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We present a Bayesian statistical theory of context learning in the ro-
dent hippocampus. While context is often defined in an experimental
setting in relation to specific background cues or task demands, we ad-
vance a single, more general notion of context that suffices for a variety
of learning phenomena. Specifically, a context is defined as a statistically
stationary distribution of experiences, and context learning is defined
as the problem of how to form contexts out of groups of experiences
that cluster together in time. The challenge of context learning is solving
the model selection problem: How many contexts make up the rodent’s
world? Solving this problem requires balancing two opposing goals:
minimize the variability of the distribution of experiences within a con-
text and minimize the likelihood of transitioning between contexts. The
theory provides an understanding of why hippocampal place cell remap-
ping sometimes develops gradually over many days of experience and
why even consistent landmark differences may need to be relearned af-
ter other environmental changes. The theory provides an explanation
for progressive performance improvements in serial reversal learning,
based on a clear dissociation between the incremental process of context
learning and the relatively abrupt context selection process. The impact
of partial reinforcement on reversal learning is also addressed. Finally,
the theory explains why alternating sequence learning does not consis-
tently result in unique context-dependent sequence representations in
hippocampus.

1 Introduction

Several theories have posited that the hippocampus is responsible for pro-
viding a representation of context and that this representation underpins
an animal’s performance of a variety of tasks sensitive to hippocampal
lesions (Hirsh, 1974; Nadel & Willner, 1980; Jarrard, 1993; Levy, 1996;
Wallenstein, Eichenbaum, & Hasselmo, 1998; Redish, 1999, 2001; Hasselmo
& Eichenbaum, 2005). These tasks include spatial navigation, sequence
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learning, and hippocampal lesion-sensitive conditioning paradigms such
as reversal learning. Models have typically focused on one or two of these
domains (Levy, 1989, 1996; Schmajuk & DiCarlo, 1992; Gluck & Myers,
1993; Samsonovich & McNaughton, 1997; Wallenstein & Hasselmo, 1998;
Redish & Touretzky, 1998; Doboli, Minai, & Best, 2000; Hasselmo, Bodelón,
& Wyble, 2002; Hasselmo & Eichenbaum, 2005), developing mechanisms
of context learning that are well tailored to the domain of study but do not
generalize well across domains.

Moreover, empirical data from both lesion and physiology studies have
called into question the viability of existing models. Attractor models of
hippocampal place cell remapping (Samsonovich & McNaughton, 1997;
Redish & Touretzky, 1998; Tsodyks, 1999; Doboli et al., 2000) cannot ac-
count for the gradual separation of maps between similar environments
(Jeffery, 2000; Lever, Wills, Cacucci, Burgess, & O’Keefe, 2002). Hippocam-
pal models addressing reversal learning (Schmajuk & DiCarlo, 1992; Gluck
& Myers, 1993; Hasselmo et al., 2002) fail to capture the experimental ob-
servation that after a series of discrimination reversals, rats can learn to
reverse behavior after a single trial (Buytendijk, 1930; Dufort, Guttman,
& Kimble, 1954; Pubols, 1962). Models of sequence learning (Levy, 1989,
1996; Wallenstein & Hasselmo, 1998) are challenged by the failure to find
sequence-dependent differences in hippocampal place cell activity in some
studies (Lenck-Santini, Save, & Poucet, 2001; Hölscher, Jacob, & Mallot,
2004; Bower, Euston, & McNaughton, 2005).

While these previous modeling efforts have offered neural mechanisms
to explain how the hippocampus remaps, the work presented here focuses
on a related but distinct question: Why does the hippocampus remap?
More specifically, if remapping serves to create a representation of con-
text, then understanding remapping across problem domains requires a
general and concrete definition of what a context is. We propose that con-
text learning may be formalized as decomposing a nonstationary world
of hippocampal input patterns (and the sensory input and behaviors they
represent) into multiple domains, or contexts, within which the distribu-
tion of these input patterns is stationary. What critically defines a context
is therefore not a particular class of stimuli (e.g., background cues) or be-
haviors (e.g., random versus directed foraging), but a set of time windows
within which the statistical structure of sensory experiences and behaviors is
stable.

Such a definition of context advances its role in prediction: if recent ex-
periences suggest that the present context is C , then other prior knowledge
about context C should also be applicable for the foreseeable future (i.e.,
until the context changes). The predictive power of a context is determined
by both the temporal duration of the context and the (systematic) variabil-
ity within a context. Contexts that generally last only a short duration fail
to be useful in prediction because of the high probability that a different
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context with different contingencies will soon become active. Contexts that
encompass a highly variable set of sensory experiences and behaviors are
also poor predictors insofar as they do not discriminate among the many
possibilities within the context.

As a concrete example, consider the serial reversal learning task in which
animals must make a choice between two alternatives (e.g., levers, maze
arms). During odd blocks of trials, one choice is rewarded; during even
blocks, the other is rewarded. As training progresses, the two reward con-
tingencies may be codified as two different contexts, each with a static
reward structure in which only choice 1 is rewarded (context 1) or only
choice 2 is rewarded (context 2). Thus, when a particular choice is rewarded
(or not rewarded), it suggests which of the two contexts is active, thereby
predicting that that choice will be rewarded on subsequent trials as well.
If, however, both reward contingencies were grouped together in the same
context, the identity of the active context would not be useful in predicting
an optimal behavioral strategy. By contrast, in a random foraging paradigm,
the random scattering of food within the environment ensures that the re-
ward location is unpredictable. Dissecting a random foraging session into
a large number of contexts, each representing a distinct location at which
food was found, would result in a complex contextual representation with
no predictive value.

Inferring the most informative context model is therefore the central
problem of interest. In this article, we formulate context learning as a
model selection problem: Into how many contexts should the world be
divided? We develop a statistical framework for context learning based
on the hypothesis that the degree of remapping in hippocampus reflects
two independent factors: the degree of similarity between contexts and
the animal’s confidence that the two contexts are in fact distinct. The
framework shows how contextual representations should evolve over time
as the animal progresses through a training regimen, whether that regi-
men involves different environments, reward contingencies, or sequences.
Within the framework, model selection is biased to prefer contexts that
are active for longer periods of time, a key constraint that explains the
development of hippocampal contextual representations in spatial and re-
versal learning paradigms and justifies their absence in overlapping se-
quence learning. The framework also distinguishes between context learn-
ing (inferring the context model), which may be a gradual process over
many blocks of trials, and context selection (inferring the current context
given a context model), which should be a more abrupt phenomenon. This
distinction is critical to understanding serial reversal learning: substan-
tial training is required for rats to achieve single-trial reversals, but once
they are trained, single trial reversals can be realized as a context switch.
Several testable predictions are made to motivate future experimental
work.
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2 A Statistical Framework for Context Learning

2.1 Overview

2.1.1 Hidden Markov Models and Hippocampal Activity Patterns. We model
context learning as a process in which the hippocampus constructs a genera-
tive model of its inputs. Within our statistical framework, which is based on
hidden Markov models (HMMs), generative models are composed of states
and contexts. An HMM with a given number of states is parameterized by a
distribution of expected values for each state and a transition matrix, which
expresses the probability of transition from one state to another. Each state
represents a conjunctive encoding of the hippocampal input and may be
thought of as a particular hippocampal activity pattern. Different states are
therefore used to represent different positions within an environment or
different stages in a task.

A context is simply a group of states. States are grouped together into
contexts such that state transitions are frequent but transitions between
states in different contexts are rare. Transition probabilities between states
within the same context are not constrained, and each is individually param-
eterized, but the transition probability between states in different contexts
is fixed at a small value. If, for a particular model, context switches occur
frequently, the goodness of fit of the model will therefore be judged to be
low. Thus, the fixed intercontext transition probability encourages context
switches to be rare, or, inversely, context durations to be long.

What is the relationship between states, contexts, and hippocampal ac-
tivity patterns? In an HMM, states are “identifiable” in the sense that there
is an abstract label for each state that is independent of its particular pa-
rameters. This permits an HMM to contain multiple distinct states with the
same parameters. This state identifiability is a theoretical construct that we
view as unreasonable to apply to the hippocampus. Rather, we argue for
weaker identifiability constraints:

� States within a context are distinguished only by their expected obser-
vations. Thus, within a context, different hippocampal activity pat-
terns can be observed only when different input patterns are pre-
sented.

� Contexts are identifiable—the hippocampus forms a latent represen-
tation of context. This implies that the same input pattern presented
in two different contexts will result in different hippocampal activity
patterns.

These constraints suggest that an observed hippocampal activity pattern
(i.e., the currently active state) is determined by two factors: afferent activity
and the currently active context. Intuitively, when the same input pattern
is represented by multiple hippocampal codes, each code must be part of
a different context. These constraints are closely related to the behavior of
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latent attractors (Doboli et al., 2000), where network activity is determined
by both the input pattern driving the network and the network’s current
attractor basin (which represents the current context).

In order to handle input pattern noise, each state is parameterized by
a distribution of input patterns. Thus, determining which state is active is
a (minor) statistical inference problem, requiring the determination of the
state under which the input pattern is most likely. This is qualitatively simi-
lar to pattern completion in associative memory models, where the network
activity pattern resulting from a noisy input is made more similar to the
best matching previously stored pattern. Several theories have implicated
the hippocampus in conjunctive encoding (e.g., Rudy & Sutherland, 1995)
and associative memory function (Marr, 1971; O’Reilly & McClelland, 1994;
Rolls, 1996), and the formulation presented here is not incompatible with
these notions. However, our work focuses not on the utility of the individual
states but on their contextual organization.

