Teaching “Lawfulness” With Kodu

David S. Touretzky
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213

dst@cs.cmu.edu

ABSTRACT

This paper introduces reasoning about lawful behavior as
an important computational thinking skill and provides ex-
amples from a novel introductory programming curriculum
using Microsoft’s Kodu Game Lab. We present an analysis
of assessment data showing that rising 5th and 6th graders
can understand the lawfulness of Kodu programs. We also
discuss some misconceptions students may develop about
Kodu, their causes, and potential remedies.

CCS Concepts

eSocial and professional topics — Model curricula;
K-12 education; Computational thinking;

Keywords

Kodu Game Lab; formal reasoning; programming idioms

1. INTRODUCTION

We believe that mastery of lawfulness is an important but
often overlooked computational thinking skill. In comput-
ing, formal laws (or rules) govern how expressions are eval-
uated, actions are sequenced, and state is updated. Often
these rules deal with low level processes: languages such as
Python or Java are only a bit more abstract than assembly
language. Children’s languages such as Scratch and Alice
remove some sources of difficulty by providing a drag-and-
drop GUI editor to prevent syntax errors, and a queryable
graphics canvas that makes some program state readily ap-
parent. But these environments provide few tools for helping
children think about state. Likewise, tutorials for beginning
Scratch and Alice programmers don’t try to teach students
to reason formally about the state changes they observe.

While a graphics canvas is somewhat useful for reasoning
about state, with no physics and no intrinsic interactions
among objects, nothing happens on Scratch’s 2D or Alice’s
3D canvas unless the programmer makes it happen. Inter-
esting programs therefore require tedious detail that makes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGCSE ’16, March 2-5, 2016, Memphis, TN, USA.
(© 2016 ACM. ISBN 978-1-4503-3685-7/16/03. .. $15.00
DOL http://dx.doi.org/10.1145/2839509.2844652

Christina Gardner-McCune
Dept. of Computer & Info.
Science & Engineering
University of Florida
Gainesville, FL 32611
gmccune@ufl.edu

Ashish Aggarwal
Dept. of Computer & Info.
Science & Engineering
University of Florida
Gainesville, FL 32611
ashishjuit@ufl.edu

reasoning about them more difficult. Thus, graphics primi-
tives alone are not as abstract or powerful as we would like
for beginning programmers.

For children to demonstrate mastery of “lawfulness” in a
computational framework they should be able to (1) state
the laws, (2) explain program behavior by referencing the
laws, and (3) apply the laws to predict future behavior from
current state. Fortunately there is wide lattitude in what
these laws can be. They don’t have to describe low level
primitives as in Python or Java, or — notwithstanding the
graphics canvas — Scratch or Alice. For example, a set of
objects can be referenced by specifying a pattern that they
match rather than collecting and maintaining them in a sub-
scripted data structure. To see what higher level laws look
like, we will examine Microsoft’s Kodu Game Lab [1] and
its underlying computational principles.

Kodu worlds are three-dimensional environments with flu-
idly articulated characters. These characters are not merely
graphics objects: they are semi-autonomous robots that per-
ceive and act on the contents of a dynamically changing
world. There is real physics, including gravity, inertia, fric-
tion, elastic collisions, complex lighting, wind, water, and
waves. Actions in Kodu have built-in sound effects, col-
lisions are always noisy, and when a character isn’t doing
anything else, it mumbles and fidgets amusingly. A handful
of lines of Kodu code can produce highly engaging behav-
iors. Research presented in this paper will show that given
the right tools, children are able to reason about these be-
haviors and demonstrate an appreciation of their lawfulness.

In the following sections we discuss various aspects of
Kodu and four conceptual tools we employed to help chil-
dren recognize “lawfulness”. We then analyze assessment
data from 23 rising 5th and 6th graders who attended a
five session Kodu Camp. Finally, we identify two important
misconceptions about Kodu rules, and their likely causes.

2. KODU SYNTAX

Kodu syntax is trivially simple. Each character has its
own program, which is a set of up to 12 numbered pages. A
page is an ordered list of rules. A rule consists of a WHEN
phrase followed by a DO phrase, either of which can be
empty. A non-empty phrase begins with a predicate or ac-
tion tile and continues with zero or more argument/modifier
tiles. These can appear in any order with a few exceptions.’

