
Auton Robot (2007) 22:425–435
DOI 10.1007/s10514-007-9024-0

Dual-coding representations for robot vision programming
in Tekkotsu
David S. Touretzky · Neil S. Halelamien ·
Ethan J. Tira-Thompson · Jordan J. Wales · Kei Usui

Received: 8 March 2006 / Revised: 24 November 2006 / Accepted: 2 January 2007 / Published online: 30 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract We describe complementary iconic and symbolic
representations for parsing the visual world. The iconic
pixmap representation is operated on by an extensible set
of “visual routines” (Ullman, 1984; Forbus et al., 2001). A
symbolic representation, in terms of lines, ellipses, blobs,
etc., is extracted from the iconic encoding, manipulated al-
gebraically, and re-rendered iconically. The two representa-
tions are therefore duals, and iconic operations can be freely
intermixed with symbolic ones. The dual-coding approach
offers robot programmers a versatile collection of primitives
from which to construct application-specific vision software.
We describe some sample applications implemented on the
Sony AIBO.

Keywords Dual-coding theory . Visual routines . Robot
vision . Educational robotics

D. S. Touretzky (�)
Computer Science Department, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213
e-mail: dst@cs.cmu.edu

N. S. Halelamien
Computation and Neural Systems Program, California Institute of
Technology
e-mail: neilh@caltech.edu

E. J. Tira-Thompson . K. Usui
Robotics Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213
e-mail: ejt@andrew.cmu.edu

K. Usui
e-mail: kusui@andrew.cmu.edu

J. J. Wales
P. O. Box 821650, Vancouver, WA 98682
e-mail: wales@intuitiveimpulse.com

1 Introduction

We present an approach to robot vision programming in
which objects are dually represented in iconic (pixel array)
and symbolic (parameterized shape) forms. A correspon-
dence is maintained between iconic and symbolic spaces so
that the programmer is free to operate on objects in whichever
form is most convenient. This facility forms part of Tekkotsu
(Tira-Thompson, 2004; see also Tekkotsu.org), an ap-
plication development framework for intelligent robots that
is presently implemented on the Sony AIBO, with support
for other platforms in progress.

1.1 Historical antecedents

Our approach draws on several ideas from cognitive science.
The term dual coding comes from Paivio’s “dual coding the-
ory” of mental representations (Paivio, 1986), which posits
parallel verbal and non-verbal (image-based) systems with
extensive referential connections between them. An example
of a verbal representation would be a syllogism (“All P’s are
Q’s; all Q’s are R’s; therefore all P’s are R’s”); an example
of a non-verbal representation would be a Venn diagram. On
this view, cognitive problem solving invokes operations on
items in one or the other of these two representational sys-
tems. Paivio hypothesized that more demanding tasks require
translation between the two, which can be detected in hu-
man subjects through higher error rates and slower reaction
times.

Another important source of inspiration is Ullman’s no-
tion of “visual routines” (Ullman, 1984). Ullman proposed
a set of elemental operations for low to mid-level vision,
some of which can be performed in parallel over the entire
image. Examples of such operations include selecting pix-
els based on a sensory feature such as color, and bounded

Springer

426 Auton Robot (2007) 22:425–435

spread of activation across pixels (coloring). The operations
can be composed in many ways to produce specialized vi-
sual routines for different tasks. Somewhat higher level op-
erations, not yet incorporated into our implementation, in-
clude boundary tracing and shift of attention. Roelfsema
et al. (2000) conducted both psychophysical and neuro-
physiological investigations of Ullman’s hypothesis using
a curve tracing task. They found evidence for incremen-
tal spreading of activation along the curve, similar to what
Ullman hypothesized, within the primary visual cortex of
monkeys.

Our framework uses visual routines to operate on iconic
(pixel-based/nonverbal) representations. But our argument
in this paper is that incorporation of a complementary sym-
bolic (semantic/verbal) representation is advantageous when
constructing algorithms to parse the visual world.