2.1.2 Adopting New Models. In the hippocampus, new experimental con-
ditions are observed to cause the creation of new place cell maps. In the
model, a new experimental condition is represented by augmenting the
current HMM with new states in a new model context. Given that the input
patterns are noisy, under what conditions should a new context be added
to the model? A larger, more complex model, one with more contexts, will
inevitably provide a better fit of the input patterns. However, one should
distinguish the extent to which the model is fitting the statistical structure
of the inputs from the extent it is better fitting the noise.

In a Bayesian setting, a model should be adopted when its posterior like-
lihood is higher than that of competing models. This posterior probability
accounts for the complexity of the model by averaging the goodness of fit
of the model over the prior uncertainty in the model’s parameterization.
Larger models have more parameter values that must be specified, so the
prior probability of any particular parameterization is lower. Larger models
are therefore implicitly penalized for the size of their parameter space.

In clear cases, such as when entering a completely new and different
environment, the sensory input would differ strongly from what is expected
by any state under the “current” model. A larger model, augmented with a
group of states for the new environment, would therefore be immediately
justifiable. In more subtle cases, such as when a new environment is similar
to a familiar environment, the posterior likelihood of the larger model
would rise more gradually as the animal gains more experience in each
environment. This increasing experience offsets the penalty caused by the
larger model’s added complexity.

A distributed neural representation of context allows multiple models to
be expressed simultaneously. Returning to the two-environment example,
if a larger model were only weakly favored over a smaller one, then it is pos-
sible for some cells to represent the larger model, distinguishing between
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the two environments, while other cells represent the smaller model, show-
ing the same firing patterns in both. We interpret gradual increases in the
number of cells that remap between contexts (gradual remapping) as ob-
served by Lever et al. (2002) and others as a reflection of the relative degree
of acceptance of each model: the increasing degree of remapping between
two environments reflects the increased statistical likelihood of a model
that represents them as two separate contexts.

2.1.3 Independent and Dependent Contexts. Consider again the case of two
similar environments, where the input patterns at corresponding positions
in each environment are similar. These two environments could be rep-
resented by a one-context HMM, where each of the p states represents a
corresponding position in the two environments. Each state would there-
fore be optimally parameterized when tuned to the distribution of input
patterns observed at that position in either environment. The two envi-
ronments could also be represented by a two-context HMM, where two
different groups of states, each of size p, represent the two environments.
Such a two-context model would have double the number of parameters,
and the Schwarz criterion (Schwarz, 1978) suggests that this corresponds
to a quadratic increase in complexity.

Penalized for such high complexity, preliminary simulations showed
that, compared to a one-context model, a two-context model would be
considered astronomically improbable until after substantial experience in
both environments. This would predict that rats without substantial expe-
rience should never show any remapping between similar environments, a
finding incompatible with the observation of gradual remapping.

Instead of asking whether there is sufficient evidence to justify the com-
plexity of an entirely new context, one might ask whether there is sufficient
evidence to justify the complexity required to express how the second en-
vironment differs from the first. If the two environments are similar, then
it may be simpler to express this difference than to express the second
environment independently. This is tantamount to assuming a priori that
the two contexts are related but that their differences may nonetheless be
valuable to represent in separate contexts.

A two-level contextual hierarchy is therefore considered in which con-
texts may be either independent or dependent. At the top level are indepen-
dent contexts, whose states’ parameters are not statistically associated with
those in any other independent context. The creation of an independent
context must be justified with respect to the complexity of its entire set of
parameters, which is easily done when the animal enters an environment
clearly unrelated to any other. At the second level are dependent contexts,
each associated with an independent context. Specifically, each state in a
dependent context is paired with a corresponding state in an independent
context, and states in the dependent context may share parameters with
states in that independent context. In addition, the expected hippocampal
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inputs of states in the dependent contexts are assumed to be similar to
those of the states in their respective independent contexts. This reduces
the added complexity of the dependent context to more accurately reflect
the degree to which it differs from the independent context.

There is a growing body of evidence to support the notion that simi-
lar contexts are not represented independently in vivo. Very similar con-
texts show partially overlapping representations (partial remapping), es-
pecially when only a change in task is involved (e.g., Markus et al., 1995;
Shapiro, Tanila, & Eichenbaum, 1997; Skaggs & McNaughton, 1998; Wood,
Dudchenko, Robitsek, & Eichenbaum, 2000; Jeffery, 2000). Even between
contexts with more pronounced differences (arena wall shape or color
changes), the type of remapping observed primarily involves a change
in firing rate, but not of the location of the place field (S. Leutgeb et al.,
2005). We therefore interpret the degree of remapping to be determined,
in the asymptote, by the similarity of the contexts. With little experience,
the degree of remapping is even less, reflecting the uncertainty that the
two contexts are distinct. We do not propose a specific similarity metric—
any such metric would vary among subjects—but such a metric should
be monotonic: changes that make two contexts more different should not
result in less remapping.

Even if the contexts are not independent, why should one be represented
as an independent context and the other as a dependent context? (In other
words, why not represent them symmetrically as two codependent con-
texts without introducing an explicit hierarchy?) The asymmetry allows the
models to be nested, which provides a more direct relationship between
model contexts and place cell activity patterns. Consider an experiment in-
volving two similar environmental contexts (E1 and E2). Before the start of
the experiment, the animal has contextual representations only for its home
cage, a transport box, or something similar; let this be context model M0.
Upon introduction to E1, which is nothing like any previously experienced
context, a new model is immediately adopted, M1 = M0 ∪ {I1}, that is, all
contexts in Mo and an independent context I1 for E1. Subsequent exposure
to E2 leads to consideration of M2 = M1 ∪ {DI1

2 } = M0 ∪ {I1, DI1
2 }, where DI1

2
is a dependent context associated with I1 that represents E2. As more expe-
rience is acquired in E1 and E2, the relative likelihood of M2 will gradually
increase. Given a nested model structure, the only change from M1 to M2

is the creation of a new context DI1
2 for E2. The model context I1 for E1

exists (has been statistically justified) independent of any experiences in E2.
Thus, the most parsimonious hippocampal representational change would
involve the creation of a contextual representation for E2 without changing
the representations of any other contexts.

Gradual remapping appears to show such an asymmetry. Lever et al.
(2002) first exposed rats to a cylindrical arena (E1) and then a square arena
(E2). Over the course of many subsequent exposures to both arenas, rats
gradually remapped between them. The observed pattern of remapping
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suggests that the activity of place cells in the square arena (E2) diverged
from the cylindrical arena E1; in contrast, fields in the cylindrical arena (E1)
appeared stable over several days.

It should be noted that whereas the experiments and simulations in this
study focus on learning to distinguish two contexts, the statistical frame-
work outlined here can be extended in a straightforward manner to allow
an arbitrary number of dependent contexts.

In the following sections, a detailed description is provided of how sim-
ulated hippocampal inputs are constructed, how HMMs with independent
and dependent contexts are defined, and how the posterior likelihood of
different models is calculated.

2.2 Simulated Hippocampal Inputs. While the inputs to the hippocam-
pus are very high dimensional, input patterns to the model, for computa-
tional simplicity, were formulated as noisy scalar values. Input patterns
were generated based on a simulated “ground truth” of the animal’s actual
state (e.g., location, task stage) in the world. These environmental states
(e-states) compose the true generative model, not to be confused with states
in the hippocampal HMM model. Each e-state was assigned a positive in-
dex i , and the hippocampal input value y generated for that e-state was
8(i − n/2) + η, where n is the number of e-states in the environment and
η is a gaussian noise term; the y values are therefore roughly centered
around 0, as expected under the prior (see below). The standard deviation
of the noise term was 0.125, which ensures that different e-states within an
environmental context are unambiguously distinct.

To simulate an experiment involving multiple sequences or tasks, a sin-
gle set of e-states was used; only their order of presentation changed. For
example, multiple spatial sequences were simulated using the same set of
position e-states, but the order of visited positions was different for each
sequence. To simulate small environmental changes, each e-state’s input
value was mildly perturbed (see specific simulations for details).

Experiments were modeled in discrete time: each discrete time step had
an associated e-state. To model a specific experimental paradigm of duration
T , a sequence of T e-states was produced, representing the entire course of
the experiment over many days. A sequence of hippocampal inputs, y1,...,T ,
was then generated based on the e-state sequence.

2.3 Hidden Markov Models with Independent and Dependent Con-
texts. Our simulations used gaussian HMMs as a model of the hippocam-
pal representation of its input patterns. By using HMMs, we do not intend
to suggest that the hippocampus is a finite state machine; rather, HMMs
provide a convenient statistical framework in which to represent both a
mixture of many different input patterns and their temporal structure (or a
Markov approximation thereof).
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Formally, a gaussian HMM is composed of a set of NS states, each param-
eterized by a normal distribution of expected values, N(µs, σ

2
s ). A transition

probability matrix, Aji , defines the probability of transitioning from state
i to state j at each time step. Additionally, a starting state probability p0

must be specified; in these simulations, the starting state probability was
assumed to be uniform over all states.

In our framework, states are organized into multiple contexts, an organi-
zation realized by restrictions placed on transition probabilities. Transition
probabilities between states in the same context could vary to fit the ob-
served sequence of transitions in y. However, the sum of transition proba-
bilities to all states in other contexts was fixed at γ = 0.05. This is the critical
parameter that determines how strongly models are biased against context
changes.

