it could not be used to authorize further
accesses. A possible solution, then, is the extension of ηN logic with an ability
to model the consumption of objects.

As a well-established logic for modeling such changes of state, linear logic [17,
25] is a perfect starting point. To model the consumption of objects, linear logic
does not have a single notion of truth, but instead distinguishes truth into two
classes: truths that must be used once, and only once, and truths that may be
used zero or more times without restriction. A single-use truth corresponds to
a resource, while a multi-use truth is akin to a fact: objects are ephemeral, but
knowledge is persistent. It is also occasionally useful to think of an unrestricted
truth as a resource factory that can produce an unlimited number of copies of
a given resource.

Introducing such a refinement of truth affects the connectives found in linear
logic. For example, implication splits into two forms. Linear implication, (,
can be applied to resources and facts. Unrestricted implication, ⊃, on the other
hand, can only be applied to facts. Conjunction splits into two forms as well.
Simultaneous conjunction, ⊗, represents the existence of two resources in the
same state: both resources can be had. On the other hand, alternative conjunc-
tion, &, represents a choice between two resources: both resources can be had,
but only alternatively. As alternative conjunction represents an internal choice
made by the reasoner, it is distinct from disjunction, ⊕, which corresponds to
an external choice made by the environment.

4.2 Logical System

Now, we formally present ηL logic, making the above suggested combination of
linear logic and ηN logic explicit. Changes are made to the system’s judgments,
and consequently its propositions and inference rules, while the first-order terms
and sorts and constraints are unaffected.

4.2.1 First-Order Terms and Sorts

The system of first-order terms and sorts is carried over en bloc from ηN logic.
Sorts principal, time, and interval are still required, and the other sorts remain
open-ended. Σ continues to stand for a context of parameters in scope ascribed
with sorts. The judgment Σ ` t:s still means that term t has sort s. Finally, we
continue to write [t/x] for the substitution of term t for all free occurrences of
x.
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4.2.2 Constraints

We also make no changes to the system of constraints. Superset constraints,
I ⊇ I ′, are still required, and other application-specific constraint forms may
still be added as needed. Ψ continues to stand for a context of constraint as-
sumptions. The constraint entailment judgment Σ;Ψ |= C still states that
constraint C holds, assuming the constraints in Ψ. Finally, although the con-
straint entailment judgment remains unspecified, the same six properties are
required (repeated here for convenience).

(Hypothesis) Σ; Ψ, C |= C.
(Weakening) If Σ; Ψ |= C, then Σ,Σ′; Ψ,Ψ′ |= C.
(Cut) If Σ; Ψ |= C and Σ;Ψ, C |= C ′, then Σ; Ψ |= C ′.
(Substitution) If Σ ` t:s and Σ, x:s; Ψ |= C, then Σ; [t/x]Ψ |= [t/x]C.
(Reflexivity) Σ; Ψ |= I ⊇ I.
(Transitivity) If Σ; Ψ |= I ⊇ I ′ and Σ;Ψ |= I ′ ⊇ I ′′, then Σ; Ψ |= I ⊇ I ′′.

4.2.3 Judgments

In accordance with the goal of combining linear logic and ηN logic, we modify
the judgments of ηN logic to become the resource-aware judgments of ηL logic.
These modifications are analogous to the changes made to ordinary first-order
logic to create linear logic.

In the transition from first-order logic to linear logic, truth forks into single-
use truth and multi-use truth. In the same way, we split ηN logic’s interval
truth into single-use interval truth and multi-use interval truth. So, instead of
having a judgment form meaning “Proposition A is true during interval I,” we
have two judgment forms: A[I], meaning “Proposition A is a single-use truth
(resource) during interval I,” and A[[I]], meaning “Proposition A is a multi-use
truth (fact) during interval I.” Note that the syntax for the single-use interval
truth judgment is the same as the syntax for the interval truth judgment of
ηN logic. This should not cause confusion because the underlying logic should
always be clear from the context.

To model principals’ intents and policies, ηN logic contains an affirmation
judgment form (KaffirmsA)atI, meaning “During interval I, principal K affirms
the truth of proposition A on interval I.” This judgment form is converted to
the resource-aware (K affirms A) at I, meaning “During interval I, principal K
affirms that proposition A is a single-use truth (resource) on interval I.” This
modification of the affirmation judgment for truth to an affirmation judgment
for resources is based on the difference between linear GP logic [22] and (non-
linear) GP logic [23]. Note that the single-use affirmation judgment uses the
same syntax as the affirmation judgment of ηN logic; again, the underlying logic
should be clear from the context.

As in ηN logic, ηL logic continues to use hypothetical judgments as the
mechanism for handling assumptions. However, because the basic judgments
have changed, it is necessary to reconsider the hypothetical judgment forms; in
particular, it should be possible to assume both resources A[I] and facts A[[I]].
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The hypothetical judgment forms of linear η logic are:

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ (K affirms A) at I

where Σ is a context of parameters, ascribed with sorts, that may appear in
Ψ, Γ, ∆, K, A, and I; Ψ is a context of constraints that are assumed to hold;
Γ is a set of fact hypotheses of the form A[[I]]; and ∆ is a multiset of resource
hypotheses of the form A[I]. In the following sections, we will write γ in place
of the basic judgment to the right of =⇒ when its form does not matter.

The first of these hypothetical judgment forms means “Assuming that the
constraints in Ψ hold, under the fact assumptions in Γ, and by using each re-
source assumption in ∆ exactly once, resource A exists during interval I, para-
metrically in the members of Σ. Similarly, the second hypothetical judgment
form means “Assuming that the constraints in Ψ hold, under the fact assump-
tions in Γ, and by using each resource assumption in ∆ exactly once, principal
K affirms, during interval I, that resource A exists on interval I, parametrically
in the members of Σ.”

4.2.4 Propositions

Now that the judgments of ηL logic have been introduced, it is possible to de-
scribe the propositions that these judgments act upon with the following gram-
mar. We retain the propositions relating to affirmation, time, and constraints
from ηN logic, but replace the propositions derived from ordinary first-order
logic with those of linear logic.

A,B ::= P | A⊗B | 1 | A & B | > | A⊕B | A ( B | !A | A ⊃ B | ∀x:s.A
| ∃x:s.A | 〈K〉A | A @ I | C ⊃̇A | C ∧̇A

P stands for an arbitrary atomic proposition. A ⊗ B, A & B, A ⊕ B, A ( B,
and A ⊃ B are simultaneous conjunction, alternative conjunction, disjunction,
linear implication, and unrestricted implication, respectively, as described in
Section 4.1. 1 is multiplicative truth, the unit for ⊗, and > is additive truth,
the unit for &. !A is the fact A encoded as a resource. ∀x:s.A and ∃x:s.A
are universal and existential quantification, respectively. 〈K〉A internalizes the
affirmation judgment (K affirmsA)atI. A@I internalizes the resource judgment
A[I]. C ⊃̇ A and C ∧̇ A are constraint implication and constraint conjunction,
respectively, adapted from Saranlı and Pfenning [37].

One might expect falsehood, 0, from linear logic to be included here. As for
⊥ in ηN logic, any derivation of 0 would permit every principal to access every
resource. Including 0 would therefore be a security risk. For this reason, we
exclude 0 from ηL logic, as we did ⊥ from ηN logic.

4.2.5 Inference Rules

Following the presentations of both GP logic and ηN logic, we now examine the
inference rules for ηL logic. According to the philosophies of Gentzen [24] and
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Martin-Löf [31], these inference rules establish the logic’s formal semantics.
We begin our discussion of the inference rules with the rule that defines the

meaning of linear hypotheses:

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ;P [I] =⇒ P [I ′]
init

One would expect that, by assuming resource A exists during interval I, it
should be possible to conclude that resource A exists during any subinterval I ′

of I. As in the previous logics, this property, restricted to atomic propositions
P , is stated explicitly in the init rule. The rule is recovered in its full generality
as Theorem 4.2 (cf. Section 4.4). Note that only the single resource hypothesis
P [I] is permitted in this rule. This ensures that resources cannot be discarded:
since only P [I] is used in this rule, any other resources that might have been
allowed here would not have been used.

Next, we examine the inference rule that defines the meaning of fact hy-
potheses:

Σ; Ψ; Γ, A[[I]];∆, A[I] =⇒ γ

Σ; Ψ; Γ, A[[I]];∆ =⇒ γ
copy

We previously mentioned that it is occasionally useful to think of facts as re-
source factories that can produce an unlimited number of resources of a given
type. The copy rule is the most convincing example of this perspective. If the
resource factory A[[I]] is assumed to exist, it can be called upon at any point to
produce the resource A[I]. Producing this resource does not incapacitate the
factory, and so the hypothesis A[[I]] persists in the copy rule’s premise.

Next, we consider the right and left rules for the @ connective:

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, A @ I[I ′] =⇒ γ
@L

These rules have very similar structure to the corresponding rules of ηN logic
(cf. Figure 3.1). There are only two differences. First, the rules now carry
resource hypotheses, ∆, in addition to fact hypotheses, Γ. Second, the left rule
operates on resource assumptions, not fact assumptions. These two differences
are also present in the rules for other connectives borrowed from ηN logic.

Next, we consider the right and left rules for linear implication:

Σ, i:interval; Ψ, I ⊇ i; Γ; ∆, A[i] =⇒ B[i]
Σ; Ψ; Γ;∆ =⇒ A ( B[I] (R

Σ; Ψ; Γ;∆1 =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ;∆2, B[I ′] =⇒ γ

Σ; Ψ; Γ;∆1,∆2, A ( B[I] =⇒ γ
(L

The judgment A ( B[I] can be intuitively thought of as a plan for convert-
ing resource A to resource B that is only available during interval I. Such a
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conversion can be established by deriving B[i] from A[i], parametrically in the
arbitrary subinterval i of I. The use of the fresh parameter i and constraint
I ⊇ i ensures that the conversion A ( B is available at all times during I. This
intuition is captured by the right rule, (R. It is important to note that A[i]
is a resource hypothesis in the premise of this rule: A[i] must be used exactly
once in the derivation of B[i].

