
Accelerating K-12 Computational Thinking Using
Scaffolding, Staging, and Abstraction

David S. Touretzky
Computer Science

Department
Carnegie Mellon University

Pittsburgh, PA 15213

dst@cs.cmu.edu

Daniela Marghitu
Computer Science and
Software Engineering

Auburn University
Auburn, AL 36849

marghda@auburn.edu

Stephanie Ludi
Dept. of Software Engineering

Rochester Institute of
Technology

Rochester, NY 14623
salvse@rit.edu

Debra Bernstein
TERC

Cambridge, MA 02140

debra_bernstein@terc.edu

Lijun Ni
Georgia Inst. of Technology

Atlanta, GA 30332-0760
lijun@cc.gatech.edu

ABSTRACT

We describe a three-stage model of computing instruction
beginning with a simple, highly scaffolded programming en-
vironment (Kodu) and progressing to more challenging frame-
works (Alice and Lego NXT-G). In moving between frame-
works, students explore the similarities and differences in
how concepts such as variables, conditionals, and looping
are realized. This can potentially lead to a deeper under-
standing of programming, bringing students closer to true
computational thinking. Some novel strategies for teach-
ing with Kodu are outlined. Finally, we briefly report on
our methodology and select preliminary results from a pi-
lot study using this curriculum with students ages 10–17,
including several with disabilities.

Categories and Subject Descriptors

K.3.2 [Computer and Information Science Eduation]:
Curriculum

General Terms

Design, Experimentation

Keywords

Kodu, Alice, robotics, computational thinking

1. INTRODUCTION
Highly scaffolded programming environments offer novices

a smoother path to early success in computing [7], but their
limited expressiveness must inevitably lead to their aban-
donment in favor of more powerful conventional languages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

We have developed a three-stage model of programming in-
struction for K-12 students that embraces these transitions
between frameworks as part of the learning process. The
model was built upon a three-step ladder model developed
by Daniela Marghitu since 2005, in which students with
varying abilities and experience levels could learn any of
three software frameworks and progress at their own pace
from one to another [12]. Our new curriculum specifies the
ordering and guides students to make explicit analogies be-
tween frameworks to develop a deeper, more abstract un-
derstanding of fundamental computing concepts.

We conducted a pilot study using Microsoft Kodu [15], Al-
ice [4], and Lego Mindstorms NXT-G [8] as the three stages
of a five-day computer camp for 31 children ages 10-17. In
this paper we describe our strategy for teaching program-
ming using Kodu, including several innovative ideas that
were developed in the course of the project. We also discuss
some CS Unplugged-type enrichment activities [2] employed
in the camp. We then describe how students transitioned
from Kodu to Alice and NXT-G, and how we mapped con-
cepts from one framework to another.

A key design goal for the curriculum was that it be ac-
cessible to a wide range of students, including those with
disabilities. Our initial offering was not completely univer-
sal (e.g., Alice and Kodu cannot be used by students who
are blind), but we were able to include students who were
partially sighted or had other disabilities, as described in
Section 6. We provided assistive technology and adjusted
activities to ensure that students with disabilities had equal
access to the tools, activities, and interactions that made up
the curriculum [13]. Examples included large-print hand-
outs and assessments, legible, high contrast Kodu and Alice
worlds, and extra participant support for students who re-
quired more assistance. With these aids, the curriculum
described here was used by all of the students in the camp.

2. DEEP & ABSTRACT UNDERSTANDING
If the goal of K-12 computing education is to teach stu-

dents “computational thinking” [20, 21], how should that be
facilitated? We believe mastery of computational thinking
implies a deep and abstract understanding of the fundamen-
tal concepts of computing:

SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.

Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

609

• Deep: the ability to recognize fundamental concepts
instantiated in progamming contexts. For example,
recognzing that a certain task inherently involves con-
ditional execution, or looping, or parallelism, or per-
sistent state.

• Abstract: separating the essence of a mechanism from
mere syntactic details. For example, appreciating that
WHEN/DO in Kodu, If/Then in Alice, and SWITCH
blocks in NXT-G all function as conditional expres-
sions, even though they look different.

We can promote this style of thinking by guiding stu-
dents to draw analogies between different formalisms [3, 5].
We transition them betwen these formalisms in a carefully
structured way. The increased complexity of instruction is
mitigated by this scaffolding.