If the total between-context transition probability is γ , what is the tran-
sition probability from some state s to some other state s ′ in a different
context? This is defined based on a hierarchical organization of states and
contexts. Consider a model Mk composed of NS states, S1, . . . , SNS . These
states are organized into NC contexts, C1, . . . , CNC . Contexts are organized
into NG context groups, G1, . . . , G NG , where each context group contains
exactly one independent context and any dependent contexts associated
with it. For the purpose of defining transition probabilities, the model Mk

is therefore organized as a mixture of context groups, each context group a
mixture of contexts, each context a mixture of states. For each mixture, the
component probabilities are set to be equal. Thus, the probability of transi-
tioning to a particular context group, Gg , is p1 = 1/NG . The probability of
transitioning to a particular context in that group is p2 = 1/|Gg|, the inverse
of the number of contexts in group Gg . The probability of transitioning to
a particular state in that context is p3 = 1/|Cc |, the inverse of the number
of states in context Cc . Thus, the probability of transitioning from state s to
state s ′ is γ p1 p2 p3. When the values p1 and p2 are calculated, the context of s
is first excluded, since these transitions are only between states in different
contexts.

The hierarchical organization of contexts helps us take into account the
fact that there are other unrelated contexts outside the experimental appa-
ratuses. A fixed value of NG is used to reflect that the transition probabilities
among unrelated contexts would not change with the addition of one or two
more. For the multiple environments simulations, NG = 3, since up to three
independent contexts are considered; for the other simulations, NG = 1.
(How exposure to just a few or to many completely different environments
affects remapping is not known, but an increased willingness to remap after
experiencing many previous environments would argue instead that NG is
explicitly represented in the hippocampus.)

We now describe how states in independent and dependent contexts
are parameterized. In particular, we describe a model in which a state in
a dependent context may share parameters with a state in an independent
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context, and the prior probabilities of parameters in dependent contexts
may depend on corresponding parameters in their respective independent
contexts. Qualitatively, the particular scheme for parameter sharing and the
priors used here have a singular purpose: to reduce the size of the parameter
space (i.e., the complexity) of the dependent context. Other formulations
that achieve the same goal would have been equally acceptable, so readers
not well versed in statistics may safely skip the remainder of this section.

To define the parameters of a model, consider a state ŝ in a dependent
context and its corresponding state s in the associated independent context.
The independent state’s parameters are defined purely in terms of the state’s
transition probability vector, �as , and mean and variance terms, µs and σ 2

s :

A∗s = �as (2.1)

p(y|s) ∼ N
(
µs, σ

2
s

)
, (2.2)

where A∗s denotes a row of the HMM’s transition probability matrix and y
is the observed input pattern. The dependent state ŝ is defined with respect
to both the set of parameters for state s and a set of parameters unique to
state ŝ:

A∗ŝ = (1 − zŝ)�as + zŝ �aŝ (2.3)

p(y|ŝ) ∼ (1 − ζŝ)N
(
µs, σ

2
s

) + ζŝ N
(
µŝ, σ

2
ŝ

)
. (2.4)

The mixing parameters zŝ and ζŝ govern the relative contribution of each
component. This allows a dependent state to, for example, share the same
transition probability vector with its corresponding independent state
(zŝ ≈ 0) but adopt a different distribution of y values (ζŝ ≈ 1). When a mix-
ing parameter is close to zero, the second mixture component plays no role
in the likelihood of y under the model, thus reducing the model’s effective
complexity.

The prior over each mixing parameter was a highly sparse beta dis-
tribution that mildly favored smaller values: zŝ ∼ |Beta|(δ1, δ2) and ζŝ ∼
|Beta|(δ1, δ2). All fixed hyperparameters are listed in Table 1. For the
first components’ parameters, vague priors were used: µs ∼ N(ξ, κ−1

1 ),
σ−2

s ∼ �(α1, β1), and �as ∼ Dirichlet (δa , δa , . . . , δa ), where δa specifies the
prior over every within-context transition probability. The prior over each
�aŝ was the same as �as . The priors for µŝ and σŝ were biased to be somewhat
similar to µs and σs , further reducing the dependent context’s contribution
to the complexity penalty: µŝ ∼ N(µs + h, κ−1

2 ) and σ−2
ŝ ∼ �(α2, α2σ

2
s ). The

purpose of h was to encourage model parameterizations in which ζŝ = 0
instead of ζŝ = 1 and µŝ = µs,1. A more sophisticated approach might in-
volve splice sampling from the nonconjugate prior µŝ ∼ I (µs, r )N(µs, κ

−1
2 ),

where the indicator function I is zero over some interval around the mean,
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Table 1: Hyperparameter Values That Define the Prior Distributions over Each
Parameter.

HMM Parameters Prior Value

Transition probabilities �a δa 0.8
Parameter sharing probabilities zŝ and ζŝ δ1, δ2 0.1, 0.05
Mean of µs ξ 0
Inverse variance of µs κ1 0.01
Inverse variance of µŝ κ2 4
Shape parameter of σ−2

s α1 2
Shape parameter of σ−2

ŝ α2 10
Rate parameter of σ−2

s β1 0.1
Offset of mean of µŝ from µs h 0.4

[µs − r, µs + r ]; however, the simpler procedure was sufficient for our
simulations.

2.4 State Inference and Model Selection. Let Mk denote a model com-
posed of Nk

S states grouped into Nk
C contexts. Let θk = (�z, �ζ , A, �µ, �σ 2) denote

the parameters of the states in Mk . Given a sequence of noisy inputs, y1,...,T ,
the state inference problem is to infer under which sequence of states the
inputs are most probable. For state inference, it is assumed that both Mk

and θk are known and that the HMM is the generative model of y1,...,T ,
that is, each HMM state corresponds to an e-state in the world. Thus, infer-
ring the HMM state serves as a proxy for inferring the true e-state. This is
traditionally done using the Viterbi algorithm (Viterbi, 1967).

The context learning problem can be understood as part of the more fun-
damental problem of inferring the generative model of the input patterns:
given the sequence y1,...,T , infer the HMM most likely to have generated
it. This can be decomposed into two parts: model parameterization and
model selection. Model parameterization involves inferring the most likely
set of parameters, θk , given an HMM Mk with a known structure. Model
selection involves inferring which model structure is most likely out of a
set of candidates, typically with different numbers of states.

While model selection in a machine learning context typically involves
a single batch analysis, the hippocampus provides some representation
of context even in completely novel environments. Multiple models with
different numbers of contexts were therefore compared based on initial
subsequences, y1,...,τ , τ < T . As τ increased, the models were provided
with progressively more input patterns to fit, resulting in changes in their
likelihoods.

In a Bayesian setting, models are compared based on relative likelihoods,
given the observed data (y1,...,T ). Assuming equal prior probability across
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models, this can be reduced to calculating the odds of y1,...,T under each
model:

Bk
 = P(y1,...,τ |Mk)
P(y1,...,τ |M
)

. (2.5)

This is known as the Bayes factor (for review, see Kass & Raftery, 1995), and
all model comparisons calculated will be presented as a log Bayes factor.
p(y1,...,τ |Mk) is the marginal likelihood of y1,...,T under Mk , marginalized
over the entire parameter space:

p(y1,...,τ |Mk) =
∫

θ∈�

p(y1...τ |θk, Mk)p(θk |Mk)dθk, (2.6)

where p(y1,...,τ |θk, Mk) is the conditional probability of the inputs given a
particular parameterization of the model, and p(θk |Mk) is the prior proba-
bility density over the parameter space.

As mentioned above, equation 2.6 provides an implicit complexity
penalty. Importantly, while p(y1,...,τ |θk, Mk) depends on y1,...,τ , p(θk |Mk) does
not. Since the difference in conditional probability between models typi-
cally grows with the length of y1,...,τ , the Bayes factor asymptotically deter-
mines by how well each model fits y1,...,τ . However, for smaller input se-
quences (τ 	 T), the prior uncertainty over the parameter space, p(θk |Mk),
can strongly influence the Bayes factor.

The computational challenge in calculating Bayes’ factors is to accurately
calculate p(y1,...,τ |Mk), which requires integration over the parameter space
(see equation 2.6). A closed-form solution does not exist, but any accurate
numerical approximation method is equally acceptable, and the results
presented here do not depend on the particular method employed. We use
a Monte Carlo integration technique described in the appendix.

3 Simulation Results: Multiple Environments

3.1 Gradual Remapping. Recent data have demonstrated that the de-
velopment of distinct spatial maps for two environments can be gradual
(Tanila, Shapiro, & Eichenbaum, 1997; Jeffery, 2000; Lever et al., 2002). Tanila
et al. (1997) found that repeatedly rotating two sets of cues in opposite direc-
tions engendered an increase in remapping between the cue configurations
over time. Jeffery (2000) found that when the same arena was placed in
two different room locations, the number of place fields that differentiated
between arena room locations gradually increased over several days. Lever
et al. (2002) similarly found that when hunting for food pellets alternately in
cylindrical and square arenas, different place cells developed distinct place
fields in each arena on different days; two weeks of training were required
to achieve complete remapping. In each case, repeated conflicts between cue
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configurations were gradually resolved by developing separate contexts for
each configuration.

Our modeling of gradual remapping is described with reference to the
Lever et al. (2002) study, though it could equally well be interpreted with
respect to the others. The arena geometry change is interpreted as a small
but consistent difference in the afferent input pattern for which a model
with a separate context for each arena will, with enough experience, be
better suited.