The left rule, (L, also supports the conversion intuition for A ( B[I].
Given the resource A[I ′], the conversion can be carried out to produce the
resource B[I ′], provided I ′ is a subinterval of I. Observe that the resources are
split among the premises of the rule; the resources ∆1 used to establish A[I ′]
are consumed and cannot be used to establish γ in the other premise.

Next, we give the right and left rules for unrestricted implication:

Σ, i:interval; Ψ, I ⊇ i; Γ, A[[i]];∆ =⇒ B[i]
Σ; Ψ; Γ;∆ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ; · =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ;∆, B[I ′] =⇒ γ

Σ; Ψ; Γ;∆, A ⊃ B[I] =⇒ γ
⊃L

These rules are quite similar to the (R and (L rules for linear implication.
A ⊃ B[I] may also be thought of as a conversion. However, the conversion is
from fact A, not resource A, to resource B. For this reason, the A[[i]] assumption
introduced in the ⊃R rule is a fact hypothesis. Accordingly, no resources may
be used in establishing the requisite A[I ′] in the ⊃L rule; the conversion only
applies to facts. It should be noted that A ⊃ B can be defined in terms of (
and !, whose rules are given in Figure 4.1, as (!A) ( B; the ⊃R and ⊃L rules
are derivable.

Finally, we present the right and left rules for simultaneous conjunction:

Σ; Ψ; Γ;∆1 =⇒ A[I] Σ;Ψ; Γ;∆2 =⇒ B[I]
Σ; Ψ; Γ;∆1,∆2 =⇒ A⊗B[I]

⊗R

Σ; Ψ; Γ;∆, A[I], B[I] =⇒ γ

Σ; Ψ; Γ;∆, A⊗B[I] =⇒ γ
⊗L

The judgment A ⊗ B[I] represents the existence of resources A and B in the
same state during interval I. The right rule, ⊗R, shows that in establishing
A ⊗ B[I], the resource hypotheses ∆1,∆2 are split among the premises, with
∆1 and ∆2 being used to establish A[I] and B[I], respectively. By splitting the
resources, the left rule, ⊗L, is justified: from A⊗B[I], we may have both A[I]
and B[I] because the resources used to originally establish them were disjoint.

These rules and the rules for ( imply the usual equivalence of curried and
uncurried linear implications: A ( (B ( C)[I] and (A ⊗ B) ( C[I] entail
each other.

The remaining connectives are all standard to linear logic [17, 25]. Because
they interact only weakly with time, their rules are rather straightforward mod-
ifications of the corresponding rules in linear logic. Figure 4.1 summarizes all
of the inference rules of ηL logic.
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Basic Rules

Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ;P [I] =⇒ P [I ′]
init

Σ; Ψ; Γ, A[[I]];∆, A[I] =⇒ γ

Σ; Ψ; Γ, A[[I]];∆ =⇒ γ
copy

A @ I

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ A @ I[I ′] @R

Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, A @ I[I ′] =⇒ γ
@L

Constraints

Σ; Ψ, C; Γ; ∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ C ⊃̇A[I] ⊃̇R

Σ; Ψ |= C Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, C ⊃̇A[I] =⇒ γ
⊃̇L

Σ; Ψ |= C Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ C ∧̇A[I] ∧̇R

Σ; Ψ, C; Γ; ∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, C ∧̇A[I] =⇒ γ
∧̇L

Affirmation and 〈K〉A

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ (K affirms A) at I

affirms

Σ; Ψ; Γ;∆ =⇒ (K affirms A) at I

Σ; Ψ; Γ;∆ =⇒ 〈K〉A[I]
〈〉R

Σ; Ψ; Γ;∆, A[I] =⇒ (K affirms B) at I ′ Σ; Ψ |= I ⊇ I ′

Σ; Ψ; Γ;∆, 〈K〉A[I] =⇒ (K affirms B) at I ′
〈〉L

Other Connectives

Σ; Ψ; Γ;∆1 =⇒ A[I] Σ;Ψ; Γ;∆2 =⇒ B[I]
Σ; Ψ; Γ;∆1,∆2 =⇒ A⊗B[I]

⊗R

Σ; Ψ; Γ;∆, A[I], B[I] =⇒ γ

Σ; Ψ; Γ;∆, A⊗B[I] =⇒ γ
⊗L

Σ; Ψ; Γ; · =⇒ 1[I] 1R
Σ; Ψ; Γ;∆ =⇒ γ

Σ; Ψ; Γ;∆,1[I] =⇒ γ
1L

Figure 4.1: The inference rules for ηL logic.
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Other Connectives, cont.

Σ; Ψ; Γ;∆ =⇒ A[I] Σ;Ψ; Γ;∆ =⇒ B[I]
Σ; Ψ; Γ;∆ =⇒ A & B[I] &R

Σ; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆, A & B[I] =⇒ γ
&L1

Σ; Ψ; Γ;∆, B[I] =⇒ γ

Σ; Ψ; Γ;∆, A & B[I] =⇒ γ
&L2

Σ; Ψ; Γ;∆ =⇒ >[I] >R

Σ; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ A⊕B[I]

⊕R1

Σ; Ψ; Γ;∆ =⇒ B[I]
Σ; Ψ; Γ;∆ =⇒ A⊕B[I]

⊕R2

Σ; Ψ; Γ;∆, A[I] =⇒ γ Σ; Ψ; Γ;∆, B[I] =⇒ γ

Σ; Ψ; Γ;∆, A⊕B[I] =⇒ γ
⊕L

Σ, i:interval; Ψ, I ⊇ i; Γ; ∆, A[i] =⇒ B[i]
Σ; Ψ; Γ;∆ =⇒ A ( B[I] (R

Σ; Ψ; Γ;∆1 =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ;∆2, B[I ′] =⇒ γ

Σ; Ψ; Γ;∆1,∆2, A ( B[I] =⇒ γ
(L

Σ; Ψ; Γ; · =⇒ A[I]
Σ; Ψ; Γ; · =⇒ !A[I] !R

Σ; Ψ; Γ, A[[I]];∆ =⇒ γ

Σ; Ψ; Γ;∆, !A[I] =⇒ γ
!L

Σ, i:interval; Ψ, I ⊇ i; Γ, A[[i]];∆ =⇒ B[i]
Σ; Ψ; Γ;∆ =⇒ A ⊃ B[I]

⊃R

Σ; Ψ; Γ; · =⇒ A[I ′] Σ;Ψ |= I ⊇ I ′ Σ; Ψ; Γ;∆, B[I ′] =⇒ γ

Σ; Ψ; Γ;∆, A ⊃ B[I] =⇒ γ
⊃L

Σ, x:s; Ψ; Γ;∆ =⇒ A[I]
Σ; Ψ; Γ;∆ =⇒ ∀x:s.A[I] ∀R

Σ ` t:s Σ; Ψ; Γ;∆, [t/x]A[I] =⇒ γ

Σ; Ψ; Γ;∆,∀x:s.A[I] =⇒ γ
∀L

Σ ` t:s Σ; Ψ; Γ;∆ =⇒ [t/x]A[I]
Σ; Ψ; Γ;∆ =⇒ ∃x:s.A[I] ∃R

Σ, x:s; Ψ; Γ;∆, A[I] =⇒ γ

Σ; Ψ; Γ;∆,∃x:s.A[I] =⇒ γ
∃L

Figure 4.1: The inference rules for ηL logic, continued.
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Before concluding this section, we illustrate some key properties of ηL logic.
We write =⇒ A if, for all Σ, Ψ, and I ′′, Σ;Ψ; ·; · =⇒ A[I ′′] is derivable, and
write 6=⇒ A otherwise. Also, A ≡ B stands for (A ( B) & (B ( A).

First, we note that 〈K〉 remains similar to a lax modality [19] and that 〈K〉A
does not entail A in general:

1. =⇒ A ( (〈K〉A)

2. =⇒ (〈K〉〈K〉A) ≡ (〈K〉A)

3. =⇒ (〈K〉(A ( B)) ( ((〈K〉A) ( (〈K〉B))

4. 6=⇒ (〈K〉A) ( A

Next, we give a few properties of the @ connective. These properties are anal-
ogous to those of ηN logic.

5. 6=⇒ (A @ I) ( (A @ I ′)

6. =⇒ (I ⊇ I ′) ⊃̇ ((A @ I) ( (A @ I ′))

7. =⇒ (A @ I) ≡ (A @ I @ I ′)

8. =⇒ ((A⊗B) @ I) ≡ ((A @ I)⊗ (B @ I))

9. =⇒ ((A & B) @ I) ≡ ((A @ I) & (B @ I))

10. =⇒ ((A⊕B) @ I) ≡ ((A @ I)⊕ (B @ I))

11. =⇒ ((A ( B) @ I) ( ((A @ I) ( (B @ I))

12. 6=⇒ ((A @ I) ( (B @ I)) ( ((A ( B) @ I)

13. =⇒ ((A ⊃ B) @ I) ( ((A @ I) ⊃ (B @ I))

14. 6=⇒ ((A @ I) ⊃ (B @ I)) ( ((A ⊃ B) @ I)

15. 6=⇒ ((〈K〉A) @ I) ( (〈K〉(A @ I))

16. 6=⇒ (〈K〉(A @ I)) ( ((〈K〉A) @ I)

Property 5 shows that, in general, truth on one interval does not imply truth on
another interval: the two intervals may be unrelated. However, as property 6
demonstrates, truth on an interval does indeed imply truth on a subinterval.
Property 7 shows that only the innermost @ I qualification matters. Proper-
ties 8–10 indicate that the natural distributive laws for @ over ⊗, &, and ⊕ hold.
Properties 11–14 show that @ distributes over ( and ⊃ only in one direction.
Properties 15 and 16 demonstrate that @ does not distribute over 〈K〉 in either
direction.