3. KODU INSTRUCTION STRATEGIES
Microsoft Kodu [15] is an icon-based programming frame-

work designed to allow young children to construct their
own computer games. Kodu employs many clever scaffold-
ing mechanisms to keep novice programmers on track [10].
For example, students compose their programs, organized
as sequences of WHEN/DO rules, by selecting icons from
a context-sensitive menu, making syntax errors impossible.
Rather than using named variables, Kodu uses scores, such
as the “red score” and the “blue score,” which children intu-
itively understand from playing computer games. (Students
can actually program in Kodu using an Xbox game con-
troller instead of a keyboard.) Assigning a value to a score
automatically causes it to be displayed on the screen, elim-
inating the need for explicit output statements.

In the course of developing our curriculum, we had some
insights into how to use Kodu more effectively to teach pro-
gramming. We summarize these ideas here.
1. Start with programs in a pre-made world. Some
Kodu tutorials begin by teaching the terrain editor and hav-
ing students construct their own virtual world. But this ac-
tivity takes significant time and can divert students from
the central task of learning programming. We found it
preferable to supply students with small worlds with pre-
positioned characters and objects. They did, however, work
with the terrain editor during free exploration periods, and
this contributed to their overall enjoyment of Kodu and pro-
vided an additional opportunity to practice new program-
ming skills.
2. Show programs in textual form. Kodu programs are
sequences of WHEN/DO rules. A rule is a string of tiles,
each bearing a word and an icon, as in Figure 1.

Figure 1: A Kodu rule.

The first example code we show to students uses this iconic
notation, but we immediately introduce equivalent textual
notation, and quickly abandon the iconic version. The tex-
tual version is more compact, allowing more to fit on a page.
But more importantly, it introduces students to the notion
that the same idea can be expressed in multiple forms: a first

step toward abstraction. They see sample code on the page
in textual form, but when they enter it into the computer
they see it in its iconic form.
3. Use parenthesized keywords to guide menu navi-
gation. While Kodu’s context-sensitive menus are helpful,
the menu structure is deep enough that students may not
know where to find a tile. For example, “move” is a top-level
menu item, but “glow” is found in the “actions” submenu,
while “vanish” is found in the“combat” submenu. The iconic
representation of a tile does not indicate how to find it in the
menu tree. We addressed this by including the submenus as
parenthesized keywords in the textual notation, so the rule
in Figure 1 would be written as:

WHEN see apple close DO (actions) glow (colors) red

4. Use arrows to help students interpret indenta-
tion. A Kodu rule can be linked to a preceding rule by
indenting it. The linked rule will be considered for execu-
tion only if the parent rule’s WHEN clause is satisfied. If
the linked rule has a non-empty WHEN clause, this mech-
anism creates a conjunctive test. If the parent rule has a
non-empty DO clause, this mechanism creates a compound
action. But as Jill Denner of ETR Associates has observed
(personal communication), indentation has no inherent sig-
nificance to young readers and does not imply any sort of
attachment relation. Indentation has also been found to be
problematic for beginning Python programmers [9]. This is
an instance where Kodu’s graphical notation fails to scaffold
student understanding.

This deficiency could easily be remedied by tweaking Kodu’s
graphical user interface. In our textual version, we solved
the problem by introducing an arrow icon that links an in-
dented rule to its parent, as shown in Figure 2.

Figure 2: Graphic aid for illustrating how indenta-
tion links a rule to its parent rule above.

5. Teach state machines; explicitly identify states
with pages. Kodu programs are organized as pages of rules,
with all the rules on a page applying simultaneously. Thus,
the most general way for a character to change its behav-
ior is to switch to another page. We introduce students to
the concept of state machines as a way of reasoning about
program behavior, with each page corresponding to a state
node [17]. We support this with a CS Unplugged-type activ-
ity described in Section 4. State machines are particularly
helpful for teaching students about loops.