To model gradual remapping, we constructed input sequences, y1,...,T ,
generated from alternating sessions in each arena, interposed by time spent
on a holding pedestal (during which an experimenter would swap arenas).
For computational tractability, two positions within the environment—A
and B—were modeled (e.g., one in each half of the arena). The simulated
rat spent 2 time steps on the pedestal and 10 time steps in each arena,
alternating between the positions in order to remove trajectory differences
that might suggest the environments were different. An entire sequence
contained 16 environment visits, half in each arena, for a total sequence
length of 192 samples.

At each position, the input was perturbed depending on the shape of the
arena. For example, at position A, the input had mean µA − ε in the square
arena but µA + ε in the cylindrical arena. The input standard deviation for
all states was σ = 0.125, and the value of ε used was 0.175, so the input
distributions of the two contexts overlapped.

The likelihoods of the one- and two-arena models shown in Figure 1
were compared using the model selection framework described above. The
“no pretraining” line in Figure 2 shows that as more experience is gained in
each environment, the Bayes factor gradually increases toward a decisive
positive value. This suggests that the observed gradual remapping reflects
an underlying statistical process: an evidence-based transition to a more
complex contextual model.

If one were to pretrain rats by exposing them first to one arena for
multiple sessions, how should this pretraining experience affect the rate of
remapping? The “N sessions” lines in Figure 2 reflect a training sequence
that starts with N sessions of pretraining in one environment, followed
by alternating sessions in the two environments. These simulations predict
that pretraining should both delay the onset of gradual remapping and
hasten its completion. With few experiences, the second arena looks like
a “noisy” version of the first; however, the larger sequence of experiences
due to pretraining eventually permits the environments to be distinguished
more rapidly.

3.2 Failure to Generalize. In an extension of the Jeffery (2000) study,
Hayman, Chakraborty, Anderson, and Jeffery (2003) trained rats in a box
placed in two different locations in the room. After place cells gradually
learned to remap between box positions, the color of the box and floor was
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Figure 1: Diagram of one- and two-arena models used to model gradual remap-
ping. The small white boxes represent states in each model, and the large gray
boxes indicate how the states are grouped into contexts. Arrows indicate tran-
sition probability parameters that are either sampled (within a context) or fixed
(between contexts).

changed from white to black. This substantial sensory change resulted in
an immediate, complete remapping. Interestingly, despite multiple days
of training in a white box in the same two locations, place cells did not
immediately discriminate the two locations of the black box.

Their result can be understood as a consequence of the relative differ-
ences of the box position and box color manipulations. Specifically, while
the position shift created a relatively subtle change, the color change was
large. We model their experiment by extending the gradual remapping sim-
ulation to include two additional “black box” contexts whose hippocampal
inputs are similar to each other but not to states in the original two con-
texts. Specifically, we constructed input sequences, y1,...,T , generated from
alternating sessions in the white box in room locations 1 and 2, followed by
alternating sessions in the black box in room locations 1 and 2. Box visits
were, as before, interposed by time spent on a holding pedestal. The two
white box positions were modeled identically to the square and cylindrical
arenas in the previous simulation. The two black box room locations were
modeled in an analogous fashion: the hippocampal inputs for correspond-
ing rat positions in the two black boxes differed by ±ε, but their µ values
differed substantially from hippocampal inputs in the white box.

Figure 3 shows the three- and four-context models evaluated on the
sequence of hippocampal inputs. Figure 4 shows the evolution of the like-
lihoods of the three- and four-context models over the course of training in
the black box, subsequent to full training in the white box. For comparison,
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Figure 2: Gradual remapping simulation results, where the log Bayes factor in-
dicates the log likelihood of the two-arena model relative to the one-arena model
(see model description in Figure 1). With more experience in each environment,
the relative likelihood of the two-arena model increases toward certainty. As
a result of first pretraining in one arena, the two-arena model is initially less
likely, but preference for this model then increases more rapidly. The dotted
lines at ±5 denote the thresholds beyond which there is essentially no statistical
uncertainty in which model is preferred.

training of one- and two-context models in the white box (structured as in
Figure 1) is shown as well. Since the white and black boxes differ so strongly,
the question of whether the black box locations should be represented as
one context or two is statistically unrelated to the representation of the white
box locations. The relative likelihood of the four-context model therefore
increases at the same gradual rate, predicting that rats should show the
same gradual remapping between room locations in both white and black
boxes. Consistent with this prediction, Hayman et al. (2003) found in the
one rat whose rate of remapping was fastest that the rat remapped between
black box locations at the same rate as between white box locations. (The
black box sessions were not continued long enough to assess remapping in
the rats that were slower to remap in the white box.)

3.3 Morph Environments. J. Leutgeb et al. (2005) trained rats in square
and cylindrical environments until the degree of remapping between arenas
reached asymptote. Then they exposed the rats to a sequence of arenas
whose wall shape systematically morphed between the square and cylinder.
They found that the rats’ place cell activity in the morph environments
reflected various averages of the two maps.
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Figure 3: Diagram of three- and four-context models used to model the Hayman
et al. (2003) study. The two white box contexts differ subtly, as do the two
black box contexts. However, the white box and black box contexts are highly
differentiated.

What if the rats were first trained on the morph environments and then
on just the square and cylindrical environments? In the gradual remap-
ping simulations, separate contexts for the square and cylindrical arenas
develop because they result in distinct clusters of hippocampal input pat-
terns. However, substantial pretraining in the morph environments would
generate one broad cluster of input patterns, predicting that morph training
should inhibit remapping during subsequent training in just the square and
cylindrical arenas.

To model this hypothesized experiment, five arenas were used, and input
patterns were generated that varied linearly from the square arena (arena
1) to the cylindrical arena (arena 5). For example, at position A, the inputs
in the five arenas had means µA − ε, µA − 1

2ε, µA, µA + 1
2ε, and µA + ε.
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Figure 4: Simulation results for the Hayman et al. (2003) study, where the log
Bayes factor indicates the log likelihood of the four-arena model relative to the
three-arena model or the two-arena model relative to the one-arena model (see
model description in Figure 3). The preference for the four-arena model over the
three-arena model (black box) increases at the same rate as the two-arena model
over the one-context model (white box). A copy of the white box log Bayes
factors is superimposed on top of the black box log Bayes factors to illustrate
their similarity.

We constructed input sequences beginning with sessions in just the morph
arenas, selecting arena 3 twice as often as arena 2 or 4 to reinforce a single
cluster distribution of input patterns. These sessions were followed by alter-
nating sessions in the square and cylindrical arenas. All other details were
the same as in the gradual remapping simulation described previously.

Simulation results are shown in Figure 5. Compared to the baseline con-
dition (no morph training), the 16 morph training sessions roughly dou-
bled the time required to complete remapping during subsequent cylinder
and square training. With 16 pretraining sessions, remapping was further
delayed. This prediction stands in direct contrast to hippocampal mod-
els based on independent component analysis (ICA), which would predict
place code differentiation during the morph pretraining, as the arena shape
acts as an independent source of variation (Lörincz & Buzsáki, 2000).

The disorientation study by Knierim, Kudrimoti, & McNaughton (1995)
invites a similar interpretation. Rats were trained to forage for food in a
cylinder with an orienting cue card. They found that when rats were dis-
oriented by carrying them around in a closed box before being placed in
the arena, their place fields failed to align with the cue card after several
sessions, while nondisoriented rats maintained the alignment. They inter-
preted their results to suggest that the cue card was perceived to be in a
different location each time the rats entered the arena after disorientation.
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Figure 5: Morph experiment simulation results, where the log Bayes factor in-
dicates the log likelihood of the two-context model relative to the one-context
model (see model description in Figure 1). Pretraining in the morph environ-
ments inhibits adoption of a two-context model during later training only in
square and cylindrical arenas. During morph session training, the Bayes factor
decreases, suggesting the morph environments are best represented together
as a single context. During subsequent training on square and cylindrical en-
vironments, more training sessions are required to justify separate contexts for
the two environments than would be required without morph environment
pretraining. Simulation results involving morph training were calculated af-
ter each block of eight sessions, and simulation results not involving morph
training were calculated after each block of four sessions. All plots begin after
completion of the first block of training, that is, after four or eight sessions.

After several sessions, the cue card was perceived as “unstable” and there-
fore was ignored. Moreover, even after multiple subsequent sessions with-
out disorientation, place fields never developed a consistent alignment with
the cue card.

Their experiment likely reflects the influence of the head direction sys-
tem on the place code more than any computational process within the
hippocampus itself. Nonetheless, their findings suggest a similar type of
statistical inference elsewhere in the brain: if a cue varies in an apparently
random manner, its impact on the overall representation of an environment
should be minimized.

4 Simulation Results: Reversal Learning

While many conditioning paradigms are not hippocampus dependent,
reversal learning has consistently shown dependence on hippocampal
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function (Kimble & Kimble, 1965; Silveira & Kimble, 1968; Winocur &
Olds, 1978; Berger & Orr, 1983; Neave, Lloyd, Sahgal, & Aggleton, 1994;
McDonald, Ko, & Hong, 2002; Ferbinteanu & Shapiro, 2003). Consistent
with this interpretation are place cell studies showing context-specific fir-
ing patterns during spatial reversal learning tasks (Ferbinteanu & Shapiro,
2003; Smith & Mizumori, 2006).

One of the most interesting aspects of reversal learning is that repeated
reward reversals lead to progressively faster behavioral reversal. Two stud-
ies have demonstrated that after repeated reward reversals, rats are capable
of reversing behavior after a single error trial (Buytendijk, 1930; Dufort
et al., 1954). Additionally, Pubols (1962) showed near-perfect reversal per-
formance (fewer than 0.5 errors on average after initial error trial), and
Brunswick (1939) showed that even when single-trial reversal performance
is not yet achieved, most of the improvement is observed on the second
trial. Thus, rats can be trained to select a different (previously learned)
behavioral strategy after a single error trial.