Finally, ηL logic is consistent:

17. 6=⇒ A
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4.3 Examples

To highlight the increased expressive power of ηL logic, we now present two
examples that illustrate the use of finitely-usable credentials in combination with
explicit time. First, we refine the office entry example from previous chapters
for the new logic. Second, we consider the application of the logic to a simple
homework assignment administration system.

In these examples, we adopt the conventions that ⊗, (, ⊃, and ⊃̇ are right
associative, and that binding precendence decreases in the order: 〈〉; @; ⊗; (,
⊃, and ⊃̇; ∀.

4.3.1 Office Entry

Recall, from Section 3.2.1, the office entry example inspired by the Grey sys-
tem [8, 9]. The example assumed an administrating principal, admin, that man-
aged access to offices, and used the predicate may enter, where may enter(K2,K1)
meant that K2 could enter K1’s office. The policies proposed for a PCA archi-
tecture based on ηN logic were:

own′ : 〈admin〉(∀K:principal.may enter(K, K))[(−∞,∞)]

trust′ : 〈admin〉(∀K1:principal.∀K2:principal.
〈K1〉may enter(K2,K1) ⊃

may enter(K2,K1))[(−∞,∞)]

But these policies did not model restrictions on the number of times that a user
may enter an office. In fact, these restrictions cannot be expressed in ηN logic,
motivating the design of ηL logic. Now that we have developed a logic ostensibly
capable of modeling single-use authorizations, it should be possible to refine the
own′ and trust′ policies to incorporate the desired usage restrictions. We begin
by revising own′.

Because ηL logic contains 〈K〉 and ∀ propositions and uses the same interval
structures as ηN logic, a first attempt at revision would be to use the same
proposition and validity interval as own′. But, should the policy be represented
as a fact or as a resource? Because it is natural to expect that an office owner
should be able to enter his office an unlimited number of times (at least in the
setting of academic offices), the policy should be represented as a fact:

own′′ : 〈admin〉(∀K:principal.may enter(K, K))[[(−∞,∞)]]

It is also possible to refine the trust′ policy for use with ηL logic. Again, most
of the policy can remain unchanged. However, because trust′ uses implication,
we must carefully choose the form of ηL logic implication. Since our goal is to
permit office owners to restrict the number of times a colleague may enter, we
choose (: it can be applied to single-use resources, while ⊃ can only be applied
to multi-use facts. Since no usage restrictions should be placed on the trust′′

policy itself, it is represented as the fact:
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trust′′ : 〈admin〉(∀K1:principal.∀K2:principal.
〈K1〉may enter(K2,K1) (

may enter(K2,K1))[[(−∞,∞)]]

We now revisit the dilemma of Alice and Bob: Alice is away from the office
on May 7, 2008 and wants to allow Bob to enter her office once (and only once)
on that day. To do this, Alice can now issue the single-use credential, imported
into the system as the resource hypothesis:

C′′ : 〈Alice〉may enter(Bob,Alice)[5/7/08]

Suppose that Bob approaches Alice’s office door at time t0 and requests access.
Provided that t0 is during May 7, 2008, Bob can combine the trust′′ policy with
Alice’s credential to construct the required proof of

ΣA,B; ·; own′′, trust′′; C′′ =⇒ 〈admin〉may enter(Bob,Alice)[[t0, t0]]

where ΣA,B assigns the sort principal to all principals in the system. However,
the ( in the trust′′ policy causes the resource hypothesis C′′ to be consumed.
The reference monitor records this usage of C′′. If Bob attempts to enter Alice’s
office again at some later time t1, he will be asked to prove

ΣA,B; ·; own′′, trust′′; · =⇒ 〈admin〉may enter(Bob,Alice)[[t1, t1]]

The reference monitor does not allow the resource hypothesis C′′ to be used in
this proof because it has already been consumed by the proof at time t0. It
is easy to check that it is impossible to prove the judgment required for access
at time t1. Thus, Alice has successfully restricted Bob to entering her office at
most once during May 7, 2008.

As this example shows, ηL logic has improved ηN logic by permitting usage
restrictions on authorizations. We proceed to give two further examples of the
increased expressive power of ηL logic.

4.3.2 Filling Painkiller Prescriptions

We now consider the specification of pharmacy policies for dispensing painkilling
medications in ηL logic. To prevent addiction, painkillers are tightly regulated.
A patient must submit a valid doctor’s prescription to the pharmacist and may
only receive a few days worth of pills at a time. Only after those pills are used
can the patient be given more medication. The policies described below enforce
these restrictions.

This example requires the application-specific sort int for integers, function
symbols + and − for integer addition and subtraction, and a ≤ order constraint
over integers. In addition, the following predicates are used:
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submit order A request to submit a prescription.
script(K, n) A prescription for principal K to have n days worth

of pills.
is doctor(D) Principal D is a doctor.
record(K, n) A pharmacist’s record that principal K has n re-

maining days worth of pills on his prescription.
receipt(D,K, n, i) A receipt that a prescription signed by principal D

for principal K to have n days worth of pills during
interval i was received.

request dispense(n) A request that n days worth of pills be dispensed.
pills(K, n) Principal K has n days worth of pills.

Suppose that a doctor D wishes to issue a prescription for n days worth of
painkilling medication to his patient K. He does so by issuing the consumable
credential 〈D〉(script(K, n) @ i)[[ti,∞)]. i is the interval over which the pre-
scription is valid and medication may be dispensed. ti is the time at which the
doctor signs the prescription. Note that the left endpoint of i need not match
ti; for example, the doctor may sign the prescription several days before the
surgery for which the medication is needed.

The first policy, order, specifies the procedure for submitting a doctor’s pre-
scription to a pharmacy:

order : (∀K:principal.∀t:time.∀D:principal.∀n:int.∀i:interval.
〈K〉submit order @ [t, t] (
〈D〉(script(K, n) @ i) @ [t, t] (
〈P 〉is doctor(D) @ [t, t] ⊃

(〈P 〉(record(K, n) @ i) @ [t,∞)⊗
〈P 〉receipt(D,K, n, i) @ [t,∞)))[[(−∞,∞)]]

Principal K initiates a transaction at time t by creating the single-use credential
〈K〉submit order[[t, t]]. The pharmacy P accepts the prescription and issues a
receipt if the following conditions are met:

1. 〈D〉(script(K, n) @ i) @ [t, t]—at time t, there must exist a prescription for
K to have some medication over some interval.

2. 〈P 〉is doctor(D) @ [t, t]—the pharmacy P must verify that principal D is
indeed a certified doctor at time t.

Under these conditions, the pharmacy will create an internal record of the
prescription so that medication can be dispensed by issuing the credential
〈P 〉(record(K, n) @ i) @ [t,∞). In addition, the pharmacy will give K a receipt
of the transaction, modeled as 〈P 〉receipt(D,K, n, i) @ [ti,∞).

The second policy of the system, dispense, specifies the conditions under
which medication can be dispensed:
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dispense : (∀K:principal.∀n′:int.∀t:time.∀P :principal.∀n:int.∀tf :time.
〈K〉request dispense(n′) @ [t, t] (
〈P 〉(record(K, n) @ [t, tf ]) @ [t, t] (
(n′ > 0) ⊃̇ (n′ ≤ n) ⊃̇ (n′ ≤ 7) ⊃̇

(pills(K, n′) @ [t,∞)⊗
〈P 〉(record(K, n− n′) @ [t + n′, tf ]) @ [t,∞)))[[(−∞,∞)]]

A principal K requests that n′ days worth of medication be dispensed at time
t by creating the single-use credential 〈K〉request dispense(n′)[[t, t]]. The phar-
macy P carries out this request and updates its internal record if the following
conditions are met:

1. 〈P 〉(record(K, n) @ [t, tf ]) @ [t, t]—at time t, the pharmacy has a record
that K may be given n days worth of medication during [t, tf ].

2. n′ > 0—the number of days worth of medication requested is positive.
This prevents negative requests that would increase the amount listed in
the pharmacy’s record.

3. n′ ≤ n—the number of days worth of medication requested is no more
than the total remaining amount K may have. This prevents K from
exceeding his prescribed amount.

4. n′ ≤ 7—the number of days worth of medication requested is no more than
7. This ensures that at most one week’s worth of medication is dispensed
at one time.

Provided that these conditions are satisfied, the pharmacy will dispense n′ pills
to K. K possesses these pills from time t onward. The pharmacy also updates its
record by deducting n′ from the number of pills remaining on K’s prescription.
In addition, the interval over which K may request these remaining pills is
changed to [t + n′, tf ]. The expiration date remains the same, but the left
endpoint is moved so that K must wait n′ more days before new pills can be
dispensed. This controls the average rate at which K can consume the pills.

Observe that it is critical that the pharmacy’s record is a consumable cre-
dential. If the record was persistent, it would be impossible to accurately deduct
medication dispensed and adjust the validity interval: it would be possible to
use the old record to obtain more medication than prescribed.

4.3.3 A Homework Assignment Administration System

In this example, we consider the application of ηL logic to a homework assign-
ment administration system. Time is used to express the release and due dates
of assignments, while linearity is used to model changes of state in the system.

We postulate sorts for assignments and courses: assignment and course, re-
spectively. In addition, we introduce the following predicates:
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request view(A,C) A request to view assignment A of course C.
request submit(A,C) A request to submit answers for assignment A of

course C.
is professor(P,C) P is a professor for course C.
is student(S, C) S is a student enrolled in course C.
is assignment(A,C) A is an asignment for the students in course C.
may view(S, A,C) S may view assignment A of course C.
may submit(S, A,C) S may submit answers for assignment A of course

C.
change date(A,C, t′r, t

′
d) A request to change the release and due dates for

assignment A of course C to t′r and t′d, respectively.

