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INTRODUCTION

The �ring of place cells in the rodent hippocampus is partly under the control

of visual landmarks in the environment (O'Keefe and Conway, 1978). Most place

cell models incorporating \visual" input assume noise-free bearing and/or distance

information from idealized point objects (e.g., Burgess, Recce, and O'Keefe, 1994;

Touretzky and Redish, 1996), rather than attempting to extract landmark information

from real-world scenes. This leaves open the question of what kind of visual information

is necessary for the hippocampal system to maintain place �elds that are stable across

trials yet sensitive to landmark position.

In this paper we �rst describe an algorithm that operates on real images taken from

various viewing locations and returns \blob" descriptions: regions of roughly uniform

intensity having a rectangular or ovoid shape. We then construct simulated place cells

using radial basis functions tuned to blob parameters, and train them by competitive

learning to develop realistic place �elds. The result is a model that takes real-world

scenes as input and produces a distributed activity pattern over a set of place cells as

output, from which the current viewing location can be estimated with good accuracy.

The implication of this work is that the visual pathway to the rodent hippocampus

could involve a relatively simple representation of the local view; rodents may not

require object recognition to navigate visually.

VISUAL PROCESSING

Collecting Images of a Scene

We collected twenty-�ve greyscale images of a computer laboratory using a digital

camera atop a mobile robot. The pictures were taken from multiple viewpoints on one

1



side of the room. The twenty-�ve viewpoints were organized as a 5x5 grid measuring

102 cm on a side.

Characterizing Images Using Blobs

Growing Blobs. Blobs are detected in images using a region growing algorithm.

We de�ne a blob B as a set of pixels which must satisfy a set of conditions. We de�ne

the blob's mean intensity I

B

and mean intensity variation �I

B

as:
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Initially, thousands of pixels are randomly chosen from each image, each of which is

the starting pixel for a blob. Neighboring pixels to each blob are then added if their

intensity is \reasonably" close to the blob's mean intensity; speci�cally, the di�erence

jI(x; y)� I

B

j must be less than a thresholding function T .

The thresholding function T must be de�ned carefully to allow for di�erences in

the sharpness of object boundaries, and for the e�ects of non-uniform lighting in the

scene. We start by requiring that all pixels simply be within a constant � of the

mean, in which case T (�; :::) = � . We can re�ne this constraint by scaling T based on

local curvature, so that when there is a sharp edge nearby, the threshold is reduced,

tightening the criterion for membership. We approximate the local curvature with a

�ve-point discrete Laplacian:
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We modulate T by an inverse sigmoidal function s of the Laplacian, so that for

regions of high curvature the sigmoid is nearly zero. � is the mean curvature value for

which s should be 0.5, and 
 is a gain factor:
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Substituting in the experimentally determined values used in our simulations for � and


, the threshold equation becomes:
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Finally, to handle contiguous surfaces with non-uniform lighting we increase T

based on the mean intensity variation �I

B

. This allows individual blobs to grow over

shallow intensity gradients in images, typically due to smooth surfaces that are lit at

an angle, over which the threshold would otherwise be too small for blobs to be able

to grow. Including this �nal constraint yields the following threshold equation:
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In addition to pixels being added to blobs, a pixel that is a member of a blob B

1

may also switch to a neighboring blob B

2

if it satis�es the constraints for pixel addition

to B

2

and its intensity more closely matches that of B

2

than B

1

.
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During the region growing algorithm, the vast majority of pixels were acquired by

some blob within the �rst several iterations. The majority of iterations were therefore

dedicated to switching pixels among blobs.

Merging Blobs. Though the region growing algorithm starts with thousands of

blobs in order to insure that the entire image can be represented, the images themselves

are comprised of far fewer regions of approximately uniform intensity. Without merg-

ing blobs, multiple blobs occupying part of the area of a particular region of uniform

intensity would compete, and, with few exceptions, none of the blobs would be able to

acquire all of the pixels of a particular region. Therefore, neighboring blobs of similar

intensity must be merged.

Unfortunately, there is no single threshold of intensity which clearly distinguishes

between neighboring blobs in a single region and neighboring blobs in distinct regions

with similar intensity; this threshold depends upon the coarseness of features that we

wish to detect. Therefore, the threshold was initially set to a low value (15 shades

of gray) but was increased as region growing progressed. By intermittently saving

the state of each blob at several points during region growing, we were able to create

a database of blobs at varying levels of sensitivity to intensity changes. We then

compared overlapping blobs collected at di�erent points during region growing; for

each set of overlapping blobs, only the blob obtained at the coarsest threshold whose

shape was still highly elliptical or rectangular was retained.

Quantitatively Describing Blobs

Describing a blob in terms of the pixels that comprise it is useful for region growing;

however, a description of such high dimensionality is far too complex for the purposes

of self-localization. Therefore, after blobs were \grown," they went through a series

of processing steps which allowed us to describe them using a few simple features.

We chose features consistent with the description of an ellipse or rectangle: average

intensity, elevation, azimuth, size, eccentricity (the ratio of the lengths of the major

and minor axes) and angle of orientation of the major axis.

First, we smoothed the edges and �lled in any small holes in the body of the

blob, since such high frequency information tended to interfere with categorizing gross

features of the blob.

Once blurred, the �rst moment, or center of mass, of the blob was calculated.

The vertical and horizontal positions of the blob center in the image correspond to the

elevation and azimuth of the blob, respectively.