Several studies have also explored the impact of partial reinforcement
on reversal learning, considering cases in which the “correct choice” is re-
warded on only some percentage of trials, as well as cases in which the
“incorrect choice” is also rewarded on some smaller percentage of trials
(Brunswick, 1939; Wike, 1953; Grosslight, Hall, & Scott, 1954; Elam & Tyler,
1958; Wise, 1962; Pennes & Ison, 1967). The pattern of data across these stud-
ies suggests that the more similar the original and reversed contingencies,
the more slowly the animal learns the reversal. While intuitive, this sug-
gests that the impact of a trial on a reward association is weighted by how
informative the trial is perceived to be. If the expectation of a particular out-
come (reward, no reward) is more uncertain, then observing the outcome
provides less information about whether the distribution of outcomes has
changed.

Previous approaches to modeling reversal learning have posited that
the discrimination is relearned during each reversal. Hasselmo et al. (2002)
theorized that the hippocampal facilitation of reversal learning was due
to quick unlearning and relearning of the association between choice and
reward within the hippocampal representation. Learning in their model is
unsupervised (Hebbian), and they suggest that reversal learning deficits
due to hippocampal or theta modulation impairment are caused by the in-
ability to separate new learning from past associations. Unfortunately, since
this model completely relearns the reward association after each reversal,
no savings with repeated reversals is predicted. Also, since the current as-
sociation is dissociated from the previous association, partial reinforcement
would not affect the speed of reversal learning under this model.

Another series of models have proposed that the hippocampus plays a
role in stimulus representation (Gluck & Myers, 1993, 1996; Myers, Gluck,
& Granger, 1995), performing both stimulus compression and predictive
stimulus differentiation. A similar model has been proposed by Schmajuk &
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DiCarlo (1991, 1992). Both models propose that the hippocampus is critically
involved in learning a conjunctive stimulus layer (hidden layer), though
their network topologies differ somewhat. In addition, both models train the
hidden layer using variants of the backpropagation learning rule. Schmajuk
and DiCarlo propose a more direct, biologically plausible implementation,
while Gluck and Myers (1993, 1996) suggest only that a functionally similar
computational process occurs in vivo. Interestingly, “context” is represented
in both models as an external sensory input that is integrated with other
inputs in the hidden layer rather than as an internal categorization of the
input that is inferred.

Both models demonstrate some savings during repeated retraining (on
serial reversals or serial extinctions and renewals). In the Gluck and Myers
model, hidden layer discrimination increases gradually, making associa-
tions with the output layer simpler to learn. In the Schmajuk and DiCarlo
model, the learning rate of the input-to-hidden-layer weights is higher, so
the increased weighting of the hidden layer representation at the output
layer over the repeated reversals leads to faster relearning. In either case,
both models fundamentally rely on some degree of retraining during each
reversal. However, the single trial reversals observed experimentally oc-
curred based on an error trial alone (Buytendijk, 1930; Dufort et al., 1954).
Even with an arbitrarily high learning rate, it is not clear how one could
retrain a backpropagation network without at least one positive trial.

In addition, the partial reinforcement conditions are not well explained
by these models, or other delta-rule based models (e.g., Rescorla & Wagner,
1972; Pearce & Hall, 1980), since learning is not adjusted based on the en-
tropy of the trial’s outcome. Similarly, none of these models accounts well
for the partial reinforcement extinction (PRE) effect, in which extinction
training is prolonged following partial reinforcement. With generalized
delta rule learning, partial reinforcement results in a weaker association
between behavioral choice and outcome. During a reversal (or extinction),
this weaker association would be easier to expunge than a stronger associ-
ation would be. However, the data show the opposite results. A few recent
statistical models account well for the basic PRE effect (Gallistel & Gibbon,
2000; Courville, 2006), but they do not address the progressive improvement
observed in reversal learning.

An alternative interpretation of the reversal learning data, as proposed
by Hirsh (1974), is that the hippocampus represents each reward condition
as a separate context. If the reward contingencies of both contexts are rep-
resented simultaneously, then after initial training, no retraining should be
required after each reversal. Rather, recent trial outcomes can be compared
to prior knowledge of each context to infer which context is active. Simi-
larly, “sequential theory” posits that the pattern of prior rewards forms a
context that influences which conditioned associations are retrieved from
memory (Capaldi, 1994; Capaldi & Neath, 1995).



Context Learning in the Rodent Hippocampus 3193

Figure 6: Diagram of one- and two-context models used to model reversal
learning. Arrows within each context indicate transition probabilities that are
typically high; however, transitions between any two states are possible.

In a full-reinforcement reversal learning paradigm, knowledge of both
contexts allows a single error trial to be sufficient to infer a context switch,
since the choice during the error trial should yield no reward only in “the
other” context. One might think of this process as analogous to the prob-
lem of self-localization in spatial navigation, a function that has also been
attributed to the hippocampus (Touretzky & Redish, 1996). The statisti-
cal formulation of context learning also correctly quantifies the increased
uncertainty in the adoption of a new context under partial reinforcement
conditions.

Interestingly, if the reversal is performed in a different environment, the
environmental cues substantially improve adaptation to the reversal, even
in hippocampal animals (McDonald et al., 2002). This finding reinforces
the notion that what the hippocampus contributes to reversal learning is a
contextual cue to separate the two discriminations.

To model reversal learning, we constructed a simple model of discrimi-
nation learning (see Figure 6). The discrimination begins at the start state,
denoting the availability of two options (A and B). The start state leads to
either of two states reflecting the rat’s choice. The choice states in turn lead
to reward and no reward states, indicating the outcome of that choice. (Such
reward states are justified by studies showing reward-related responses in
the hippocampus; Tabuchi, Mulder, & Wiener, 2003; Smith & Mizumori,
2006.)
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Figure 7: Serial reversal learning simulation results, where the log Bayes factor
indicates the log likelihood of the two-context model relative to the one-context
model (see model description in Figure 6). With only three trials per reversal,
the Bayes factor decreases, suggesting that rapid reversals are indistinguishable
from partial reinforcement. Less frequent reversals (10 trials per reversal) lead
to an increase, supporting the adoption of a separate context for each reward
contingency.

4.1 Serial Reversal Learning. To simulate serial reversal learning train-
ing, alternating blocks of 10 trials were generated in which, for odd blocks,
choice A was rewarded, and, for even blocks, choice B was rewarded.
To simulate behavioral learning, the rat’s choice was selected randomly
such that during the first block, the probability of selecting the correct
choice exponentially approached 58.5% from 50%; during the second block,
the correct choice probability exponentially approached 62% from 41.5%
(100% − 58.5%); during the third block, the correct choice probability expo-
nentially approached 65.5% from 38%. This continued for 10 blocks, increas-
ing the final correct choice probability in each successive block by 3.5%. The
exponential “decay” of choice probabilities within each trial approximates
the trial-by-trial error data of Brunswick (1939).

One- and two-context models, shown in Figure 6, were compared as the
number of training blocks was increased; the results are shown in Figure 7.
With increased training, the likelihood of the two-context model gradually
increases, predicting a gradual adoption of context-specific hippocampal
firing patterns. Smith and Mizumori (2006) showed that context specificity
developed during reversal learning training, though they do not examine
the time course of remapping across training sessions. Figure 8 illustrates
context selection in the two-context model, demonstrating how a context
switch can be inferred after a reversal.
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Figure 8: Context selection in the two-context model. Each circle represents
a state in the HMM, and each column represents the full set of states of the
two-context model at a particular point in time. The gray box shows e-states
(hippocampal inputs) from three trials. Trials k − 2 and k − 1 are at the end of
a block of trials in which choice A is rewarded. Trial k is the first trial of a new
block in which choice B is rewarded. HMM states that are probable given the
hippocampal input are darkened. With full reinforcement, only one choice in
each context is associated with reward. Therefore, while the dashed-line path
(remaining in Context #1) initially appears to be more likely, the lack of reward
indicates that trial k is actually part of Context #2. Once the context switch
has been inferred, the most likely path through the states will continue within
Context #2 until choice B is no longer rewarded.

If the number of trials per block is substantially reduced, the reward
structure becomes difficult to distinguish from partial reinforcement. When
training sequences were generated comprising three trials per block, the
two-context model required too many context switches to be justified, since
context switches are constrained to be unlikely. This resulted in the pro-
gressively decreasing likelihood of the two-context model, as shown in
Figure 7.
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Figure 9: Partial reinforcement reversal learning simulation results, where the
Bayes factor indicates the log likelihood of the two-context model relative to
the one-context model (see model description in Figure 6). When the similarity
of the two reward contingencies is increased, more trials are required to justify
representing them as separate contexts.

4.2 Partial Reinforcement and Reversal. In order not to conflate the
effects of partial reinforcement during the original and reversal discrim-
inations, the training paradigm typically applies partial reinforcement to
choices during the original discrimination, leaving the reversal condition
unambiguous (Wike, 1953; Grosslight et al., 1954; Elam & Tyler, 1958; Wise,
1962; Pennes & Ison, 1967). We consider three cases: full reinforcement
(100:0), in which choice A is always rewarded and choice B is never re-
warded; partial reinforcement of A (75:0), in which choice A is rewarded
only 75% of the time; and partial reinforcement of A and B (75:25), in which
choice B is also rewarded 25% of the time. In all cases, only choice B is
rewarded during the reversal discrimination (0:100).