We also assume an administrating principal, admin, that manages the sys-
tem. This administrator is responsible for initializing the courses in the system
at the beginning of each semester. First, the administrator issues multi-use
certificates identifying the instructors of each course. For example, if principal
P is the professor for course C during Spring 2008, the administrator issues
〈admin〉is professor(P,C)[[S′08]]. Second, the administrator issues a multi-use
certificate for each student enrolled in each course. For example, if principal S
is a student enrolled in course C during Spring 2008, the administrator issues
〈admin〉is student(S, C)[[S′08]].

During the semester, a professor P can create an assignment A for course C
with release date tr and due date td by stating 〈P 〉is assignment(A,C)[[tr, td]].
Note that this is a single-use credential. This is done to permit the professor to
change the release and due dates, if desired (using the change policy).

The system’s first policy specifies the conditions under which a principal
may view an assignment:

view : (∀S:principal.∀A:assignment.∀C:course.
∀t:time.∀P :principal.∀tr:time.∀td:time.
〈S〉request view(A,C) @ [t, t] (
〈admin〉is student(S, C) @ [t, t] ⊃
〈P 〉is assignment(A,C) @ [tr, td] (
〈admin〉is professor(P,C) @ [tr, td] ⊃
(t ≥ tr) ⊃̇

(〈admin〉may view(S, A,C) @ [t, t]⊗
〈P 〉is assignment(A,C) @ [tr, td]))[[(−∞,∞)]]

A principal S can make a request to view assignment A for course C at time t by
creating the certificate 〈S〉request view(A,C)[[t, t]]. The adminstrator will let S
view the assignment at time t, represented as 〈admin〉may view(S, A,C) @ [t, t],
if the following four conditions are met:

1. 〈admin〉is student(S, C)@[t, t]—the administrator affirms that principal S
is a student enrolled in course C at the time the request is made, that is,
at time t.

2. 〈P 〉is assignment(A,C) @ [tr, td]—some principal P affirms that A is an
assignment for course C with release and due dates tr and td, respectively.
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3. 〈admin〉is professor(P,C)@[tr, td]—the administrator affirms that the above
principal P is actually an instructor for course C for the duration the as-
signment, that is, during [tr, td].

4. t ≥ tr—the time at which student S requests access is after the assignment
has been released. This prevents students from viewing a draft assignment.

Note that the is assignment credential is consumed and immediately regenerated
by this policy. It must be a consumable credential to facilitate the changing of
the assignment release and due dates, and yet it cannot be permanently con-
sumed in this policy because then the first viewing would destroy the assignment.

The system also includes a policy that describes how a principal may submit
answers to an assignment:

submit : (∀S:principal.∀A:assignment.∀C:course.
∀t:time.∀P :principal.∀tr:time.∀td:time.
〈S〉request submit(A,C) @ [t, t] (
〈admin〉is student(S, C) @ [t, t] ⊃
〈P 〉is assignment(A,C) @ [tr, td] (
〈admin〉is professor(P,C) @ [tr, td] ⊃
(t ∈ [tr, td]) ⊃̇

(〈admin〉may submit(S, A,C) @ [t, t]⊗
〈P 〉is assignment(A,C) @ [tr, td]))[[(−∞,∞)]]

This policy is quite similar to the view policy. A principal S signals his intent to
submit answers for assignment A in course C at time t by constructing the cre-
dential 〈S〉request submit(A,C)[[t, t]]. The administrator allows S to submit an-
swers at time t, represented in the submit policy as 〈admin〉may submit(S, A,C)@
[t, t], if four conditions are met. The first three conditions are the same as those
for the view policy. The fourth condition is t ∈ [tr, td], that is, the time of
request must be before the assignment due date (and after the release date).
This prevents late assignments from being submitted. Note that, as in the view
policy, the is assignment credential is regenerated.

The final policy permits a course professor to change assignment release and
due dates:

change : (∀P :principal.∀A:assignment.∀C:course.
∀t′r:time.∀t′d:time.∀tr:time.∀td:time.
〈P 〉change date(A,C, t′r, t

′
d) (

〈P 〉is assignment(A,C) @ [tr, td] (
〈admin〉is professor(P,C) ⊃
〈P 〉is assignment(A,C) @ [t′r, t

′
d])[[(−∞,∞)]]

A principal P can initiate the process of changing the release and due dates
of assignment A for course C to t′r and t′d, respectively, by issuing the cre-
dential 〈P 〉change date(A,C, t′r, t

′
d). If the same principal P has already de-

clared A to be an assignment for course C, represented in the change policy as
〈P 〉is assignment(A,C) @ [tr, td], and if the administrator affirms P to be a pro-
fessor for course C, represented as 〈admin〉is professor(P,C), then the dates will
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be changed. This policy finally justifies the decision to make is assignment cre-
dentials usable only once: if the credential was persistent, then the assignment
would have two release dates and two due dates.

4.4 Meta-theory

Now that ηL logic has been formally described and its increased expressive
power has been illustrated by examples, we turn to a study of its meta-theoretic
properties. As for previous logics, we show that natural properties of ηL logic
indeed hold, to increase confidence in the logic’s foundations and demonstrate
its soundness.

Before considering any meta-theorems that are interesting in their own right,
we must state a few lemmata:

Lemma 4.1.
1. If Σ; Ψ; Γ;∆ =⇒ γ, then Σ,Σ′; Ψ,Ψ′; Γ,Γ′;∆ =⇒ γ.
2. If Σ; Ψ, I ⊇ I ′′; Γ; ∆ =⇒ γ and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ, I ′ ⊇ I ′′; Γ; ∆ =⇒

γ.
3. If Σ; Ψ |= C and Σ; Ψ, C; Γ; ∆ =⇒ γ, then Σ; Ψ; Γ;∆ =⇒ γ.
4. If Σ ` t : s and Σ, x:s; Ψ; Γ;∆ =⇒ γ, then Σ; [t/x]Ψ; [t/x]Γ; [t/x]∆ =⇒

[t/x]γ.

Proof. All parts follow by structural induction on the given derivation.

In the presentation of ηN logic’s meta-theory (cf. Section 3.3.1), we studied
an identity principle that generalized the init rule from atomic propositions to
compound propositions. It is possible to make the same generalization in ηL

logic. As the following theorem shows, from the assumption that proposition
A is a resource during interval I, it is possible to conclude that A is a resource
during any subinterval I ′ of I. Because the theorem concerns resource hypothe-
ses and each resource hypothesis must be used exactly once, no other resource
hypotheses are permitted here.

Theorem 4.2 (Identity). For all propositions A, if Σ; Ψ |= I ⊇ I ′, then
Σ; Ψ; Γ;A[I] =⇒ A[I ′].

Proof. By structural induction on A.

In the presentation of ηN logic, we also examined subsumption as a meta-
theoretic property. The most basic form of subsumption occurred on the right
side of =⇒: from a proof that A is true on interval I, we were able to construct a
similar proof that A is true on a subinterval I ′. This notion of right subsumption
from ηN logic can be easily extended to ηL logic; the theorem and proof are no
more complicated.

Theorem 4.3 (Right Subsumption).
1. If Σ; Ψ; Γ;∆ =⇒ A[I] and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ;∆ =⇒ A[I ′].
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2. If Σ; Ψ; Γ;∆ =⇒ (K affirmsA) at I and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ;∆ =⇒
(K affirms A) at I ′.

Proof. By simultaneous structural induction on the first given derivation.

For ηN logic, we also considered subsumption on the left of =⇒. We were
able to replace an assumption that A is true on interval I ′ with an assumption
that A is true on a superinterval I. It is also possible to extend this notion of
left subsumption to ηL logic. Because the logic now includes fact hypotheses,
the theorem must be expanded to make an analogous statement about fact
hypotheses.

Theorem 4.4 (Left Subsumption).
1. If Σ; Ψ; Γ;∆, A[I ′] =⇒ γ and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ;∆, A[I] =⇒ γ.
2. If Σ; Ψ; Γ, A[[I ′]];∆ =⇒ γ and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ, A[[I]];∆ =⇒ γ.

Proof. By simultaneous nested induction on the structures of A and the first
given derivation.

Finally, we examined the admissibility of cut in our study of the meta-theory
of ηN logic. We can also establish the admissibility of cut for ηL logic. However,
two significant modifications must be made to the theorem statement. First,
when replacing the resource hypothesis A[I] with a proof of A[I], we must be
careful to respect the single-use nature of resources. For this reason, the cut
rules join the distinct multi-sets of resources, ∆ and ∆′, used by the two proofs
being combined. Second, a cut rule for fact hypotheses is needed. The proof
used to replace a fact hypothesis must prove a fact, and therefore cannot contain
resource hypotheses.

Theorem 4.5 (Admissibility of Cut).
1. If Σ; Ψ; Γ;∆ =⇒ A[I] and Σ; Ψ; Γ;∆′, A[I] =⇒ γ, then Σ; Ψ; Γ;∆′,∆ =⇒

γ.
2. If Σ; Ψ; Γ; · =⇒ A[I] and Σ; Ψ; Γ, A[[I]];∆ =⇒ γ, then Σ; Ψ; Γ;∆ =⇒ γ.
3. If Σ; Ψ; Γ;∆ =⇒ (K affirmsA)atI, Σ; Ψ; Γ;∆′, A[I] =⇒ (K affirmsB)atI ′,

and Σ; Ψ |= I ⊇ I ′, then Σ; Ψ; Γ;∆′,∆ =⇒ (K affirms B) at I ′.