A medial-axis transform was then performed on each blob. The medial-axis trans-

form calculates the distance from each pixel to the nearest edge of the blob. The set

of pixels whose distances are relative maxima { those pixels whose distance to an edge

is greater than all of their neighbors { speci�es the \skeleton" of a shape. We �t this

skeleton to a line, the slope of which indicated the orientation of the blob's major axis.

Knowing the axis of orientation, we calculated the length of the major and minor

axes by calculating the average distances of each pixel, D

x

and D

y

, from the major

and minor axes, respectively. 4D

x

yields a good approximation of the length of the

minor axis; 4D

y

yields a good approximateion of the length of the major axis. We then

calculated the size of the blob as the product of the lengths of the major and minor

axes.

Several template superellipses, whose shapes vary between an ellipse and a rectan-

gle depending upon their parameterization, were compared to each blob, and the per-

centage of overlap of the two shapes was calculated. The highest percentage achieved
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Results of Blob Finder on a Grid Image

Figure 1. Rectangular blobs extracted from a real-world scene.

among the possible templates was then used to select out only those blobs with greater

than 90% overlap. (See Figure 1.) This enforces our criterion that blobs be of approx-

imately elliptical or rectangular shape, which ensures that the features extracted from

the blob do, in fact, represent its shape accurately.

Once these features had been calculated, the 5x5 grid of blob features was inter-

polated into a 17x17 grid. This interpolation provided a more continuous view of the

environment than the original 5x5 grid.

TRAINING PLACE CELLS

The Place Cell Model

We modeled place cells as radial basis functions. Each place cell was tuned to two

blobs that were each described using four features: average intensity, elevation, azimuth,

and size. Each place cell was therefore represented by two sets of feature values, M

1

and M

2

; this pair of feature values described the pair of blobs that would maximize

the place cell's activation. The similarity of a place cell's ideal feature value �

f

to the

corresponding feature value of a blob x

f

is measured using a Gaussian function:
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When x

f

and �

f

are close, this function will be close to 1; as their di�erence increases,

the function approaches zero. The magnitude of �

f

determines the sensitivity of the

function to the di�erence between x

f

and �

f

.

The response of a place cell to a particular blob B

i

is determined by the product

of feature similarities over the set of features F :

A

B

i

=

Y

f2F
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) (8)

4



All features of B

i

must be similar to the place cell's maximal response value in order

for the activation to be high; thus, the place cell responds to conjunctions of features.

There is no predetermination of which blobs are to be associated with which place

cells. Those blobs B

i

and B

j

that generated the strongest response to the two sets of

place cell feature values M

1

and M

2

determined the activation of the place cell:

A = max

i2B

A

B

i

� max

j2B;j 6=i

A

B

j

(9)

Adapting Place Field Centers

Place cells were initially tuned to random feature values, which were unlikely

to correspond to any particular blob in the environment. Therefore, place �elds were

initially quite broad and weak, conveying little spatial information. In order to increase

the spatial information content, a competitive learning algorithm was used to adapt

each place cell feature value �

f

to the corresponding blob feature value x

f

. For each

iteration t of the competitive algorithm, the place cell whose activation was the highest

at a particular grid position was determined to be the \winner" of that grid position.

For each position in the grid, the pair of blobs that maximized the activation of the

winning place cell were used to train the feature values of the winning place cell. Each

feature value of the winning place cell was adapted to the correspoonding blob feature

value according to the following equation:

�

(t+1)

f

= �x

f

+ (1� �) �

(t)

f

(10)

The coe�cient � controls the rate at which feature values are adapted; for our simula-

tions the � value of 0.5 was used.

Adapting Place Field Sizes

Overly large place �elds lack spatial information content useful for tasks such as

navigation; conversely, overly small place �elds require too many place cells to represent

the entire area of an environment. Therefore, it was important to control the size of the

sensitivity parameters �

f

to normalize the sizes of place �elds. Unfortunately, there is

no single value for �

f

that is appropriate in all conditions, as features such as position

and size vary nonlinearly through space.

Therefore, in parallel with the competitive learning algorithm, we adapted the

sizes of the place �elds by modifying the sensitivity parameters �

f

of the place cells.

We de�ned an \ideal" place �eld size { in this case, the area around a 5x5 grid position

{and used a simple gradient descent technique to adjust the �

f

values to produce the

desired place �eld size.

This algorithm, in conjunction with the aforementioned competitive learning al-

gorithm, was able to quintuple the information content of the place code, using the

measure of Skaggs et al. (1993). The total information of the place code was su�cient

to distinguish which of the twenty-�ve images were being presented to the place cells.

(See Figure 2.)

DISCUSSION

This work demonstrates that a simple paradigm of feature extraction can provide

su�cient information to derive place �elds. Classically, one associates landmarks with

objects; however, this paradigm makes the task of self-localization quite complex, as
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Figure 2. Sample place �elds constructed by tuning a product-of-Gaussians function to blob

parameters extracted from local views.

it requires that the abstract object be recognized through complex visual processing

and that one's location relative to that object be calculated based on one's previous

knowledge about the object's shape, size, etc. However, the wealth of information

available in a single image, even at low resolution, provides enough information that

such complicated cognitive processing is unnecessary.

In the theoretical sense, a landmark is any abstraction that may be characterized

by features that possess both position sensitive and position invariant qualities. In

order to recognize the same landmark from di�erent viewpoints, there must be some

function of the feature space that changes among landmarks, but does not change with

di�erent viewpoints of the same landmark. In order to determine one's location relative

to the landmark, there must be another function of the feature space that changes as

a function of one's relative position to the landmark. So long as these conditions

are satis�ed by the features extracted from sensory information, any visual processing

system would likely be as successful as the system presented here.
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