IThe “random” tile takes distinct left and right arguments.
And in operations involving scores, the first tile after the
verb is required to be a score color and is treated specially.
This is a recent change in Kodu syntax made in June 2015.

Finally, a rule’s indentation level must be between 0 and
one more than the indentation of the immediately preceding
rule. That’s it!

Kodu’s GUI editor uses context-senstive menu selection
rather than the drag-and-drop interface with fixed menus
common in other visual languages. The menus only present
options that are both syntactically and semantically legal at
that point in the rule.

Although Kodu users can’t make syntactic errors, it’s still
useful for them to think about syntax because it’s an illus-
tration of lawfulness. But a formal syntactic description like
the one above is not easily digested by children. Touretzky
created a set of plastic tile manipulatives whose colors and
shapes reflect Kodu’s syntactic constraints [6], as in Fig-
ure 1. The WHEN tiles are green, DO tiles are blue, and
indentation levels are reified as yellow tiles.

Figure 1: Kodu tile manipulatives.

During a Kodu session with second graders, a child tried
to use the manipulatives to make the improper rule “WHEN
see apple DO eat apple”, but the final tile wouldn’t fit be-
cause the connector didn’t match. Another child sponta-
neously corrected him by suggesting the “it” tile, which does
fit, yielding the syntactically correct rule “WHEN see apple
DO eat it” [6].

3. PRINCIPLES OF KODU COMPUTATION

Kodu’s power comes in part from providing higher level
primitives such as pattern matching — the mechanism of
Kodu perception — and rich actions, such as giving a held
object to another character with automatically generated
motion and sound effects. Control structure is more sub-
tle than in conventional languages because there is only one
statement type: the conditional rule. Additional control
comes from other sources: rule dependency relationships ex-
pressed through indentation, an arbitration scheme that me-
diates conflicting actions, an implicit variable binding mech-
anism with “it” and “me” tiles, and a “perform action once”
modifier. There is no explicit iteration. Instead, all the rules
on the currently active page run repeatedly, 50-100 times per
second, until the character switches to a different page.

To teach students to reason about lawful behavior in Kodu,
Touretzky formulated a set of “principles of Kodu compu-
tation” [5]. These principles (or laws) can either be taught
explicitly or worked out by the children themselves through

guided discovery. To illustrate the latter, consider the first
problem posed in many Kodu tutorials: eating a bunch of
apples scattered over a field. The solution comprises a single
two-rule idiom, Pursue and Consume, discussed in section 4.
Once they’ve learned the idiom and run the solution, chil-
dren are asked how the kodu character chooses which ap-
ple to pursue first. They are encouraged to move the kodu
and/or the apples and rerun the program. They quickly dis-
cover that the kodu always goes to the closest apple. This is
the first principle. It is reinforced by having students restate
it in written exercises, and by requiring them to apply it to
predict the paths characters will take to consume various
collections of objects. Formally, the first principle is “a rule
always selects the closest matching object.”

The second principle is that perceptual predicates like
“see” or “bump” work by pattern matching, with additional
tiles further constraining the match. So “see” matches any
object other than the character itself; “see apple” matches
apples; “see red” matches red things; and “see red apple”
matches red apples, as does “see apple red”.

The third principle is that an indented rule is only eligible
to run if the parent rule is eligible and the parent’s WHEN
part is true. This principle, which produces block structure,
is crucial for many Kodu idioms such as Do Two Things.

The fourth principle students learn is that when two rules
specify conflicting actions, the earlier (lower numbered) rule
wins. This principle makes the Default Value idiom possible.

These four are the most important principles, but there
are many more, reflecting the richness of the language. The
current list has more than 30. Together they capture many
of the fine points of Kodu semantics. An example of a more
subtle principle is: a character cannot “see” the object it is
holding, but it can see objects held by others. (The “got”
tile can be used in place of “see” to examine a held object.)
Another more advanced principle is: “timers don’t nest”.

4. A KODU IDIOM CATALOG

Lawfulness is one interesting aspect of computation; an-
other is the patterns in which primitives frequently combine.
These patterns, or idioms, are a means of achieving higher
level goals. Reasoning in terms of idioms instead of the
component primitives is an example of abstraction, another
important ingredient in computational thinking [8].