Proof. By simultaneous nested induction on the structures of A and the given
derivations.

Because of the difficulty of encoding the meta-theory of linear logics in Twelf,
we have not attempted to mechanically verify the above theorems, instead re-
lying on traditional pencil-and-paper proofs. However, Reed’s work on hybrid
LF [36] shows promising preliminary steps toward a framework for mechanically
verifying linear meta-theorems. We expect that verifying the meta-theory of ηL

logic would be a straightforward exercise in such a framework.
In Section 3.3.2, we established a formal correspondence between ηN logic

and GP logic, in addition to the metatheory for ηN logic itself. It is also possible
to establish a correspondence between ηL logic and a linear version of GP logic
(as in [22]). However, in the interest of space, we will not present a linear GP
logic, and therefore do not state the correspondence theorem.
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4.5 Conclusion

In this chapter, we revised ηN logic to account for access control policies that re-
quire finitely usable credentials, creating ηL logic. We illustrated the new logic’s
increased expressiveness through two examples: office entry and homework ad-
ministration. Finally, we conducted a small meta-theoretic study of the logic,
culminating in a proof of the admissibility of cut. In the following chapter, we
continue to discuss ηL logic by constructing an alternative, natural deduction
formulation of the logic and a simple proof checker for it.
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Chapter 5

A Proof Checker for ηL
Logic

In the previous chapter, we developed a linear authorization logic with explicit
time by naturally modifying ηN logic to possess judgments for single-use re-
sources and multi-use facts. We saw that ηL logic is sufficiently expressive to
model authorization policies that require single-use credentials or other mutable
state.

Proof-carrying authorization (PCA) [6, 7] is an appealing mechanism for
enforcing such policies in practice. In PCA, the reference monitor for a given
resource requests a proof of authorization for each access request. Only after
the reference monitor has verified the proof’s correctness will access be granted.
For this reason, a sound (and complete) proof checker is a critical component
of any PCA architecture.

As the first small step toward a PCA architecture based on ηL logic, this
chapter concerns the implementation of a proof checker for the logic. First, we
present the well-formedness rules for terms, constraints, and propositions that
have been deferred by earlier chapters. Next, we introduce proof terms and
describe a bidirectional type checking system built from the logic. Finally, we
discuss the implementation techniques used in handling the diverse aspects of
the logic, most notably linearity and constraints.

A proof-of-concept implementation of the proof checker presented in this
chapter is available online at http://www.andrew.cmu.edu/user/hdeyoung/
etalogic/checker.

5.1 Formal Proof Checker

5.1.1 Sorts, Function Symbols, and Predicates

We retain from ηL logic the distinguished sorts principal, time, and interval for
principals, times, and intervals (sets of time), respectively. The language of sorts
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can still be extended with application-specific sorts, but this open-endedness
must now be made explicit for the purpose of implementation. Sort constants
α are introduced to this end, completing the language of sorts:

s ::= principal | time | interval | α

To list the available sort constants, a signature is needed:

Φ ::= · | Φ, α:sort | . . .

In fact, sort constants and the signatures declaring them were implicitly assumed
in the presentation of ηL logic in Chapter 4. However, because the available sort
constants remain unchanged throughout a derivation, we avoided introducing
them explicitly to simplify the initial discussion.

Like sort constants, function symbols and predicates were glossed over in
Chapter 4 to avoid obscuring the core of ηL logic. Because the available function
symbols and predicates also remain unchanged throughout a derivation, they,
too, can be included in the signature Φ. We write f :(s1 × · · · × sn) → s′ to
indicate that f is a function symbol taking n arguments of sorts s1, . . . , sn and
returning a term of sort s′, and write p:(s1 × · · · × sn) to show that p is a
predicate on n terms of sorts s1, . . . , sn.

Φ ::= · | Φ, α:sort | Φ, f :(s1 × · · · × sn) → s′ | Φ, p:s1 × · · · × sn

The judgment ` Φ ok means that Φ is a well-formed signature; its rules are
given in Figure 5.1.

We write Φ ` s : sort for the judgment that s is a well-formed sort in the
signature Φ. Figure 5.1 gives the rules for this judgment. The predefined sorts
are well-formed in any context and a sort constant is well-formed in Φ if it
appears in Φ.

5.1.2 Terms

Although the representation of principals, times, and intervals is left unspecified
in ηL logic, our proof checker must fix constructors for these terms. We choose to
give no explicit constructors for principals, and instead rely on term parameters
as the sole source of principals. In keeping with the examples from Chapters 3
and 4, we let time constants range over integers (n) and positive and negative
infinities (∞ and −∞). Similarly, an interval is constructed as a pair of terms
([t, t′]). We also allow the application of function symbols to a list of terms.
This leads to the following language of terms:

t ::= n | ∞ | −∞ | [t, t′] | f(t1, . . . , tn) | x

As in earlier chapters, we require an unordered context of term parameters
ascribed with sorts to track the parameters in scope:

Σ ::= · | Σ, x:s
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` Φ ok

` · ok
` Φ ok α:sort /∈ Dom(Φ)

` Φ, α:sort ok

Φ ` si : sort for all 1 ≤ i ≤ n Φ ` s′ : sort f /∈ Dom(Φ)
` Φ, f :(s1 × · · · × sn) → s′ ok

Φ ` si : sort for all 1 ≤ i ≤ n p /∈ Dom(Φ)
` Φ, p:(s1 × · · · × sn) ok

Φ ` s : sort

` Φ ok
Φ ` principal : sort

` Φ ok
Φ ` time : sort

` Φ ok
Φ ` interval : sort

` Φ ok Φ(α) = sort
Φ ` α : sort

Figure 5.1: The well-formedness rules for signatures and sorts.

Φ ` Σ ok

` Φ ok
Φ ` · ok

Φ ` Σ ok x /∈ Dom(Σ) Φ ` s : sort
Φ ` Σ, x:s ok

Φ; Σ;Ψ ` t : s

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` n : time

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` ∞ : time

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` −∞ : time

Φ; Σ;Ψ ` t : time Φ; Σ;Ψ ` t′ : time Φ; Σ;Ψ |= t′ ≥ t

Φ; Σ;Ψ ` [t, t′] : interval

Φ(f) = (s1 × · · · × sn) → s′ Φ; Σ;Ψ ` ti : si for all 1 ≤ i ≤ n

Φ; Σ;Ψ ` f(t1, . . . , tn) : s′

Φ; Σ ` Ψ ok Σ(x) = s

Φ; Σ;Ψ ` x : s

Figure 5.2: The well-formedness rules for parameter contexts and terms.
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The well-formedness rules for contexts of parameters are given in Figure 5.2.
With the language of terms defined, we should now describe the conditions

under which terms are well-sorted. It is natural to assume that the time con-
structors n, ∞, and −∞ have sort time under any conditions, as they do not
include parameters or any complex structure. Also, we assign the codomain
sort of function symbol f to f(t1, . . . , tn) if t1, . . . , and tn have the domain
sorts of f . Finally, it is standard practice to assign sort s to parameter x if this
assignment is given in the parameter context Σ.

However, the conditions under which the term [t, t′] should have sort interval
are not as clear. We intend that both t and t′ have sort time. If this is adopted as
the only condition for well-sortedness, how should [t, t′] be interpreted? There
are at least two options.

We could interpret [t, t′] as an unordered pair of times that corresponds to
the set of times between min{t, t′} and max{t, t′}. Or, we could interpret [t, t′]
as the empty set whenever t is larger than t′.

Neither option is particularly compelling, as they do not correspond to typi-
cal interpretations of mathemetical intervals. It seems cleaner to instead require
that the left endpoint of an interval be no larger than the right endpoint. Order-
ing constraints t′ ≥ t from a context Ψ (cf. Section 5.1.3) are therefore needed
during sorting. We write Φ;Σ; Ψ ` t : s for the judgment that t has sort s.
Figure 5.2 gives its rules.

5.1.3 Constraints

Only ordering constraints t ≥ t′ on times are required for the proof checker
implementation. Although it would be relatively straightforward to introduce
other constraints, we do not choose to do so. The language of constraints is
therefore simply:

C ::= t ≥ t′

Superset constraints I ⊇ I ′ are not needed for the proof checker: as discussed in
Section 5.2.4, they can be translated to a conjunction of ≥ constraints. Keeping
this in mind, we continue to use I ⊇ I ′ to simplify the notation.

The judgment Φ; Σ;Ψ ` C constraint means that constraint C is well-
formed. The ordering constraint t ≥ t′ is well-formed if both t and t′ are
well-formed times. This rule is given in Figure 5.3.

As alluded to in previous rules, a context of constraints is needed:

Ψ ::= · | Ψ, C

We write Φ;Σ ` Ψ ok when Ψ is a well-formed constraint context. Figure 5.3
gives the rules for this judgment.

We continue to write Φ; Σ;Ψ |= C for the judgment that constraint C holds.
In the following presentation of bidirectional type checking, the constraint solver
is taken as a black box. The specific decision procedure that was implemented
is discussed in Section 5.2.4.
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Φ; Σ;Ψ ` C constraint

Φ; Σ;Ψ ` t : time Φ; Σ;Ψ ` t′ : time

Φ; Σ;Ψ ` t ≥ t′ constraint

Φ; Σ ` Ψ ok

Φ ` Σ ok
Φ; Σ ` · ok

Φ; Σ;Ψ ` C constraint
Φ; Σ ` Ψ, C ok

Figure 5.3: The well-formedness rule for constraints and constraint contexts.