The Kodu editor displays the page number in a unique
color: blue for page 1, green for page 2. etc. We use these
same colors for nodes in our state machine diagrams, rein-
forcing the correspondence between nodes and pages. In-
structions to switch pages form the links between nodes.
6. Have the kodu change color to indicate what
page it’s on. When creating complex behaviors that loop
between pages (states), it’s helpful to know a character’s
current page in order to understand its behavior. We estab-
lished a convention that the first rule on every page would
set the kodu’s color to the page’s color. We used this conven-

610

tion to frame questions about program state such as “Why
did the kodu turn red when it bumped the tree?”
7. Distinguish implicit from explicit looping. The
Kodu interpreter repeatedly executes all applicable rules on
the current page. This can result in implicit looping behavior
with no use of control structure primitives. For example, the
following program loops forever:

[1] WHEN DO score red 1 point

Kodu’s movement actions, such as move toward, are incre-
mental; the programmer relies on implicit looping to repeat
the actions until a goal is met. For example, to move the
kodu toward a tree and then go do something else when
the tree is reached, one would write an implicit loop with a
termination test that exits the page:

[1] WHEN see tree DO move toward

[2] WHEN bump tree DO switch to page 2

Implicit looping cannot be used when the loop body con-
tains actions requiring complex sequencing or nested itera-
tion. In this case one must use what we call explicit loop-
ing, where the program explicitly switches back and forth
between the loop’s control page and its body pages, which
may contain their own implicit or explicit loops.

We introduced the concept of implicit looping to make
explicit to students the way that Kodu interprets their pro-
grams. Students also learn to override implicit looping using
the once tile, e.g., the following program does not loop:

[1] WHEN DO score red 1 point once

Drawing a distinction between implicit and explicit loop-
ing helps students develop a more abstract understanding of
the loop construct by seeing it implemented in two different
forms.
8. Provide graphical notation to highlight implicit
and explicit looping. Explicit looping is easy to identify
in a state machine diagram because the relevant state nodes
form a loop in the graph [17]. We go further and label state
nodes with their function in the loop: initialization, loop
logic (including termination test), loop body, and wrap-up.
The latter refers to actions taken after exiting the loop. Not
every loop has separate pages for all four of these functions.
But students are taught that explicit loops by definition in-
volve page switching, and hence, loops in the state machine
diagram.

Because implicit loops confine the body and loop logic to a
single page, we introduced an extension to the standard state
machine notation to distinguish those pages: a semicircular
arrow appearing inside a state node, as in Figure 3.

Figure 3: State machine diagram with added arrow
indicating implicit looping within a page (state).

There are several conditions under which a page does not
implicitly loop. For example, if every rule contains a once
tile, or if execution of the page always includes a switch
to page action. In one exercise, students were asked to go
through a complex Kodu program and mark on their state
machine diagram the pages that do contain implicit loops.
9. Teach bugs explicitly by giving them names and
showing sample code. A program structure bug could
result from incorrect indentation, which changes the depen-
dency relationship between rules. An order of operations
bug could result from swapping two rules, because in the
event of conflicting actions, Kodu gives priority to the lower
numbered rule. Loop initialization and loop termination
bugs are straightforward. In the Alice component we in-
troduced the fencepost error bug and the divide by zero bug.

A series of pins with cartoon bugs illustrated these six bug
types. Students earned bug pins by successfully completing
bug-related exercises, such as deliberately introducing a bug
of the specified type, demonstrating its effects to the instruc-
tor, then fixing it.

4. CS UNPLUGGED-TYPE ACTIVITIES
Computer Science Unplugged is a series of activities de-

veloped by Bell et al. in which students use their bodies
or simple props to simulate algorithms illustrating impor-
tant computer science concepts [2]. Hence, no computers
are involved. This type of kinesthetic learning is fun for stu-
dents across a broad age range, and has proven effective for
reaching students with disabilities [14]. We used three such
activities in our summer camp. Two were of our own design;
the third came directly from the CS Unplugged book [2].

In the first activity, students hand-simulated the execu-
tion of a Kodu program containing two characters: a kodu
and an exploding mine. We created a large poster of the
state machine for the program that was placed on the floor,
and used chess pieces (a white pawn and a black pawn) to
track the states of the two characters. We also laid out a
map of the Kodu world on the floor, and placed hand-made
kodu and mine characters on the map, moving them as the
simulation progressed. The kodu character included a ro-
tating mechanism that could be used to change its color.
The mine could glow various colors, and we used little flags
on stick-pins to simulate that. Students shared the tasks of
deciding which rules were able to execute on the current cy-
cle, moving the kodu’s pawn when a state change occurred,
and moving the kodu and the mine characters around on
the map. The exercise reinforced students’ understanding
of the Kodu rule execution mechanism, including such fairly
advanced topics as implicit looping and priority arbitration.