Touretzky created a catalog of Kodu idioms that students
can draw upon [5]. They are depicted on a ring of flash
cards (inspired by the Scratch Cards of Natalie Rusk [2]),
and were given to each student at the start of every session.
Each idiom has a name, a schematic illustration, sample
code, and usage notes. Students were taught these idioms
explicitly, and drilled on them in various ways. For example,
they were asked to apply the idiom in a new situation. Or
they were shown novel code fragments and asked to explain
why each one does or does not qualify as an example of the
idiom. Table 1 lists a few of these idioms.

The most basic idiom, which every Kodu student encoun-
ters when confronting a field of apples, is Pursue and Con-
sume. Figure 2 shows the flash card. A pursue rule involves
motion toward an object. A consume rule makes an object
non-pursuable, either by destroying it as “eat” does, or by
changing it to no longer match the perceptual pattern of the
pursue rule. Kodu’s repetitive execution of all the rules on
a page takes care of the rest.

Students develop a more abstract understanding of Pursue

Pursue and Consume

Make the Kodu go to objects and eat them.

A pursue rule involves motion.

A consume rule uses up the object.

Pursue and Consume

6 AR @'0{3 Pursue rule
toward

apple move

QY ©«

)

General Form:
WHEN see thing DO move toward
WHEN bump thing DO consume it
“Consume” can be “eat”, “grab”, “vanish”, or something else.

56 6 el @ 5 Consume rule

bump apple eat it

WHEN WHEN

Filter by color:
WHEN see color thing DO move toward
WHEN bump color thing DO consume it

Figure 2: The Pursue and Consume idiom on a flash card.

Table 1: Some common Kodu idioms.
: Example
Eat all the apples
Eat an apple + play coin sound
Count the apples while eating
Turn red if see octopus, else blue
: Follow a path and react upon
reaching the end
Steer character with joystick
Make a character’s color
indicate its current page
Final action when killed or eaten

Name :
Pursue and Consume :
Do Two Things
Count Actions
Default Value
Follow the Yellow

Brick Road
Let Me Drive

Show Page As Color

Parting Shot

and Consume by exploring variants of the apple eating task.
In one world they are asked to eat stars instead of apples.
In another they are asked to grab (poisonous) blue apples
instead of eating them; grabbing them makes them shrink
and disappear. In yet another they pursue white or black
huts and paint them blue, demonstrating that “consume”
doesn’t necessarily mean “remove”.

An idiom is not just a code template; it’s a rich seman-
tic context in which to explore how primitives interact to
achieve a result. We deepen students’ understanding by ask-
ing them to give English definitions for “pursue” (to chase,
or to proceed along a path) and “consume” (to eat or use
up), and by having them predict the effects of altering parts
of the idiom. For example, replacing “eat” with “boom” (ex-
plode) is fine, but replacing it with a non-consuming action
such as playing a sound leaves the kodu stuck at the first
object it pursued. A later exercise asks students for the
opposite of pursue (“flee”), and then has them search for a
movement action that will let the kodu flee an adversary.
(Answer: “move away” instead of “move toward”).

S. STATE MACHINES

State machines are among the most fundamental and ubig-
uitous concepts in computer science. They appear in digital
logic design, formal languages, networking protocols, game
programming, robot programming, and more. Learning to
reason about state machines profoundly changes the way a
person thinks about technology, from vending machines and
traffic lights to smartphones and the Internet.

Kodu was inspired by behavior-based robotics [1] and is
a natural state machine language. Each page functions as a

state, with “switch to page” actions providing the transitions
[3]. Some actual robot programming frameworks directly
support state machines, but in conventional languages it falls
to the programmer to implement them using a combination
of conditionals and variables.

Kodu states are more complex than in most state machine
languages because pages contain multiple conditional rules,
all of which are embedded in an implicit while loop [7]. So it
takes some effort to construct simple problems where mul-
tiple states are the most natural solution. One example is
a world with red apples to be eaten and blue ones to be
grabbed. With a single page and one “pursue apples” rule,
the kodu will go to the closest apple no matter the color.
With separate red and blue pursue rules, the rule ordering
principle will cause the kodu to eat all the red apples first,
before grabbing any blue ones, or vice versa. But if we want
the kodu to alternate between red and blue apples, we must
put the two pursue rules and their associated consume rules
on separate pages and switch back and forth between them.?