5.1.4 Propositions and Types

The propositional connectives are retained from ηL logic, but we refine the
description of atomic propositions. An atomic proposition P is now a predicate
p applied to a list of terms t1, . . . , tn: p(t1, . . . , tn). The language of propositions
is summarized by the following grammar:

A,B ::= p(t1, . . . , tn) | A⊗B | 1 | A & B | > | A⊕B | A ( B | !A | A ⊃ B

| ∀x:s.A | ∃x:s.A | 〈K〉A | A @ I | C ⊃̇A | C ∧̇A

The judgment Φ; Σ;Ψ ` A prop means that A is a well-formed proposition. Its
rules are given in Figure 5.4.

We should call particular attention to the rules for C ⊃̇A and C ∧̇A. In both
rules, proposition A is checked for well-formedness in the presence of constraint
C, reminiscent of dependent product and sum types. The presence of constraint
C is necessitated by the rule for interval well-formedness. Consider the propo-
sition ∀x:time.(x ≥ 1) ⊃̇ A @ [1, x], for example. Without the constraint x ≥ 1,
the interval [1, x] (and consequently the whole proposition) is not well-formed.
A similar example using ∧̇ is ∃x:time.(x ≥ 1) ∧̇A @ [1, x].

In addition to propositions, categorical judgments are required. These cor-
respond to the single-use truth and affirmation judgments from ηL logic:

γ ::= A[I] | (K affirms A) at I

We write Φ;Σ;Ψ ` γ cat for the judgment that γ is a well-formed categorical
judgment. For it to be well-formed, each A, I, and K in γ must be a well-formed
proposition, interval, and principal, respectively. Figure 5.4 gives the rules for
this judgment.

5.1.5 Proof Terms and Their Typing Judgments

In order to verify the correctness of proofs through type checking, explicit proof
objects, called proof terms, must be included in the formal system. Each proof
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Φ; Σ;Ψ ` A prop

Φ(p) = s1 × · · · × sn Φ; Σ;Ψ ` ti : si for all 1 ≤ i ≤ n

Φ; Σ;Ψ ` p(t1, . . . , tn) prop

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` B prop
Φ; Σ;Ψ ` A⊗B prop

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` 1 prop

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` B prop
Φ; Σ;Ψ ` A & B prop

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` > prop

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` B prop
Φ; Σ;Ψ ` A⊕B prop

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` B prop
Φ; Σ;Ψ ` A ( B prop

Φ; Σ;Ψ ` A prop
Φ; Σ;Ψ ` !A prop

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` B prop
Φ; Σ;Ψ ` A ⊃ B prop

Φ ` s : sort Φ; Σ, x:s; Ψ ` A prop
Φ; Σ;Ψ ` ∀x:s.A prop

Φ ` s : sort Φ; Σ, x:s; Ψ ` A prop
Φ; Σ;Ψ ` ∃x:s.A prop

Φ; Σ;Ψ ` K : principal Φ; Σ;Ψ ` A prop
Φ; Σ;Ψ ` 〈K〉A prop

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` I : interval

Φ; Σ;Ψ ` A @ I prop

Φ; Σ;Ψ ` C constraint Φ; Σ;Ψ, C ` A prop
Φ; Σ;Ψ ` C ⊃̇A prop

Φ; Σ;Ψ ` C constraint Φ; Σ;Ψ, C ` A prop
Φ; Σ;Ψ ` C ∧̇A prop

Φ; Σ;Ψ ` γ cat

Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` I : interval

Φ; Σ;Ψ ` A[I] cat

Φ; Σ;Ψ ` K : principal Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` I : interval

Φ; Σ;Ψ ` (K affirms A) at I cat

Figure 5.4: The well-formedness rules for propositions and categorical judg-
ments.
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term, denoted by the meta-variables M and N , corresponds to a single step in
a derivation. We choose a set of natural deduction proof terms:

M,N ::= u | v

| (M : γ)
| M ⊗N | let M = u1 ⊗ u2 in N

| ? | let M = ? in N

| 〈M,N〉 | fst M | snd M

| 〈〉
| inl M | inr M | (case M of inl u1 ⇒ N1 | inr u2 ⇒ N2)

| λ̂i, u.M | MˆN I

| !M | let M = !v in N

| λi, v.M | M N I

| Λx.M | M [t]
| pack t with M | let M = pack x with u in N

| affirms M

| 〈 〉M | let M = 〈 〉u in N

| @+ M | @− M

| λ̇.M | M ˙
| ∧̇M | let M = ∧̇ u in N

We use u and v (and their decorated variants) for linear and unrestricted
variables, respectively. Because each variable can be identified as linear or
unrestricted from the proof term that introduced it, this naming scheme carries
no meaning, but is instead solely adopted for convenience. The syntax of the
remaining proof terms is a mixture of notation from programming languages
and notation mimicking the type corresponding to the proof term.

It should be noted that nearly all type annotations have been eliminated
from the proof terms. (In some cases, the omitted annotations are replaced by
.) This is a consequence of the use of bidirectional typing judgments.

There are two bidirectional typing judgments for proof terms: a synthesis
judgment M ↑ γ and a checking judgment M ↓ γ.1 As in earlier chapters, these
basic judgments are extended to allow assumptions, which are ascriptions of
types to proof variables in this case. The context Γ contains unrestricted variable
typings, v:A[[I]], and ∆ contains linear variable typings, u:A[I]. Figure 5.5
gives the well-formedness rules for these contexts. The full bidirectional typing

1The reader may find it useful to note that the synthesis and checking judgments roughly
correspond to neutral and normal deductions for logics. The directionality of the arrow nota-
tion, however, is often reversed in presentations of neutral and normal deductions.
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Φ; Σ;Ψ ` Γ ok

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` · ok

Φ; Σ;Ψ ` Γ ok v /∈ Dom(Γ) Φ; Σ;Ψ ` A prop Φ; Σ;Ψ ` I : interval

Φ; Σ;Ψ ` Γ, v:A[[I]] ok

Φ; Σ;Ψ ` ∆ ok

Φ; Σ ` Ψ ok
Φ; Σ;Ψ ` · ok

Φ; Σ;Ψ ` ∆ ok u /∈ Dom(∆) Φ;Σ; Ψ ` A prop Φ; Σ;Ψ ` I : interval

Φ; Σ;Ψ ` ∆, u:A[I] ok

Figure 5.5: The well-formedness rules for proof contexts.

judgment forms are:

Φ; Σ;Ψ; Γ;∆ ` M ↑ γ

Φ; Σ;Ψ; Γ;∆ ` M ↓ γ

These two judgments differ from an operational perspective. The type is
considered an output of the synthesis judgment and an input to the checking
judgment, justifying the names: M ↑ γ synthesizes a type γ for M , while M ↓ γ
checks M at type γ. It is the operational distinction that allows most type anno-
tations to be omitted from proof terms. In most cases where a type annotation
would normally be needed, the checking judgment is used, and therefore the pur-
ported type is given as an input. This reduction of required type annotations is
a standard benefit of bidirectional type checking [35].

5.1.6 Inference Rules

We now proceed to describe in detail a few inference rules for the typing judg-
ments. As a general rule of thumb, introduction rules and closed-scope elimina-
tion rules (having proof terms of the form let . . . = . . . in . . .) use the checking
judgment M ↓ γ, while the remaining rules use the synthesis judgment M ↑ γ.

First, compare the hyp rule for synthesizing a type for a linear hypothesis
with the hyp′ rule for checking the type of a linear hypothesis:

Φ; Σ;Ψ; Γ;u:A[I] ` u ↑A[I]
hyp

Φ; Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;u:A[I] ` u ↓A[I ′]
hyp′

These rules reiterate the input-output mode difference between the synthesis and
checking judgments. Because the hyp rule synthesizes a type for the hypothesis,
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it must output the largest correct interval; producing a smaller interval would
unnecessarily throw away information. On the other hand, because the hyp′

rule checks the type of the hypothesis against its input, any input interval I ′

smaller than the assumed interval I gives a valid type.
In practice, the hyp′ rule is not needed: it is derivable from hyp and the

other rules.
Next, we examine the ↑↓ rules for mediating between the two judgments:

Φ; Σ;Ψ; Γ;∆ ` M ↑A[I] Φ;Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆ ` M ↓A[I ′]
↑↓

Φ; Σ;Ψ; Γ;∆ ` M ↑ (K affirms A) at I Φ; Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆ ` M ↓ (K affirms A) at I ′
↑↓affirms

The ↑↓ rule states that if type A[I] can be synthesized for M and I ′ is a subin-
terval of I, then M checks against type A[I ′]. From an operational perspective,
this means that if we are trying to check M against a type, we can synthesize a
type for M and verify that the two types are related by subsumption. ↑↓affirms
is the analogous rule for affirmation types.

The ↓↑ rule mediates between the two judgments in the opposite direction:

Φ; Σ;Ψ; Γ;∆ ` M ↓ γ

Φ; Σ;Ψ; Γ;∆ ` (M : γ) ↑ γ
↓↑

This rule states that if the proof term M is annotated with a type γ and if M
indeed checks against γ, then we may synthesize γ as the type of M .

Next, we consider the introduction and elimination rules for linear implica-
tion:

Φ; Σ, i:interval; Ψ, I ⊇ i; Γ; ∆, u:A[i] ` M ↓B[i]

Φ; Σ;Ψ; Γ;∆ ` λ̂i, u.M ↓A ( B[I]
(I

Φ; Σ;Ψ; Γ;∆1 ` M ↑A ( B[I] Φ;Σ;Ψ; Γ; ∆2 ` N ↓A[I ′] Φ;Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆1,∆2 ` MˆN I ′ ↑B[I ′]
(E

The proof term for introduction of linear implication is λ̂i, u.M , where i and u
are the interval and proof assumptions created, respectively. (i is needed because
intervals can appear in implication elimination proof terms.) Usually a lambda
expression would have its parameter annotated with a type. However, because
the (I rule checks against a type, writing λ̂i, u:A[i].M would be redundant: A
is already known from the input to the checking judgment.