In the second activity, students simulated a bubble sort as
an introduction to nested loops and a hint at arrays. (There
are no arrays in Kodu, and we did not cover Alice arrays due
to time limitations.) Ten students formed a line and each
held a card containing a number. Another group acted as
sorters. With square dance music playing and the audience
encouraged to clap along, the instructor acted as “caller”.
On each pass, a sorter would start at the left edge of the
line, examine the first pair of numbers, and give one of two
instructions: “bow to your partner” if the numbers were in
the correct order, or “switch with your partner” if the two
should switch places. The sorter then advanced to the next
pair. As students became proficient at sorting, we sped up
the pace, which increased the entertainment value.

611

The final activity, which came during the Alice portion
of the camp, was the network sorting activity from the CS
Unplugged book. We laid out a six-element sorting network
on the floor, and students moved synchronously through the
stages of the network, arriving at the output stage in sorted
order. This allowed us to make some interesting comparisons
between the two sorting algorithms, e.g., the sorting network
requires fewer comparisons than a bubble sort would use.

5. CONCEPTUAL MAPPING
The first two days of the camp were devoted to Kodu, the

next two days to Alice (occasionally looking back at Kodu
for comparison), and the final day to NXT-G. In this section
we discuss the conceptual mapping between Kodu, Alice,
and NXT-G that we guided students to develop through
direct instruction, group discussion, and exercises.

5.1 Objects
Both Kodu and Alice have named objects (“characters”

in Kodu), but Alice objects can have nested components,
such as body parts. Also, Alice objects are organized in a
tree for convenient inspection, while Kodu objects must be
accessed at their location in the world. Alice objects have
named user-defined methods that take optional parameters,
while Kodu only provides numbered pages. Kodu’s sim-
plicity is a deliberate attempt to protect beginners from
being overwhelmed by too many details. As students be-
come more comfortable with programming they can learn
new constructs such as parameterized methods.

5.2 Variables
Kodu uses predefined scores as variables, while Alice has

conventional named and type variables. This is one of the
areas where trading simplicity for power is evident. Using
variables in Kodu is effortless. In Alice it takes some work,
since one must first explicitly create the variable and as-
sign it a name and initial value, and take additional steps
to display its value. But the benefit of descriptive names
soon becomes evident as programs with multiple variables
are introduced. VARIABLE blocks in NXT-G are similar to
Alice’s named and typed variables.

5.3 Conditionals
Since the only Kodu statement is the WHEN/DO rule, ev-

ery line of a Kodu program is a conditional. Alice also has
WHEN/DO rules, mainly used to respond to events such
as mouse clicks on objects or single-character keyboard in-
put. We start students out using these events very early,
and the analogy with Kodu is immediately apparent. Al-
ice WHEN/DO rules can also include arbitrary expressions
as conditions, but since they run asynchronously and in a
global context (no access to local variables), they cannot
replace the conventional If/Then, which Alice also provides.

We introduce If/Then statements later in the curriculum,
after methods, functions, predicates, and parallelism have all
been covered. We also introduce If/Then/Else, and explore
with the students how this logic can be implemented in Kodu
using a pair of WHEN/DO rules with opposite conditions.
In NXT-G, the SWITCH block implements If/Then/Else.

5.4 Parallelism
Kodu uses a unique form of parallel execution. All the

rules on a page evaluate their conditions simultaneously.

Then actions take effect sequentially, and in the event of
conflicting actions, the lower numbered rule has priority. So,
for example, if one applicable rule moves the kodu north but
a later rule that also has a true condition moves it south, the
kodu will move north. This can be useful for creating de-
fault behaviors whose action will be taken only if no earlier
rule is eligible to fire, e.g.:

[1] WHEN see apple DO move towards

[2] WHEN DO move random

Because all rule evaluations are completed first in Kodu
instead of being interleaved with the actions, a rule’s action
cannot affect the ability of later rules to fire on the same
cycle. This can lead to unexpected behavior if the program-
mer has an incorrect model of the execution cycle. (One
of the authors actually experienced this bug.) For example,
given that scores are initialized to zero, the following code
fragment sets the red score to 5 but also switches to page 2
even though the second rule appears to guard against that:

[1] WHEN DO score red 5 points

[2] WHEN scored red 0 points DO switch to page 2

In Alice, sequential execution is the norm; parallelism
must be explicitly requested via a Do Together block, and
there is no conflict resolution mechanism. We examine this
difference with the students, comparing Kodu code with Al-
ice code for the same task. NXT-G also provides for explicit
parallelism via a “sequence beam”, but we did not cover this
due to lack of time.