To scaffold students’ reasoning about state machines, they
are taught the standard graphical notation using labeled
nodes and arcs, and they practice mapping between Kodu
code and state machine graphs. They are also shown how
to use the graphs to reason about program behavior. For
example, given the state machine in Figure 3, will the kodu
ever eat another apple after grabbing a soccer ball?

== Eae Saw a bell
P - 2 /\ =

/ Pagel: Page 2:
‘I‘-’f .'\‘ Saw afish :" Pursue
‘ Burcic f——— Pursue
\ | \ and grab
\ s s / and boom
. / ! s0CCer
 apples fish

; . balls
— e Saw afish e

Figure 3: State machine reasoning problem.

Students use the Show Page As Color idiom to trace exe-
cution by having the kodu change its body color to indicate
the current page. They also hand simulate a state machine,
with one student playing the role of the kodu, to reinforce
their understanding of page switching.

2We could instead use a variable to keep track of what color
to pursue next, but that would just be implementing a state
machine by hand, with more complicated rules.

6. METHODS
6.1 Participants

Twenty-three students participated in one of two week-
long summer camps. Participants were recruited via emails
to parents or teachers from the university’s outreach office.
There were 6 females and 17 males. The racial/ethnic break-
down was 14 White, 4 Asian/Indian, 1 Latino, 1 Multi-
racial, and 1 Native American. All were rising 5th or 6th
graders. 21 students completed the entire camp; 1 boy in
each camp missed the last day.

4 out of 23 students indicated that they had not pro-
grammed prior to the Kodu Camp. 12 out of 23 students
had participated in 2 or more computing programs, with 5
having participated in 54+ computing programs. Students
who had programming experience reported a wide variety
of experience types, but only one had worked with Kodu
before. Over half of the students had used Scratch (n=12);
none had used Alice; 9 had used Minecraft; 9 had partici-
pated in Hour of Code; and 5 had done robotics. Students
also reported some experience in Python (n=7) and HTML
and Javascript (n=4).

6.2 Structure of the Curriculum

The curriculum consisted of the first five modules and half
of the 6th module described in Table 2. On most days stu-
dents completed roughly the second half of one module and
the first half of the next one. Each module focused on one
or two idioms or computational principles, illustrated with
a collection of pre-made worlds that presented some sort
of game or challenge. With the first world the instructor
introduced the topic of the module, using the flash cards
and/or tiles as appropriate, and took the students through
the solution. In the second world students were asked to ap-
ply the idea in a slightly different context on their own. A
third world might be used to introduce supplementary mate-
rial. Students then completed a paper assessment, and after
handing in their pages, the instructor presented the correct
answers. Students were then given a challenge world where
they were asked to implement a variant of the idiom or key
concept, or apply it to a slightly more complex case. Finally,
each day ended with 30-45 minutes of free exploration where
students could make their own worlds or play in the worlds
they’d previously written.

The assessments contained a combination of fill in the
blank, multiple choice, and open ended items. Questions
were of several types: review of terms (“What new idiom
did you learn today?”); recognition of rule types (“Is this a
pursue rule or a consume rule?”); synthesis of rules (“Write
the rules to pursue and consume green fish.”); recognition of
idioms (“Are the rules below an example of Default Value?”);
and mental simulation (“Given the rules below, in what or-
der will the kodu eat these apples?”, or “What will happen
if this rule’s indentation is removed?”).

6.3 Interactivity and Gamification

All the worlds require students to program the kodu to
solve a problem autonomously. Initially students would run
the world and passively observe the result. However, sev-
eral taught themselves the Let Me Drive idiom and chose
to guide the kodu with the game controller. This was fun
but didn’t demonstrate mastery of the concepts they were
supposed to be learning. For the second camp, we compro-

Table 2: Kodu curriculum modules.
Module | Content (e idioms in italics)

Characters, objects, and rules

1 e Pursue and Consume
e Let Me Drive
2 Pattern matching: color filters
Indentation (rule dependency); Scores
3 e Do Two Things
e Count Actions
4 Conflict and rule ordering

o Default Value

State machines
e Show Page As Color

6 Paths

e Follow the Yellow Brick Road

mised by introducing an additional character in some worlds
that students could control while the main character solved
the problem. In the ApplelX world, for example, while the
kodu pursued and ate the apples, there was a flying fish that
students were taught to make drivable. The flying fish could
help the kodu by pushing apples toward it, or harrass it by
bumping it or knocking apples away. It could even maneu-
ver the apples to fall into a pit, making them unreachable by
the kodu. The kodu “won” if it managed to eat 4 of the 5 ap-
ples; the flying fish “won” if it got 2 apples into the pit before
time ran out. Gamification increased student engagement,
seemingly without compromising learning goals.