Most other type annotations on proof terms can be omitted for the same
reason. This pattern does not apply to the elimination proof term for linear
implication, however. The (E rule shows that a type must be synthesized for
MˆN I ′. By synthesizing a type for M , we learn A, B, and I. N must then be
checked against A[I ′]. Without the annotation I ′ in the proof term, we would
not know I ′ and would be forced to guess it. It is therefore not possible to
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Φ; Σ;Ψ; Γ;u:A[I] ` u ↑A[I]
hyp

Φ; Σ;Ψ; Γ, v:A[[I]]; · ` v ↑A[I]
vhyp

Φ; Σ;Ψ; Γ;∆ ` M ↑A[I] Φ;Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆ ` M ↓A[I ′]
↑↓

Φ; Σ;Ψ; Γ;∆ ` M ↑ (K affirms A) at I Φ; Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆ ` M ↓ (K affirms A) at I ′
↑↓affirms

Φ; Σ;Ψ; Γ;∆ ` M ↓ γ

Φ; Σ;Ψ; Γ;∆ ` (M : γ) ↑ γ
↓↑

Φ; Σ;Ψ; Γ;∆1 ` M ↓A[I] Φ;Σ;Ψ; Γ; ∆2 ` N ↓B[I]
Φ; Σ;Ψ; Γ;∆1,∆2 ` M ⊗N ↓A⊗B[I]

⊗I

Φ; Σ;Ψ; Γ;∆1 ` M ↑A⊗B[I] Φ;Σ;Ψ; Γ; ∆2, u1:A[I], u2:B[I] ` N ↓ γ

Φ; Σ;Ψ; Γ;∆1,∆2 ` let M = u1 ⊗ u2 in N ↓ γ
⊗E

Φ; Σ;Ψ; Γ; · ` ? ↓ 1[I] 1I

Φ; Σ;Ψ; Γ;∆1 ` M ↑ 1[I] Φ;Σ;Ψ; Γ; ∆2 ` N ↓ γ

Φ; Σ;Ψ; Γ;∆1,∆2 ` let M = ? in N ↓ γ
1E

Φ; Σ;Ψ; Γ;∆ ` M ↓A[I] Φ;Σ;Ψ; Γ; ∆ ` N ↓B[I]
Φ; Σ;Ψ; Γ;∆ ` 〈M,N〉 ↓A & B[I] &I

Φ; Σ;Ψ; Γ;∆ ` M ↑A & B[I]
Φ; Σ;Ψ; Γ;∆ ` fst M ↑A[I]

&E1

Φ; Σ;Ψ; Γ;∆ ` M ↑A & B[I]
Φ; Σ;Ψ; Γ;∆ ` snd M ↑B[I]

&E2

Φ; Σ;Ψ; Γ;∆ ` 〈〉 ↓ >[I] >I
Φ; Σ;Ψ; Γ;∆ ` M ↓A[I]

Φ; Σ;Ψ; Γ;∆ ` inl M ↓A⊕B[I]
⊕I1

Φ; Σ;Ψ; Γ;∆ ` M ↓B[I]
Φ; Σ;Ψ; Γ;∆ ` inr M ↓A⊕B[I]

⊕I2

Φ; Σ;Ψ; Γ;∆1 ` M ↑A⊕B[I]
Φ; Σ;Ψ; Γ;∆2, u1:A[I] ` N1 ↓ γ
Φ; Σ;Ψ; Γ;∆2, u2:B[I] ` N2 ↓ γ

Φ; Σ;Ψ; Γ;∆1,∆2 ` case M of inl u1 ⇒ N1 | inr u2 ⇒ N2 ↓ γ
⊕E

Figure 5.6: The bidirectional typing rules.
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Φ; Σ, i:interval; Ψ, I ⊇ i; Γ; ∆, u:A[i] ` M ↓B[i]

Φ; Σ;Ψ; Γ;∆ ` λ̂i, u.M ↓A ( B[I]
(I

Φ; Σ;Ψ; Γ;∆1 ` M ↑A ( B[I]
Φ; Σ;Ψ; Γ;∆2 ` N ↓A[I ′]

Φ; Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆1,∆2 ` MˆN I ′ ↑B[I ′]
(E

Φ; Σ;Ψ; Γ; · ` M ↓A[I]
Φ; Σ;Ψ; Γ; · ` !M ↓ !A[I] !I

Φ; Σ;Ψ; Γ;∆1 ` M ↑ !A[I] Φ;Σ;Ψ; Γ, v:A[[I]];∆2 ` N ↓ γ

Φ; Σ;Ψ; Γ;∆1,∆2 ` let M = !v in N ↓ γ
!E

Φ; Σ, i:interval; Ψ, I ⊇ i; Γ, v:A[[i]];∆ ` M ↓B[i]
Φ; Σ;Ψ; Γ;∆ ` λi, v.M ↓A ⊃ B[I]

⊃I

Φ; Σ;Ψ; Γ;∆ ` M ↑A ⊃ B[I]
Φ; Σ;Ψ; Γ; · ` N ↓A[I ′]

Φ; Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆ ` M N I ′ ↑B[I ′]
⊃E

Φ; Σ, x:s; Ψ; Γ;∆ ` M ↓A[I]
Φ; Σ;Ψ; Γ;∆ ` Λx.M ↓ ∀x:s.A[I] ∀I

Φ; Σ;Ψ; Γ;∆ ` M ↑ ∀x:s.A[I] Φ;Σ;Ψ ` t : s

Φ; Σ;Ψ; Γ;∆ ` M [t] ↑ [t/x]A[I] ∀E

Φ; Σ;Ψ ` t : s Φ; Σ;Ψ; Γ;∆ ` M ↓ [t/x]A[I]
Φ; Σ;Ψ; Γ;∆ ` pack t with M ↓ ∃x:s.A[I] ∃I

Φ; Σ;Ψ; Γ;∆1 ` M ↑ ∃x:s.A[I] Φ;Σ, x:s; Ψ; Γ;∆2, u:A[I] ` N ↓ γ

Φ; Σ;Ψ; Γ;∆1,∆2 ` let M = pack x with u in N ↓ γ
∃E

Φ; Σ;Ψ; Γ;∆ ` M ↓A[I]
Φ; Σ;Ψ; Γ;∆ ` affirms M ↓ (K affirms A) at I

affirms

Figure 5.6: The bidirectional typing rules, continued.
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Φ; Σ;Ψ; Γ;∆ ` M ↓ (K affirms A) at I

Φ; Σ;Ψ; Γ;∆ ` 〈 〉M ↓ 〈K〉A[I]
〈〉I

Φ; Σ;Ψ; Γ;∆1 ` M ↑ 〈K〉A[I]
Φ; Σ;Ψ |= I ⊇ I ′

Φ; Σ;Ψ; Γ;∆2, u:A[I] ` N ↓ (K affirms B) at I ′

Φ; Σ;Ψ; Γ;∆1,∆2 ` let M = 〈 〉u in N ↓ (K affirms B) at I ′
〈〉E

Φ; Σ;Ψ; Γ;∆ ` M ↓A[I]

Φ; Σ;Ψ; Γ;∆ ` @+M ↓A @ I[I ′]
@I

Φ; Σ;Ψ; Γ;∆ ` M ↑A @ I[I ′]

Φ; Σ;Ψ; Γ;∆ ` @−M ↑A[I]
@E

Φ; Σ;Ψ, C; Γ; ∆ ` M ↓A[I]

Φ; Σ;Ψ; Γ;∆ ` λ̇.M ↓ C ⊃̇A[I]
⊃̇I

Φ; Σ;Ψ; Γ;∆ ` M ↑ C ⊃̇A[I] Φ;Σ;Ψ |= C

Φ; Σ;Ψ; Γ;∆ ` M ˙ ↑A[I] ⊃̇E

Φ; Σ;Ψ |= C Φ; Σ;Ψ; Γ;∆ ` M ↓A[I]
Φ; Σ;Ψ; Γ;∆ ` ∧̇M ↓ C ∧̇A[I] ∧̇I

Φ; Σ;Ψ; Γ;∆1 ` M ↑ C ∧̇A[I] Φ;Σ;Ψ, C; Γ; ∆2, u:A[I] ` N ↓ γ

Φ; Σ;Ψ; Γ;∆1,∆2 ` let M = ∧̇ u in N ↓ γ
∧̇E

Figure 5.6: The bidirectional typing rules, continued.

maintain a standard bidirectional system and also eliminate the annotation I ′

from this proof term.
For the same reason, the elimination proof term for unrestricted implica-

tion also requires an interval annotation, while the introduction term needs no
annotations.

The full set of inference rules for the typing judgments M ↑ γ and M ↓ γ is
given in Figure 5.6. To avoid cluttering the rules, all contexts and types are
assumed to be well-formed.

5.2 Implementing the Proof Checker

The combination of linearity and constraints in ηL logic introduces several,
albeit small, implementation challenges. The techniques used in resolving these
problems are not unique to this implementation, but are instead borrowed from
previous work. We first discuss explicit substitutions and de Bruijn indices as
general techniques, and then turn our attention to linearity and the constraint
solver.
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5.2.1 Explicit Substitutions

To avoid implementing a direct substitution function for terms and proofs, one
can encode the substitution operation as an explicit proof term. Substitutions
can then be lazily computed during type checking. This method also prevents
the size explosion that results from directly substituting a large object for many
variable occurrences.

Despite the advantages of explicit substitutions, there is a possible tradeoff.
With the addition of substitution objects, any hope for the equivalence of terms
and propositions based on purely syntactic means is lost. For example, the
term t and the substitution [t/x] applied lazily to x are equivalent, but do not
share the same syntax. This burdens the implementation with functions for
normalizing terms and propositions and for determining equivalence of these
normal forms.