5.5 Looping
Looping in Kodu is both simpler and more difficult than

in Alice. Implicit loops occur automatically in Kodu unless
blocked by once tiles or a page switch. But explicit loop-
ing requires at least two page switches, which are the Kodu
equivalent of the dreaded “go to”. There is also no notion
of an associated index variable, so variable updating and
testing must be done explicitly. In contrast, Alice’s “Loop n
times” statement handles all those details invisibly, but also
allows the index variable to be exposed if desired. Alice also
provides a conventional While loop.

When teaching explicit looping in Kodu we identify four
loop components: initialization, loop logic (including termi-
nation test), body, and wrap-up. Each of these goes on a
separate page, although it is sometimes possible to fit two
components on the same page if the required actions are
simple enough. When teaching Alice’s Loop construct, we
expose the loop details and point out how the first three
loop components, which make up the loop proper, are real-
ized by this single Loop statement. We also show students
Kodu code to implement a specific Alice loop they’ve stud-
ied, to reinforce the mapping between the two formalisms.

NXT-G offers a LOOP block with a variety of options that
can cause it to function like either a For or a While loop. As
in Alice (but not Kodu), the body of the loop is physically
nested inside the block.

5.6 States
We’ve identified states with pages in Kodu, glossing over

the parallelism and implicit looping within. The sequential
execution model in Alice suggests that each statement could
be regarded as a state, but since Alice statements can nest,

612

the mapping is not quite that straightforward. Due to lack
of time, we did not introduce a new graphical notation in the
Alice segment, but were we to do so, we would use flowchart
notation. The major difference with state machines is that
in a flowchart, the boolean expression component of a con-
ditional or loop is depicted as a separate node.

NXT-G has semantics similar to Alice (sequential execu-
tion by default, and nesting components), but its graphical
layout more closely resembles a state machine. However,
NXT-G uses “wires” between “ports” to transmit parame-
ter values between blocks. These extra links distinguish the
graph from a pure state machine graph.

6. THE PILOT STUDY
We conducted a five day CS4All summer camp at Auburn

University in July 2012. Students were recruited from schools
in Alabama and Georgia, and ranged in age from 10 to 17,
with a mean age of 13.1. A total of 31 students participated;
13 were female. Seven of the students self-identified as hav-
ing one or more of the following disabilities: visual impair-
ment (VI), Asperger’s syndrome (Asp), cerebral palsy (CP),
or dyslexia. The distribution of ages and genders was: 10
(M, Asp), 12 (F, VI), 13 (M, VI), 14 (M, dyslexia), 15 (M,
Asp), 16 (F, CP with VI), 17 (F, VI).

Students each had their own computer, but were organized
in groups of 3-5 overseen by one or two instructors. Instruc-
tors were mainly CS graduate students, plus two CS/ECE
undergraduates, several of the authors, and two undergrad-
uate instructional aides from the Auburn University Spe-
cial Education and Rehabilitation Department. Students
worked for seven hours each day, including time for un-
plugged activities and free exploration.

7. EVALUATION
We conducted an evaluation of the pilot summer camp, fo-

cusing on participant outcomes in two primary areas: knowl-
edge development and attitudes. Knowledge development
was measured using two short surveys and one programming
task. The first Kodu assessment focused on participants’ un-
derstanding of state machines and the relationship between
program state and program output. In the second Kodu as-
sessment, we asked students to program loops. Our analysis
of their programs focuses on inclusion of critical loop com-
ponents (e.g., loop initialization, loop body, and termination
test). The Alice assessment focused primarily on students’
understanding of relationships within Alice, understanding
of core concepts, and ability to draw comparisons between
Kodu and Alice. Participant attitudes were assessed using
an attitude survey developed by Heersink and Moskal [6].
The attitude survey was administered on days 1 (pre) and
5 (post) of the camp. Participants’ overall reactions to the
pilot curriculum were collected via written survey at the end
of the camp.

This paper presents preliminary findings from the post-
camp survey. Analysis of the knowledge surveys, program-
ming task, and attitude assessments are underway.