6.4 Data Analysis Procedure

To investigate students’ understanding of the material,
we analyzed their responses on the paper assessments. In
Phase 1 we marked each response as correct or incorrect,
and then used a grounded theory approach [4] to find trends
and themes underlying the incorrect responses. Incorrect an-
swers were coded and grouped by similarity, and each coded
group was given a descriptive label.

In Phase 2 we further categorized incorrect responses based
on possible causes of error: (1) confusing wording or struc-
ture of the question, (2) lack of understanding of a well-
formulated question, (3) a misconception about Kodu com-
putation, or (4) negative transfer from a previous activity
or question. Questions that we believe had confusing word-
ing or structure were excluded from further analysis. Re-
sponses that were left blank, or that did not properly ad-
dress the question, were categorized as “lack of understand-
ing”. Responses were categorized as “misconceptions” when
we found multiple instances of the incorrect answer across
both camps, and when a plausible reason for the incorrect
response could be identified.

A legitimate misconception should be recognizable by a
consistent pattern of wrong answers across questions. In
Phase 3 we assembled the evidence in support of each hy-
pothesized misconception. Due to space limitations, we will
focus here mainly on misconceptions about rule ordering.

7. FINDINGS
7.1 Evidence of Student Learning

Students demonstrated their understanding of lawfulness

by predicting the behavior of Kodu characters, applying id-
ioms, and reasoning about rules. For example, in questions
measuring students’ knowledge of Kodu’s matching behav-
ior (Modules 1 and 3), 82% (n = 19) and 86% (n = 20)
of students correctly indicated that the kodu always went
to the closest apple. Similarly, in Modules 1 and 2, 86%
(n = 20)and 91% (n = 21) of students correctly applied the
Pursue and Consume idiom to new situations. In Module
3, 73% (n = 17) of students correctly identified Pursue and
Consume and Count Actions in a novel code snippet. Prior
programming experience was not a predictor of correct an-
swers in assessments in any of Modules 1-4.

Predicting future behavior requires mentally simulating
state changes, which all the students were able to do. In
Module 1 they were shown a diagram of a kodu and five red
apples (similar in format to Figure 4, top) and asked to label
the apples with numbers to indicate the order in which the
kodu would eat them. 91% (n = 21) got it right.

7.2 Misconceptions About Rule Ordering

Many students had difficulty mastering rule ordering in
Kodu. The rules on a page run repeatedly; WHEN parts
are evaluated in parallel and DO parts are performed se-
quentially if the WHEN part was true. If there are no con-
flicting actions, rule ordering is irrelevant. We tell students
this explicitly. On the other hand, if rules do have con-
flicting actions, the earlier (lower numbered) rule prevails.
So order does matter, but the rules do not constitute a se-
quential procedure. Several factors work against students
assimilating this knowledge, discussed below.

o —©

Q2: [1] WHEN see apple DO move toward
[2] WHEN bump apple DO eat it

Q3: [1] WHEN see red apple DO move toward
[2] WHEN see blue apple DO move toward
[3] WHEN bump apple DO eat it

Q4: [1] WHEN bump apple DO eat it
[2] WHEN see blue apple DO move toward
[3] WHEN see red apple DO move toward

Figure 4: Module 4 rule ordering questions (pre-
sented to the students as tile sequences, not text).

Two pursue rules. Students did better on questions that
required them to apply the rule ordering principle to an ex-
ample program than on questions that discussed rule order-
ing in the abstract. Given the example programs in Figure 4,
students were asked to label each apple with a number 1-4
to show the order in which it would be eaten. With the
color-agnostic pursue rule (Q2), 78% (n = 18) correctly ap-
plied the “closest match” principle. With a slight a decrease
in performance, this response rate is consistent with prior
demonstration of ability to mentally simulate the Pursue

and Consume rule. Correct responses resulted in a 1-2-
3-4 (red, blue, blue, red) labeling pattern, reading left to
right. Of the five wrong answers, two completely misun-
derstood the question, and three responded 1-2-4-3, which
produced an alternating red/blue pattern even though the
rule didn’t mention color. The alternating red/blue pattern
might be explained by misjudging the distances between the
second apple and the third and fourth, which is consistent
with a simple elliptical path from the kodu’s initial position
through all the apples.