Training consisted of a single original and single reversal block, the
length of each being equal and set so that the Bayes factor would be roughly
5.0 by the end of training on both blocks. The rat’s choice was selected
probabilistically, where the probability of a correct choice exponentially
approached 90% from 50% in the original block and 90% from 10% in
the reversal block. This simulated behavior was designed to mimic the
progressive bias animals show in favor of the rewarded choice over time
(e.g., Wike, 1953).

Figure 9 shows that as the original discrimination is made more am-
biguous, learning to differentiate it as a separate context from the reversal
discrimination requires progressively more trials. We therefore predict that
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context-specific hippocampal representations would develop more slowly
in these partial reinforcement paradigms.

5 Simulation Results: Sequence Learning

The hippocampus has been implicated in a variety of tasks involving se-
quences (Kesner & Novak, 1982; Chiba, Kesner, & Reynolds, 1994; Gilbert,
Kesner, & Lee, 2001; Agster, Fortin, & Eichenbaum, 2002; Fortin, Agster,
& Eichenbaum, 2002; Kesner, Gilbert, & Barua, 2002). For example, Fortin
et al. (2002) found that after being presented with a random sequence of
odors, hippocampal rats could not choose the earlier of two odors from
the sequence. Of particular interest has been the study of overlapping se-
quences, in which multiple sequences share common middle elements but
distinct beginning and ending elements. Agster et al. (2002) found that
while hippocampal rats could disambiguate two partially overlapping ol-
factory sequences, intertrial interference or a delay condition could impair
their performance substantially.

Several models have proposed that the hippocampus develops separate
contextual representations of each sequence that serve to associate the am-
biguous middle elements with the rest of the sequence (Levy, 1989, 1996;
Wallenstein & Hasselmo, 1998). These models predict that if a rat were to
repeatedly travel down a common maze arm that was part of two different
paths (e.g., a continuous figure 8 pattern), place cells on the common arm
would fire differently depending on which path the animal was traveling.

Some studies have confirmed this finding (Frank, Brown, & Wilson,
2000; Wood et al., 2000), while others found no path-related differences
(Lenck-Santini et al., 2001; Hölscher et al., 2004). Intriguingly, Bower et al.
(2005) were able to reproduce both cases by varying the shaping procedure
used to train the rats. The studies that found no path-related differences
nonetheless reported that rats were able to learn the task, a result consistent
with Ainge and Wood (2003), who found that hippocampal lesions did not
impair the continuous version of the task. However, when a small delay
was added at the start of the common maze arm, Ainge and Wood found
that hippocampal rats were impaired. Subsequently, two groups trained
unlesioned rats on a figure 8 maze, each finding, paradoxically, that path-
specific modulation of place fields on the common maze arm occurred
with no delay (when the task was not hippocampus dependent) but largely
disappeared when a delay was added (Ainge, van der Meer, & Wood, 2005;
Robitsek, Fortin, & Eichenbaum, 2005). Despite this disappearance, rats
could still perform the task. As Bower et al. (2005) point out, the sequence
dependence of place cell activity is likely attributable to differing input from
some extrahippocampal brain area instead of a contextual representation
developed within the hippocampus.

An alternative hypothesis, adopted by Hasselmo and Eichenbaum
(2005), is that sequence replay (Foster and Wilson, 2006) in the hippocampus
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guides behavior independent of whether path-specific remapping is seen
on the common arm. Specifically, an extra-hippocampal brain area incre-
mentally learns rules for completing each sequence, given its beginning;
replay of the beginning of the current sequence is then sufficient to com-
plete the task. (With a higher learning rate, Hasselmo et al., 2002, would
likely provide an elegant model of such one-shot learning.) Such a division
of labor explains why Agster et al. (2002) found evidence of rats learn-
ing overlapping sequences but failing, under some circumstances, to recall
which sequence had most recently begun.

The rapid alternation between sequences on a figure 8 maze is incompati-
ble with our constraint that context switches should be rare. To demonstrate
this, we constructed a simulation of the figure 8 task. Five positions on the
track were modeled and were traversed in a six-step loop: start left, cen-
ter, end right, start right, center, end left, repeat. A trial constituted a pass
through one start arm, the center arm, and the opposing end arm. One-
and two-context models (see Figure 10) were compared, and the results
are shown in Figure 11. Even after just 12 trials, the two-context model is
astronomically unlikely.

To demonstrate that the context switch penalty in the two-context model
is the specific cause of the low Bayes factors, the one-context model was
also compared with the generative model (see Figure 10). Figure 11 shows
that decisive preference for the generative model is attained by 30 trials.

Bower et al. (2005) have considered training regimes that promote se-
quence disambiguation of the common path, presumably due to afferent
input from another brain region. However, were rats to be trained repeat-
edly on one sequence and then the other, our framework would predict that
sequence-specific encodings of the common path would reliably develop
due to intra-hippocampal mechanisms sensitive to temporal mismatch.

6 Discussion

Advances in Bayesian computational statistics techniques over the past
decade have opened the door to evaluating the marginal model probabil-
ities of many new classes of models. As researchers use these techniques,
insights into animal learning and human reasoning have begun to arise
from their formulation as Bayesian inference problems, often over multiple
generative models that provide competing explanations of a corpus of data
(Tenenbaum & Griffiths, 2001; Courville, Daw, Gordon, & Touretzky, 2003;
Courville, Daw, & Touretzky, 2004; Griffiths & Tenenbaum, 2005; Daw, Niv,
& Dayan, 2005). In a similar vein, work presented here advances a the-
ory of context learning in which hippocampal input patterns are grouped
together in the same context when they reliably cluster together in time.
Choosing between generative models that group the experiences into dif-
ferent numbers of clusters is therefore the fundamental challenge of context
learning.
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Figure 10: The generative model and one- and two-context models used to
model sequence learning. Note that the generative model includes two states
(Center LR and Center RL) in the same context that represent the same distribu-
tion of input patterns (identical µC values). Our weak-identifiability constraint
(see section 2.1) that such states can be represented only when in separate
contexts excludes the generative model from the class of possible hippocam-
pal context models. Arrows within each context indicate transition probabilities
that are typically high; however, transitions between any two states are possible.

Sequence learning models (Levy, 1989, 1996; Wallenstein & Hasselmo,
1998) provide a rather different notion of context, one oriented toward bind-
ing together elements of a temporal sequence. Interestingly, this binding
process simultaneously serves to differentiate elements based on their or-
der within the sequence. By contrast, in our theory, context learning groups
sequence elements together without disambiguating multiple occurrences
of the same element. Thus, sequence learning models predict that alternat-
ing, overlapping sequences should be represented with different contextual
bindings, whereas our theory groups them together into one context. The
failure for sequence-dependent hippocampal representations to be consis-
tently observed (e.g., Bower et al., 2005) or to serve a behavioral function
(Ainge & Wood, 2003) argues against such representations playing a critical
role in the disambiguation of alternating, overlapping sequences. Others
have argued that such sequential encodings are instead formed in medial

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.19.12.3173&iName=master.img-009.jpg&w=287&h=237
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Figure 11: Sequence learning simulation results, where the log Bayes factor
indicates log likelihood of the two-context model relative to the one-context
model (see model description in Figure 10). The relative likelihood of the two-
context model decreases precipitously with experience due to the constraint that
transitions between contexts are of low probability. If the generative model were
admissible, it would be adopted over the one-context model, as its log likelihood
relative to the one-context model increases to certainty with experience.

temporal lobe areas outside the hippocampus proper such as the entorhinal
cortex (Howard, Fotedar, Datey, & Hasselmo, 2005).

An important aspect of this theory is that it distinguishes between the in-
ference processes of context learning and context selection: context learning
may be gradual over many days, while context selection should be an abrupt
process. Multibasin attractor models (Samsonovich & McNaughton, 1997;
Redish & Touretzky, 1998; Tsodyks, 1999; Doboli et al., 2000) have demon-
strated how multiple contexts, each a stable basin of attraction, could be
simultaneously represented within the same network. In such models, con-
text selection involves restabilization of the network in the most appropriate
basin. What these models lack is an explanation of the gradual development
of new contextual representations.

By contrast, backpropagation models (Schmajuk & DiCarlo, 1992; Gluck
& Myers, 1993) have attempted to address the gradual development of new
(hidden layer) representations. However, these networks do not have mul-
tistable activity patterns; they have no “memory” of the current context
across time beyond what is encoded in the weights. Thus, they fail to cap-
ture the one-trial context switching behavior observed in reversal learning.
In addition, backpropagation and similar delta rule learning models do
not properly adapt learning to the information provided by each trial and
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therefore cannot account for the slower reversal of partial reinforcement
reward contingencies.

Finally, while backpropagation is an efficient search technique for learn-
ing high-dimensional mappings, the complexity of the function represented
by the neural network is not explicitly considered. (In a machine learning
setting, overcomplexity can result in “overfitting,” which is typically de-
tected by cross-validation of the model on a separate data set.) Similarly,
independent component analysis (used in a hippocampal model by Lörincz
& Buzsáki, 2000) does not adjust the number of independent components
based on the observed data. In contrast, the framework here considers the
inherent trade-off between model fit and model complexity that underpins
any model selection problem. Our framework can most clearly be dissoci-
ated from other models that do not consider this trade-off by determining
whether remapping is observed subsequent to training in a set of morph
boxes: our simulations predict that remapping should not occur.