Participant reactions to camp activities were collected via
an 18-question written survey administered on the last day
of the camp. This survey included closed- and open-ended
questions about participants’ enjoyment of camp activities,
their intentions to continue using the programming environ-

ments introduced during the camp, and whether they had
taken steps to make those environments available at home.

Participants’ reactions to the summer camp were gener-
ally positive, with the majority reporting that they enjoyed
the camp, learned a lot, and would recommend it to their
friends. See Table 1. (Participants responded to a 5-point
scale. However, the end points have been collapsed for ease
of presentation.)

Table 1: Participants’ reactions.

n

Disagree;
Strongly
Disagree

Neut.

Agree;
Strongly
Agree

I enjoyed participating
in this camp. 28 14% 7% 79%

I would recomend this
camp to my friends. 29 10% 34% 55%

I learned a lot about
computer programming
at this camp.

29 17% 10% 72%

When asked whether they would continue to use the pro-
gramming environments introduced during the camp, nearly
half of the participants said they would “probably” or “ab-
solutely” use Kodu, with an additional 25% saying they
“might” do so. Fewer reported that they would use Alice
after the camp ended. The majority of participants (71%)
said they would “probably” or “absolutely”want to continue
programming robots if they had access to a robotics kit like
Lego Mindstorms (see Table 2).

Table 2: Participants’ intent to continue.
Response Kodu Alice Robotics
I absolutely will not 11% 25% 0%
I probably will not 18% 14% 11%
I might 25% 29% 18%
I probably will 21% 25% 25%
I absolutely will 25% 7% 46%

More than half of the participants planned to install Kodu
(61%) or Alice (50%) on computers at home. 36% reported
that they currently had access to a Lego NXT kit either at
home or at school, and an additional 29% reported that they
planned to get one.

8. LESSONS LEARNED
The 2012 summer camp was an experiment to test the idea

that explicitly transitioning students from more scaffolded
to less scaffolded frameworks was feasible and beneficial. An
extensive amount of data was collected and is presently be-
ing analyzed to determine what students actually learned.
However, we can make a few preliminary observations here.

Beginning students sometimes find the Alice interface in-
timidating due to the multiple panes and tabs. There is a
fair amount of typing (e.g., method names, variable names,
and numeric values), vs. no typing at all in Kodu except
to make a character “speak”. And Alice’s drag-and-drop
editing interface is not entirely intuitive. Based on our ex-
perience in previous camps, we expected students to take to

613

Kodu quickly because of its simpler interface. As predicted,
once students mastered the ideas of programming charac-
ters in a simulated world and switching between editing and
execution modes, the transition to Alice went smoothly.

NXT-G has semantics sufficiently so close to Alice, and
its graphical interface so closely resembles a state machine
diagram, that students took to it immediately. Working
with physical robots is exciting for students [1, 16], and their
enthusiasm was reflected in the survey responses.

But NXT-G is not the ideal choice for the third stage of
the framework precisely because it adds little beyond what
students have encountered in Alice. Introducing students to
robot programming is still a good idea, but at least with
older students, it could be better done using more sophisti-
cated robots and a more powerful programming formalism.
During the camp we gave students a chance to teleoperate a
Calliope5KP robot developed at Carnegie Mellon [19] that
features a five degree-of-freedom arm with gripper and a
Kinect camera on a pan/tilt mount. Students were fasci-
nated by the robot and eager to learn more about it.

9. FUTURE WORK
Our pilot curriculum was compressed and covered a lim-

ited set of topics due to time constraints. To apply our ideas
in a year-long or multi-year computer science course, and
ensure that students fully master the concepts, will require
considerable additional work. As we move forward we will
be assessing the frameworks used in the pilot study. Scratch
[11] might be an attractive alternative to Alice.

We would also like to develop an alternative robotics cur-
riculum for high school students using the Tekkotsu soft-
ware framework [18] and robots similar to the Calliope se-
ries. Tekkotsu is based on C++ and includes modules for
computer vision, landmark-based navigation, and manipu-
lation. This would make the third stage of our model a
significant advance toward college-level programming. For
younger students, NXT-G’s limitations aside, it at least al-
lows them to see familiar programming constructs in a novel
form, facilitating a more abstract understanding.