With separate red and blue pursue rules in Q3 and Q4,
70% (n = 16) correctly predicted a 1-4-3-2 pattern (red,
red, blue, blue) in Q3. When the rule order was reversed
in Q4, the same 16 correctly predicted 4-1-2-3 (blue, blue,
red, red), and were not confused by the consume rule pre-
ceding the pursue rules. Of the 7 students who answered
incorrectly, the same two students who misunderstood Q2
misunderstood Q3 and Q4. Of the remaining 5 students who
answered incorrectly, two students thought the pursue rules
would alternate in both questions based on the rule order
(Q3: 1-2-4-3 or red, blue, red, blue, and Q4: blue, red, blue,
red). When there are two pursue rules, thinking of a page of
rules as a sequential procedure is consistent with alternating
between red and blue apples. These students had not alter-
nated on Q2; they were among the majority who correctly
applied “closest match”.

Two students followed a “closest object” principle and ig-
nored the color filters in Q3 and Q4, resulting in the same
answer as Q2. One student apparently thought the rules
would interfere with each other, resulting in the kodu either
eating only the first red apple and stopping (Q3) or eating
no apples (Q4).

None of the three students whose answers alternated with
the single pursue rule in Q2 alternated on Q3 or Q4. Two of
them actually got both Q3 and Q4 correct. The third used
“closest object” for both. This suggests that their answers
on Q2 may not have been deliberate alternation.

Abstract reasoning about rule ordering. When asked
which of the two idioms Pursue and Consume and Default
Value relied on rule ordering, only 34% (n = 8) answered
correctly that only Default Value did, 12 thought that both
did, 1 said neither did, and 2 said only Pursue and Consume
did. When asked why rule ordering matters for some idioms
and not others, only 5 wrote answers that had some flavor of
correctness; 3 wrote answers that weren’t obviously wrong
but didn’t mention rule priority or conflicting actions; 12
gave answers that were either irrelevant or incoherent; and
3 indicated they thought rules executed sequentially, e.g.,
“you need to pursue for rule 1 and consume for rule 2”.

Pages as sequential procedures. Even after students
had been taught about the rule cycle in module 3 (and had
run a program that repeatedly increments a score, watching
the value run up at a blistering rate), many had trouble over-
coming the tendency to view a page of rules as a sequential
procedure. There are several reasons for this.

First, the Kodu rule editor numbers the rules, giving them
the appearance of sequential steps. These numbers serve no
purpose in the interpreter: they are there solely as an aid
to discussion. And it’s indeed convenient to refer to rules
by number. But sequential numbering wrongly suggests se-
quential execution.

A second, compounding factor is that our example pro-

grams order the rules in a logical way. Since you cannot
consume something until you’ve pursued it, “pursue” comes
first in the idiom name, on the flash card, and in sample
code. We find that demonstrating that the behavior is the
same when the rules are reversed may not suffice to over-
come students’ bias toward sequentiality.

Third, movement is continuous. When executing the id-
iom a character will perform a great many pursue steps (50-
100 per second) before the consume step, but to a student
who does not yet understand the Kodu rule cycle, it looks
as if the character performed a single pursue step several
seconds in duration, followed by a shorter consume step: a
sequential procedure. This false sequentiality becomes ap-
parent when there are multiple pursue rules, because they
don’t take turns as some students assumed. The second
rule can only take effect when the first rule no longer finds
something to pursue.

7.3 Indentation and Rule Dependency

In module 3 students used the Do Two Things idiom to
make the kodu play a sound when it bumped and ate an ap-
ple (rules shown in Figure 1). In a second world they used
the related Count Actions idiom to count how many red
hearts the kodu ate. In both cases, students were prompted
to remove the indentation of the play or count rule and ob-
serve that the kodu played the sound continuously, or the
score ran up continuously at a high rate.