6.1 Localizing Contextual Representations Within the Hippocampus.
Since our theory concerns contextual representations in the hippocampus,
we discuss how it relates to known facts about hippocampal anatomy
and physiology. First, we argue that abrupt and gradual remapping are
mediated by distinct physiological processes. Specifically, whereas abrupt
remapping is caused by a change in the path integrator representation
located in dorsal medial entorhinal cortex (dMEC), gradual remapping
is caused by experience-dependent representational changes within the
DG/CA3 network. Then we discuss the evidence for pattern separation
and completion in the DG/CA3 network and how such mechanisms could
underpin context learning. We contrast the role of the DG/CA3 network
with the role of CA1 in gating the projection of the DG/CA3 representation
to efferent cortical areas.

6.1.1 Abrupt Remapping and Attractor Dynamics. Marr (1971) first pro-
posed that the architecture of the hippocampus is well suited to encode
new memory traces using orthogonalized representations, which mini-
mize interference between stored patterns. Recordings from hippocampal
pyramidal cells confirmed that sparse, orthogonalized representations are
formed to encode different places and other features within an environment
(O’Keefe & Dostrovsky, 1971; Wood, Dudchenko, & Eichenbaum, 1999), as
well as different environments as a whole (Muller & Kubie, 1987). Attrac-
tor models of hippocampal function (Samsonovich & McNaughton, 1997;
Redish & Touretzky, 1998; Doboli et al., 2000) which address the remapping
of place fields between environments, were born out of the observation
that, when place cells remap, they appear to remap together. For example,
Bostock, Muller, & Kubie (1991) found that the change of a cue card’s
color sometimes caused a remapping, and, when observed, all simultane-
ously recorded cells remapped. When introduced repeatedly to the same
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environment, rats with deficient LTP sometimes recalled a completely dif-
ferent map (Barnes, Suster, Shen, & McNaughton, 1997; Kentros et al., 1998).

One difficulty in interpreting such remapping data is in disambiguating
the role of the path integrator, currently believed to be in dorsal medial
entorhinal cortex (dMEC) (Fyhn, Molden, Witter, Moser, & Moser, 2004;
Hafting, Fyhn, Molden, Moser, & Moser, 2005; Fuhs & Touretzky, 2006;
McNaughton, Battaglia, Jensen, Moser, & Moser, 2006), from the place code.
As noted by Touretzky and Redish (1996), failure to reset the path integrator
should cause a substantial change in the afferent input to the hippocampus,
resulting in abrupt hippocampal remapping independent of any attractor
dynamics in the hippocampus. This reset failure likely underpins the results
of S. Leutgeb et al. (2005), who showed that switching between two rooms
causes a different and more radical form of remapping than switching
between arena shapes in the same room. While dMEC grid cells change
phase when the arena is placed in a novel room (Hafting et al., 2005),
preliminary findings by J. Leutgeb et al. (2006) show that grid cell phases
remain constant when the arena changes shape in the same room, while
DG and CA3 undergo rate remapping (see also Quirk, Muller, Kubie, &
Ranck, 1992). Thus, abrupt remapping, even when delayed from the first
exposure to the environment (e.g., Bostock et al., 1991; Brown & Skaggs,
2002), is likely attributable to a reset failure of the path integrator, which
causes remapping simultaneously in all subfields of the hippocampus. By
this interpretation, delayed, abrupt remapping reflects a stochastic process
where, for rats that attend to the environmental change, there is a fixed
probability of PI reset failure on each visit to the perturbed environment,
which should result in an exponentially distributed time to first remapping.

6.1.2 Gradual Remapping, Context Learning and the DG/CA3 Network. In
contrast to abrupt remapping, the gradual differentiation of contextual
representations should be attributable to circuitry within the hippocam-
pus, specifically DG and CA3. Several authors have suggested that expo-
sure to a novel context results in an orthogonalized representation being
formed in DG, which is then propagated to CA3 (Marr, 1971; McNaughton
& Morris, 1987; Treves & Rolls, 1992, 1994; O’Reilly & McClelland,
1994). Preliminary evidence suggests that the rate remapping between
similar contexts observed by S. Leutgeb et al. (2005) originates in DG
(J. Leutgeb et al., 2006). In a familiar context, perforant path input and
recurrent collaterals in CA3 guide the recall of the previously learned con-
textual representation. O’Reilly and McClelland (1994) explored a simpli-
fied model of DG and CA3, showing that although similar patterns could be
mapped to an even more similar CA3 representation (pattern completion),
more strongly differing input patterns could be separated as well (pattern
separation).

The neural mechanisms of pattern separation and completion resemble
the statistical process of clustering: map noisy input patterns into more
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similar representations to denote their association with the same cluster;
map input patterns associated with different clusters into more distinct
representations. One might therefore think of a clustering neural network
as an extension of the O’Reilly and McClelland (1994) model in which the
threshold between separation and completion is not static, but dynamically
adjusted based on the distribution of input patterns. While O’Reilly and
McClelland only elucidated the benefits of CA3 perforant path plasticity,
NMDA-dependent synaptic plasticity is well known to exist within DG and
the CA3 recurrent collaterals. In addition, there is intriguing new evidence
that mossy fiber synapses show heterosynaptic plasticity, though changes
in synaptic efficacy appear to depend on neighboring synapses in stratum
radiatum instead of the depotentiation of the postsynaptic cell (Schmitz,
Mellor, Breustedt, & Nicoll, 2003). We propose that one function of this
learning is to adjust the separation-completion threshold, gating when new
contextual representations would be propagated from DG to CA3.

In a familiar context, once the path integrator and any other brain state
is reset, the activity patterns projected from DG onto CA3 should match the
patterns projected from the perforant path and recurrent collaterals, mod-
ulo some noise. However, if this familiar context is perturbed into a similar
but distinct second context, then there should be some mismatch between
the pathways: the representation in DG should more accurately reflect the
current input patterns, whereas the perforant path and recurrent circuitry
should reinforce a previously learned representation. Critically, our frame-
work suggests that if the differences between recalled and input patterns
are small, the impact of the DG representation should be minimal, and, if
such differences do not repeat, the impact of DG should remain minimal.
However, if the same differences are observed repeatedly, the impact of
DG on the CA3 representation should increase, causing remapping in CA3
(Fuhs & Touretzky, 2000). In this way, more complex context models may
be adopted.

Small but repeated differences would be expected to cause incremental
changes in synaptic connectivity in the DG perforant path and mossy fiber
pathway to strengthen the impact of DG on CA3. Interestingly, perforant
path plasticity in DG can last for months (Abraham, Logan, Greenwood,
& Dragunow, 2002), suggesting that this pathway is capable of accruing
changes in synaptic efficacy over many training days. However, granule
cell neurogenesis causes cells to be gradually replaced, slowly fading away
previous associations (Feng et al., 2001). These opposing forces provide a
natural balance for input pattern density estimation. New input patterns
can be registered, and their impact can be strengthened with repeated ex-
posure; however, this strengthening is tempered by the replacement of
granule cells to clear out old memories. It follows from this proposal that
DG principal cells should fire at a lower rate in a novel environment and,
with repeated exposure, gradually increase their rates as the environment
becomes familiar.
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While presenting a neural network model of context learning is beyond
the present scope, recent physiology, gene expression, and lesion stud-
ies are consistent with the proposal that a neural instantiation of context
learning should be localized to the DG/CA3 network, whereas CA1 inte-
grates the experience-dependent DG/CA3 representation with the entorhi-
nal cortical representation. Both pattern separation and pattern completion
have been observed in CA3 in response to changes in environmental cues
(Vazdarjanova & Guzowski, 2004; Lee, Yoganarasimha, Rao, & Knierim,
2004; Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004; Guzowski, Knierim,
& Moser, 2004). Vazdarjanova and Guzowski (2004) found in an immediate-
early gene expression study that similar environments were represented
with a greater similarity in CA3 than CA1, while two very different envi-
ronments were represented with less similarity in CA3 than CA1. Both Lee
et al. (2004) and S. Leutgeb et al. (2004) found that the CA1 representation
more directly reflected the current sensory environment, whereas the CA3
representation reflected either pattern completion of a previously learned
contextual representation (Lee et al., 2004) or pattern separation to create a
new contextual representation (S. Leutgeb et al., 2004).

A behavioral role of CA3 pattern completion is suggested by Nakazawa
et al. (2002), who found that performance in a cue-degraded version of
the Morris water maze is impaired by CA3 NMDA receptor knockout. Lee
and Kesner (2002, 2003) showed that delayed nonmatch to place (DNMP)
was impaired in a novel (but not familiar) environment by CA3 NMDA
inactivation or DG or CA3 lesion. These deficits may be interpreted as a
failure to recall or learn a conjunctive representation of position and target
(e.g., hidden platform, object) that could be retrieved via pattern comple-
tion using the target as an autoassociative memory cue. (Evidence for such a
target representation has been found in prelimbic/infralimbic cortex; Hok,
Save, Lenck-Santini, & Poucet, 2005.) Consistent with this hypothesis, DG
appears necessary to create such conjunctive representations: DG lesions
reduce performance to chance on a working-memory water maze task in
which the platform is moved to a new location each day (Xavier, Oliveira-
Filho, & Santos, 1999). In relation to our theory, these data point to DG
and CA3 to construct a model-based representation of the animal’s expe-
riences, including various conjunctive associations instrumental in solving
behavioral tasks.