10. ACKNOWLEDGMENTS
This work was funded by National Science Foundation

awards CNS-1151542, CNS-1151713, CNS-1151980, and CNS-
1152003. We thank our camp instructors T. Ben Brahim,
J., Weaver, Y. Rawajfih, E. Banu, S. Kulkarni, C. Stephens,
Y. Tiang, C. Cira, A. Jain, A. Marshall, and G. Leung.

11. REFERENCES
[1] Barker, B. S., and Ansorge, J. (2007) Robotics as a

means to increase achievement scores in an informal
learning environment. Journal of Research on
Technology in Education, 39(3):229–243.

[2] Bell, T., Witten, I. H., and Fellows, M. (2010)
Computer Sciene Unplugged. Available at
<http://csunplugged.org/books>.

[3] Bransford, J.D., Brown, A. L., and Cocking, R.R. eds.
(2000) How People Learn: Brain, Mind, Experience,
and School. Washington, D.C.: National Academy
Press

[4] Dann, W. P., Cooper, S., and Pausch, R. (2008)
Learning to Program with Alice (2nd Edition).
Prentice-Hall.

[5] Gentner, D., Loewenstein, J., and Thompson, L.
(2003) Learning and transfer: A general role for
analogical encoding. Journal of Educational
Psychology, 95(2):393–408.

[6] Heersink, D., and Moskal, B. M. (2010) Measuring
high school students’ attitudes toward computing.
Proc. SIGCSE’10, 446–450.

[7] Kelleher, C., & Pausch, R. (2005). Lowering the
barriers to programming: A taxonomy of
programming environments and languages for novice
programmers. ACM Computing Surveys, 37(2),
83–137.

[8] Kelly, J. (2010) LEGO Mindstorms NXT-G
Programming Guide. New York, NY: APress.

[9] Konidari, E. and Louridas, P. (2010) When students
are not programmers. ACM Inroads 1(1):55–60.

[10] McLaurin, M. (2011) The design of Kodu: A tiny
visual programming language for children on the Xbox
360. Proceedings of POPL-11.

[11] Maloney, J., Resnick, M., Rusk, N., Silverman, B.,
Eastmond, E. (2010) The Scratch programming
language and environment. ACM Transactions on
Computing Education, November 2010.

[12] Marghitu, D., Ben Brahim, T., Rawajfih, Y., Weaver,
J., and Shanahan, J. (2010) Auburn University K-12
inclusive STEM outreach programs. SDPS 2010
Conference, June 6–9, 2010, Dallas, TX USA.

[13] Marghitu, D. (2012) Auburn University K-12 Inclusive
STEM Outreach Programs. SIGCSE 2012 workshop
slides available at <https://fp.auburn.edu/comp2000/
SIGCSE2012 AccessComputingWorkshop.htm>.

[14] Marghitu, D., Bell, T., et al. (2009) Using virtual
worlds to engage typical and special needs students in
kinesthetic computer science activities: A Computer
Science Unplugged case study. AACE EdMedia 2009
Conference, June 22–26, 2009, Honolulu, HI, USA.

[15] Microsoft Kodu Game Lab. Available at
<http://www.kodugamelab.com/About>.

[16] Nugent, G., Barker, B., Grandgenett, N., and
Adamchuk, V. I. (2010) Impact of robotics and
geospatial technology interventions on youth STEM
learning and attitudes. Journal of Research on
Technology in Education, 42(4), 391–408.

[17] Stolee, K. T., and Fristoe, T. (2011) Expressing
computer science concepts through Kodu Game Lab.
Proc. SIGCSE’11, pp. 99–104.

[18] Touretzky, D. S. (2010) Preparing computer science
students for the robotics revolution. Communications
of the ACM, 53(8):27–29.

[19] Touretzky, D. S., Watson, O., Allen, C. S., and
Russell, R. J. (2010) Calliope: Mobile manipulation
from commodity components. In A. Thomaz and M.
D. Anderson (Eds.), Papers from the 2010 AAAI
Robot Workshop. Technical report WS-10-09. Menlo
Park, CA: AAAI Press.

[20] Wilson, et al. (2010). Running On Empty: The Failure
to Teach K–12 Computer Science in the Digital Age.
Association for Computing Machinery, 2010. Available
at <http://www.acm.org/runningonempty/>.

[21] Wing, J. M. (2006) Computational thinking.
Communications of the ACM 49(3):33–35.

614