In the end, explicit lazy, and not direct eager, substitutions based on the
λσ calculus of Abadi et al. [5] were implemented in the proof checker. Because
neither the advantage of efficiency nor the disadvantage of additional code were
particularly compelling factors for a small proof-of-concept implementation, the
use of explicit substitutions was primarily chosen as an exercise.

5.2.2 de Bruijn Indices

Rather than using a named representation for proof and term variables, de
Bruijn indices were chosen. de Bruijn indices name each occurrence of a variable
according to the number of variable bindings that separate that occurrence from
its binder. For example, λx.λy.y (λz.x z) would be represented with de Bruijn
indices as λ.λ.1 (λ.3 1).

de Bruijn indices simplify the implementation of a type checker by elimi-
nating the need for α-conversion; unlike named representations of proof terms,
α-equivalent terms have syntactically identical de Bruijn representations since
the underlying names are ignored. In addition, they cooperate well with explicit
substitutions. It is for these reasons that de Bruijn indices were chosen.

It is natural to expect that the implementation would mirror the formal
system by separating the assumptions into the five contexts. However, this
interacts poorly with de Bruijn indices. Suppose that, as part of an atomic
proposition, some type in ∆ mentions the term parameter with de Bruijn index
1 in Σ. Now, if a new term parameter is bound, the index 1 in this type must
be shifted to 2, or else the type will refer to the wrong parameter. Such shifts
would need to occur for Ψ, Γ, and ∆ every time a new term parameter is bound.

A better solution is to combine all of the five contexts into one. Under the
convention that a context entry is well-formed in the tail of its context, shifts
will not be incurred for each new term parameter. Instead, each de Bruijn
index in the context will remain fixed thoughout its lifetime. Only when a type
or constraint is used from the context will it need to be shifted. This is the
approach taken by the proof checker implementation.
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5.2.3 Linearity

Enforcing the single-use nature of linear hypotheses during type checking re-
quires careful consideration. At a first glance, the problem might appear rela-
tively straightforward: type checking should simply ensure that each hypothesis
is distributed to exactly one recursive call. But, the situation is complicated by
the nondeterministic presentation of some of the inference rules. As an example,
consider the ⊗I rule:

Φ; Σ;Ψ; Γ;∆1 ` M ↓A[I] Φ;Σ;Ψ; Γ; ∆2 ` N ↓B[I]
Φ; Σ;Ψ; Γ;∆1,∆2 ` M ⊗N ↓A⊗B[I]

⊗I

∆1,∆2 is the multiset of resources that must be used in the proof term M ⊗N .
However, there are exponentially many ways to distribute these resources among
the premises, and it would seem difficult to find a correct distribution. In fact,
through the variables it uses, the proof term lists (almost) all of the resources
consumed. The input-output method [15] leverages this information to eliminate
the nondeterminism of splitting the context.

Under this approach, the proof term M ⊗N , for example, is checked against
A ⊗ B[I] as follows. First, all of the incoming resources, say ∆+, are used
to check M against A[I]. By mentioning only some of the variables from ∆+,
the proof term M consumes only some of these resources and outputs the rest,
say ∆. Then, ∆ is used to check N against B[I]. Again, N consumes only
some of these resources and outputs the rest, say ∆−. Thus, M greedily (and
deterministically) decided how to divide the resources between itself and N .

The implementation of the proof checker follows this model. However, ex-
plicitly returning only the unconsumed part of the context would interfere with
the numbering scheme for de Bruijn indices: the de Bruijn index would no
longer correspond to the distance from the front of the context. So, instead, the
full context is returned after flagging each resource as “consumed” or “uncon-
sumed.”

This marking scheme is further complicated by 〈〉, the proof term for >,
because it can consume resources but does not list them explicitly. If ∆+ is
used to check 〈〉 against >[I], then 〈〉 might consume these resources, or it
might produce them as output. Therefore, a third flag is introduced: “possibly
consumed.” Because it can consume any unconsumed resources in the current
context, 〈〉 represents a fallback option for any of those resources that are not
later consumed. 〈〉 therefore re-marks all “unconsumed” resources as “possibly
consumed.” Since 〈〉 is only a fallback, later proof terms may re-mark “possibly
consumed” resources as “consumed.”

The implementation, by using this three flag input-output method, can de-
terministically and efficiently type check linear proof terms.

5.2.4 Constraints

The superset constraint solver for the proof checker posed a unique challenge:
how should superset constraints reconcile interval parameters i and explicitly

64



constructed intervals [t, t′]?
This can be resolved by requiring all terms of sort interval to be explicitly

constructed intervals. Under this approach, the superset constraint [t1, t2] ⊇
[t′1, t

′
2] is considered an abbreviation for a conjunction of two, now primitive,

≥ constraints among times: t′1 ≥ t1 and t2 ≥ t′2. The ≥ constraints can then
be solved using a simple decision procedure that builds a reflexive, transitive
closure by saturation.

For this to work, only the representation of interval parameters needs to
be changed. Consider the introduction of an interval parameter i by universal
quantification: ∀i:interval.A. Instead of using i directly, two time parameters i1
and i2, with i2 ≥ i1, are created and i is replaced with [i1, i2]. Then, checking
can continue. Thus, the original proposition is effectively translated to:

∀i1:time.∀i2:time.(i2 ≥ i1) ⊃̇ ([[i1, i2]/i]A)

Similar operations are performed for the corresponding proof term and for the
introduction of interval parameters in the existential quantification and implica-
tion rules. Because interval parameters are eliminated immediately before use,
no other cases need to be considered.

5.3 Conclusion

In this chapter, we have described a proof checker for ηL logic. We first reduced
the level of abstraction by refining the treatment of sorts and atomic propo-
sitions, and then examined the intricacies of verifying the well-formedness of
terms, particularly intervals, and propositions. Next, we presented a bidirec-
tonal type checking system upon which the proof checker is built. Finally, we
discussed a few of the implementation challenges and the techniques used to
resolve them.
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Chapter 6

Conclusion

In this thesis, we have argued that, to be widely applicable, authorization logics
should be able to express the kinds of time-dependent access control policies that
arise naturally in practice. This thesis has therefore focused on the development
and study of an authorization logic with an explicit notion of time.

In summary, this thesis makes two conceptual contributions and a small
practical contribution. First, by developing ηN logic, it demonstrates that an
authorization logic suitable for expressing time-dependent policies can be easily
obtained by relativizing the judgments of a time-unaware authorization logic
to time intervals. Moreover, through meta-theoretic properties, this thesis has
shown the logic to be sound and formally proven it to be an extension of previous
work.

Second, by extending ηN logic with linearity to create ηL logic, this thesis
has exhibited the ability of linearity and explicit time to coexist in a logic. Also,
a careful study of the logic’s meta-theory was carried out.

Finally, by presenting a bidirectional type checker, this thesis has made the
first, very small step toward a full-scale PCA architecture based on ηL logic.
The successful implementation of this type checker suggests that such a PCA
system should be easily constructible.

Despite these contributions, significant opportunities for continued research
on η logic remain. This thesis is therefore concluded with a brief description of
possible future work.

6.1 Future Work

Directions for future research relating to η logic encompass both immediate and
long-term goals. We outline these possibilities in order of increasing scope.

Formal Comparison to Other Logics and Languages. The authoriza-
tion logics and languages that handle time of which we are aware all do so by
extra-logical mechanisms. In contrast, η logic internalizes time. To transport

66



results from other logics to η logic, it would be useful to formally compare η
logic with these differing approaches. In particular, the currentTime() predicate
of SecPAL [10] would serve as an interesting starting point.

PCA Architecture. A stated goal of this thesis was the design of a logic
for time-dependent authorization policies that could serve as the foundation for
a PCA-based policy enforcement mechanism. Since its design has now been
completed, it is natural to consider creating and deploying a full-scale PCA
architecture based on η logic. In fact, this work is already underway; as a com-
ponent of his doctoral thesis, Deepak Garg is implementing a PCA file system
for his own variant of η logic [21].

Policy Analysis. As the access control policies of systems are often exceedingly
numerous and complex, policy analysis tools are critical if authorization logics
are to be successfully adopted in practice. Such analysis can be carried out for
the logic as a whole using non-interference theorems, and for specific policies
using the completeness of focusing (for example).

The study of policy analysis for an authorization logic via non-interference
theorems was initiated by Garg and Pfenning [23]. For example, they established
an affirmation flow analysis theorem for GP logic: in the absence of a connec-
tion (or flow of affirmation) between principals K1 and K2, no statement made
by K1 can influence K2’s affirmations. Abadi subsequently showed a related
property for DCC [2]. We expect that these results can be adapted to η logic.
Additionally, it will likely be possible to prove other non-interference theorems
specific to time, including a “time flow” analysis: in the absence of a connection
between intervals I1 and I2, no event occurring during I1 can influence an event
during I2.

In related work, Garg et al. [22] also developed a method, based on the com-
pleteness of focusing, for establishing the correctness of specific policies. We
believe that η logic satisfies the completeness of focusing, but it needs to be
formally verified. After doing so, it should be possible to analyze individual
policies by this method.

Privacy Policies. Complementing access control, privacy policies represent the
other crucial component of security. The growing emphasis placed on privacy
is evidenced by the large number of recent regulations enacted by the United
States government, such as the Health Insurance Portability and Accountability
Act (HIPAA) and the Family Educational Rights and Privacy Act (FERPA).

With its importance to security, efforts toward a combined logic for autho-
rization and privacy are underway. Garg et al. [22] have introduced K has A,
a modality for modeling possession. We believe that the addition of a time-
dependent has to η logic would permit certain time-dependent privacy policies
to be expressed. For example, K might be allowed to circumvent a given privacy
policy, provided he can satisfy an obligation A during interval I. It seems plausi-
ble that the obligation could be represented as something like (Khas(A ( 1))[I].
Further examination of practical privacy policies is needed to verify this claim.
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