CA1 appears to relay a composition of the model-based CA3 repre-
sentation and the context-free entorhinal cortical information to efferent
cortical areas. Hasselmo and colleagues have presented a series of models
and pharmacological data supporting the notion that increased cholinergic
modulation decreases the contribution of CA3 to the CA1 representation,
but increases plasticity of both the CA3 recurrent and Schaffer collaterals
(Hasselmo & Schnell, 1994; Hasselmo, Schnell, & Barkai, 1995; Hasselmo,
Wyble, & Wallenstein, 1996). More recently, Yu and Dayan (2005) have pro-
posed a theory of acetylcholine and noradrenaline in which acetylcholine
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represents expected uncertainty, whether due to the context being new or
to known unpredictability within a familiar context.

Taken together, these models suggest that when the context is informa-
tive (low ACh), CA1 should be influenced by CA3; when the context is less
informative (high ACh), that influence should be reduced. This gating of
the CA3 representation has been confirmed experimentally in novel envi-
ronments: CA1 shows a stable representation while the CA3 representation
evolves over the course of 20 to 30 minutes (S. Leutgeb et al., 2004). Ad-
ditionally, several monoaminergic neurotransmitters have been implicated
in modulating the balance of CA3 and EC input to CA1 (Otmakhova &
Lisman, 1998; Otmakhova, Lewey, Asrican, & Lisman, 2005).

The complementary roles of the DG/CA3 and CA1 networks provide
some insight with which to interpret discrepancies between the double rota-
tion experiments of Shapiro et al. (1997) and Lee et al. (2004). When local and
distal cues were rotated in opposite directions, both studies observed “het-
erogeneous” or “discordant” responses. However, Shapiro et al., recording
mostly from CA1 at the beginning of the experiment, initially observed
many more place fields to rotate with the distal cues than the local cues.
In fact, the ratio of place fields rotating with each set of cues observed by
Shapiro et al. much more closely resembles the ratio of place fields in CA3
tied to each set of cues observed by Lee et al. (2004), suggesting that in the
Shapiro et al. study, CA3 strongly influenced the representation in CA1.
Shapiro et al. repeatedly trained rats on two standard condition sessions
and a single double rotation session (local and distal cues rotated 180 de-
grees apart) each day, as well as various other less frequent cue scrambling
and deletion probe trials. They observed that over time, cells (predom-
inantly in CA3 by the end of the experiment) more strongly remapped
between standard and double rotation conditions. This change in the de-
gree of remapping could reflect either the change in cell populations they
recorded from or an experience-dependent effect; they do not address this
issue statistically. Nonetheless, if we assume that the initial primacy of dis-
tal influence on CA1 place cells reflects pattern completion in CA3, then
the increase in remapping reflects an experience-dependent transition in
CA3 between pattern completion and pattern separation in order to adopt
separate contexts for the standard and double rotation cue configurations.
This is consistent with our simulations of gradual remapping, which show
that two repeatedly experienced and distinct conditions should be differen-
tiated by context. By contrast, Lee et al. trained rats equally on four rotation
angles in addition to the standard condition, a training paradigm more akin
to our morph experiment simulations. Though the relatively short duration
of training by Lee et al. prevents any decisive conclusions, their observation
that CA3 maintained pattern completion throughout the course of their ex-
periment (I. Lee & J. J. Knierim, personal communication to M. Fuhs, June
2006) is consistent with our morph experiment simulation results that pre-
dict that experience-dependent remapping should not occur in such a case.



3206 M. Fuhs and D. Touretzky

6.2 Future Work. While multi-unit recordings from CA3 and CA1 have
provided great insight into their differing function, data from DG and the
hilus are only beginning to become available. As the activity patterns of cells
in these areas are explored, so too does the exploration of physiologically
based models of context learning become more tenable.

The framework presented here assumes a perfect memory of past experi-
ences, an assumption certain to be untrue. It would be interesting to explore
to what extent memory limitations, perhaps imposed by the representation
of the full history of experiences by a set of (in)sufficient statistics, would
affect the predictions made by the present framework. Also, the framework
here models context transitions as a Markov process with fixed transi-
tion probability, which results in the assumption that context transitions
occur according to a Poisson distribution. However, Daw, Courville, and
Touretzky (2006) have suggested that a more sophisticated semi-Markov
process better explains physiology studies of the dopamine system. Con-
text learning in vivo may similarly involve a more explicit inference about
the amount of time an animal expects to remain in each context.

Appendix: Estimating Marginal Model Probabilities

For these simulations, equation 2.6 was numerically approximated by
Monte Carlo integration of the parameter samples using an importance
distribution. The importance distribution was constructed in an auto-
mated fashion using 500 samples from the posterior parameter distribu-
tion, p(θk |y1,...,τ , Mk), and the Gibbs kernels from the Markov chain Monte
Carlo (MCMC) sampler that generated the parameter samples (for details,
see Frühwirth-Schnatter, 2004). Monte Carlo integration becomes unstable
when the tails of the importance distribution are narrower than the pos-
terior distribution along any dimension of the parameter space. To guard
against this, the variances of the µ and σ−2 components were doubled,
and the variance of the as component was increased by multiplying each
Dirichlet parameter by 0.75.

The MCMC sampler was constructed based on previous sampling tech-
niques for standard HMMs (Chib, 1996). Briefly, the Markov chain was
constructed from Gibbs kernels that sample sequentially from both the pa-
rameters of the model and latent indicator vectors, which indicate, for each
mixture distribution within the model and each time step t, which mixture
component is implicated in the observed value yt . For the shared param-
eter HMMs, there are three indicator vectors. The vector S1,...,T indicates
the active HMM state at each time step and was sampled using a standard
HMM Gibbs move:

p(St = i | . . .) ∝ Ai,St−1 p
(
yt|µi , σ

2
i

)
ASt+1,i . (A.1)
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The vector u1,...,T−1 indicates which component of the transition probability
mixture (see equation 2.3) for the current state contributed to each transition.
The vector v1,...,T indicates which component of the hippocampal input
value mixture (see equation 2.4) for the current state contributed to each
observation. Gibbs moves were as for standard mixtures:

p(ut = Dep| . . .) ∝ ASt+1,ŝ/(ASt+1,s + ASt+1,ŝ) (A.2)

p(vt = Dep| . . .) ∝ p
(
yt|µŝ, σ

2
ŝ

)
/
(

p
(
yt|µs, σ

2
s

) + p
(
yt|µŝ, σ

2
ŝ

))
. (A.3)

The values of ut and vt are defined only for times when the HMM state
indicator vector indicates a state in a dependent context.

Gibbs moves for the HMM parameters were complicated by sharing of
parameters between independent and dependent states. Gibbs moves for
the mixing parameters were

p(zŝ | . . .) ∝ Beta
(
δ1 + nu

s , δ2 + nu
ŝ

)
(A.4)

p(ζŝ | . . .) ∝ Beta
(
δ1 + nv

s , δ2 + nv
ŝ

)
, (A.5)

where nu
s = #(uŝ

t = Ind), nu
ŝ = #(uŝ

t = Dep), nv
s = #(vŝ

t = Ind), and nv
ŝ =

#(vŝ
t = Dep). The counting function #() returns the number of occurrences

over a time-indexed vector in which the specified condition is satisfied.
Gibbs moves for the transition probabilities were

p(�as1 | . . .) ∝ Dirichlet
(
δ + nind

1 , δ + nind
2 , . . .

)
(A.6)

p(�aŝ1 | . . .) ∝ Dirichlet
(
δ + ndep

1 , δ + ndep
2 , . . .

)
. (A.7)

The transition probabilities for a state in an independent context, s1, were
updated based on a transition count, nind

s2
, which counts the number of

occurrences of a transition from s1 to s2. If the independent context had a
dependent context (with states ŝ1 and ŝ2 that are paired with states s1 and s2),
then nind

s2
also included the number of occurrences of a transition from ŝ1 to

ŝ2 when ut = Ind. For a state in a dependent context, ŝ1, the transition count
ndep

ŝ2
included transitions from ŝ1 to ŝ2 when ut = Dep.

The observation parameters for a state in an independent context were
sampled using the following Gibbs moves:

p(µs | . . .) ∝ N
((

σ−2
s

∑
t∈Ts

yt + κ1ξ

)
σ 2

µ, σ 2
µ

)
(A.8)

p
(
σ−2

s

∣∣ . . . ) ∝ �

(
α1 + 1

2
|Ts |, β1 + 1

2

∑
t∈Ts

(yt − µs)
)

, (A.9)
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where σ−2
µ = σ−2

s |Ts | + κ1 and Ts is the set of times for which St = s or
for which vt = Ind and St = ŝ. The observation parameters for a state in a
dependent context were sampled using the following Gibbs moves

p(µŝ | . . .) ∝ N
((

σ−2
ŝ

∑
t∈Tŝ

yt + κ2(µs + h)
)

σ 2
µ, σ 2

µ

)
(A.10)

p
(
σ−2
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∣∣ . . . ) ∝�

(
α2 + 1

2
|Tŝ |, α2σ

2
s + 1

2

∑
t∈Tŝ

(yt − µŝ)
)

, (A.11)

where σ−2
µ = σ−2

ŝ |Tŝ | + κ2 and Tŝ is the set of times for which vt = Dep and
St = ŝ.

Five thousand samples from the importance distribution were used to
estimate equation 2.6. The availability of samples from the posterior dis-
tribution permitted evaluation of equation 2.6 with the computationally
more expensive technique of bridge sampling. Unlike traditional impor-
tance sampling, an accurate estimate via bridge sampling does not require
the importance distribution to be broader than the posterior distribution
(Meng & Wong, 1996; Frühwirth-Schnatter, 2004). In our many test cases,
we found that the differences based on which integration technique was
used were negligible, suggesting that the importance distribution was ac-
curately covering the entire mass of the posterior distribution.
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