What we wanted students to understand was that indent-
ing a rule makes it dependent on the parent rule having a
true WHEN part. But what we saw from interactions with
some students is that they may view indentation simply as
a way to block unwanted behavior, without fully compre-
hending the mechanism.

Given the rules below, students were asked when the kodu
would play the coin sound:

Q5: [1] WHEN see ball DO move toward
— [2] WHEN DO play coin
[3] WHEN bump ball DO eat it

18 out of 23 correctly answered “when it sees a ball” or “when
it moves toward the ball”. Three gave incoherent or vague
responses. And two said “when it bumps the ball”, which
suggested they may have attached the indented rule to the
rule below instead of the rule above, as in [6]. An alternative
explanation is that they weren’t reasoning about rule depen-
dency at all, and this was an example of negative transfer.

7.4 Negative Transfer From Past Experience

One type of evidence for mastery is a student successfully
applying what they’ve learned to novel, atypical situations.
This requires strict application of computational lawsrather
than reasoning by analogy to earlier situations. In several
instances where students gave incorrect answers, they ap-
pear to have made this type of mistake.

In the indentation example Q5 cited above, the coin sound
plays for as long as the kodu sees a ball. But in all the exam-
ples students had seen of Do Two Things or its special case
Count Actions, the additional action had been indented un-
der a “WHEN bump ... DO eat it” rule whose action negates
the condtion. This may have led two students looking at Q5
to expect that the coin sound would play once, when the
ball was bumped and eaten, with indentation preventing
unwanted repetition.

Errors resulting from stereotyped reasoning might be pre-
vented by more exposure to atypical cases. For example,
we could have a world where Do Two Things implemented
a persistent action as in Q5 rather than a transitory one,
illustrating that indentation does not prevent repetition.

A similar negative transfer situation arose with the state
machine problem in Figure 3. In all the examples students
had seen, each state had some sort of goal, such as to pur-
sue and consume an object, and a transition occurred when
the goal was satisfied. But in Figure 3, states pursue their
respective goals repeatedly, and a transition is triggered by
the appearance of a goal object for another state. When
asked to turn this diagram into rules, some students mistak-
enly attached the transition rule to the consume rule rather
than having it look for the other type of object.

8. CONCLUSIONS

The power and simplicity of Kodu facilitate teaching stu-
dents to reason formally about program behavior. We de-
scribed a novel curriculum that fosters an appreciation of
lawfulness through a combination of tile manipulatives, ex-
plicit computational principles, named idioms, and state ma-
chine formalism. Students demonstrated an understanding
of lawfulness in concrete situations, but did less well on more
abstract questions.

Two potential misconceptions were identified that are unique

to Kodu’s style of computation, one concerning rule order-
ing, and the other rule dependency (indentation). Future de-
signers of Kodu-based curricula will want to check for these
misconceptions when gauging student understanding.

Acknowledgments

Funded by a gift from Microsoft Research. Thanks to Brooke
Ley, Swati Priyam, and Shweta Venkateswaran, who served
as TAs for the Kodu camps.

9. REFERENCES

[1] M. B. MacLaurin. The design of Kodu: A tiny visual
programming language for children on the Xbox 360. In
Proceedings of POPL ’11), pages 241-246, 2011.

[2] N. Rusk. Scratch cards. Available at
<https://scratch.mit.edu/help/cards>, 2009.

[3] K. Stolee and T. Fristoe. Expressing computer science
concepts through Kodu Game Lab. In Proceedings of
SIGCSE’11, pages 99-104, 2011.

[4] A. Strauss and N. Corbin. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage, Thousand Oaks, CA, 1998.
2nd ed.

[5] D. S. Touretzky. Kodu resources page, 2014. Available
at <http://www.cs.cmu.edu/~dst/Kodu>.

[6] D. S. Touretzky. Teaching Kodu with physical
manipulatives. ACM Inroads, 5(4):44-51, 2014.

[7] D. S. Touretzky, D. Marghitu, S. Ludi, D. Bernstein,
and L. Ni. Accelerating K-12 computational thinking
using scaffolding, staging, and abstraction. In
Proceedings of SIGCSE’13, pages 609-614, 2013.

[8] J. M. Wing. Computational thinking and thinking
about computing. Philos Trans A Math Phys Eng Sci,
366(1881):3717-3725, 2008.