Other uses of the term “visual routines” in AI and robotics,
inspired by Ullman’s work, have influenced our own. Rao and
Ballard’s (1995) active vision architecture made use of dual
memory systems—one indexed by (x, y) values in the im-
age space, the other indexed by object identities. This dual
memory system is loosely analogous to our framework’s
dual-coding representations, but with less emphasis on in-
teractions between the two representations. Forbus et al.’s
(2001) work, concerned with qualitative spatial reasoning
on maps, provided the basis for several of the iconic opera-
tors present in our framework. Agre and Chapman’s project,
PENGI, implemented Ullman’s concept of visual routines
as part of an automated system for playing a real-time two-
dimensional video game (Agre and Chapman, 1987). Their
work also introduced the notion of a “deictic representa-
tion:” a means for representing entities in the environment
in terms of their relations to the perceiver, which may be
a source of fruitful extensions to the work we describe
here.

1.2 Map building and visualization

Reducing a camera image to a symbolic description, as oc-
curs when we translate between representations, simplifies
the problem of identifying points of correspondence across
images as the camera moves. This permits construction of
a world map from a series of overlapping images, freeing a
robot from the limitations of a camera with a narrow field of
view. The AIBO’s single camera, located in its “nose,” has
a 56.9◦ horizontal field of view (Sony Corp., 2004), com-
pared with around 200◦ for binocular humans and 300◦ for
rats.

Our world map representation, like the representation of
camera space, utilizes both iconic and symbolic components.
It serves as a working memory for objects the robot has
encountered but cannot currently see, and is also useful for
path planning.

Another notable feature of our approach is an emphasis
on transparency of computation. Operators that derive
new iconic representations (called “sketches”) or symbolic
objects (called “shapes”) from existing ones automatically
record their parentage, so that computations performed
within the dual-coding framework form a derivation tree
with the initial camera image at the root and the most
recently derived objects at the leaves. The structure of this
tree, as well as the individual sketches and shapes that
populate it, is made visible to the user via an interactive
GUI tool that allows the robot’s “mental imagery” to be
monitored remotely over a wireless connection. This is
not only valuable for debugging vision algorithms, it also
provides a convenient way for the robot to communicate its
parse of the world to its human companions.

This software received a Technical Innovation Award
at AAAI-05 for visualization for educational robotics. It
is presently used in undergraduate Cognitive Robotics
courses at Carnegie Mellon University and Spelman Col-
lege. The course and its associated software will be im-
plemented at several other colleges over the next two
years.

2 The quasi-planar world assumption

Our initial experiments use a quasi-planar domain: the table-
top. It is “quasi” planar in the sense that objects are treated as
having negligible height, but occlusions can still occur when
objects overlap. Even this simple world is very rich, and
provides a wealth of opportunities for experimental robotics.
For example, Fig. 1(a) shows a view of a tic-tac-toe board
through the AIBO’s camera. Notice that several game pieces
are partially occluding board lines. In order to play the game,
the robot must parse camera images into board configura-
tions. The first test of our framework is to show how this
can be done in a straightforward way using the primitives we
provide.

Tekkotsu’s kinematics package calculates the current
camera pose from joint angle information reported by the
robot’s sensors. Combined with the quasi-planar world as-
sumption, this permits us to determine the projection of any
camera pixel onto the ground plane on which the robot is
standing, and thereby derive distance information from sin-
gle camera frames.

3 Iconic representations: Sketch space

The iconic side of the dual-coding representation scheme
is organized as a collection of sketch objects. Each sketch
references a two-dimensional array of pixels of some type
(bool, unsigned byte, etc.). All sketches within a “sketch
space” have the same dimensions, so they are always in

Springer

Auton Robot (2007) 22:425–435 427

Fig. 1 Iconic operations underlying line extraction. (a) View of the tic-
tac-toe board through the AIBO’s camera; (b) color-segmented camera
image; (c) extracting the pink pixels; (d) skeletonization; (e) extracted

lines. The numbers next to each line are the shape ids; valid line end-
points are indicated by perpendicular tick marks

register. Sketches of unsigned bytes are used to store color
segmented images; the bytes are indices into a color table.
Sketches of bools are used to indicate which pixels have a
certain property. Sketches of integers are used for tasks such
as region labeling and distance maps.

3.1 Iconic operations

We provide the usual arithmetic and comparison operators
for element-wise operations on sketches. In addition, we pro-
vide a variety of standard image processing functions, such

Springer

428 Auton Robot (2007) 22:425–435

as morphological thinning and thickening, edge detection,
skeletonization, connected-components labeling, Manhattan
distance, and region filling (Glassner, 1990). We have also
implemented a bounded-distance operator that takes in des-
tination and boundary sketches and applies the wavefront
algorithm to calculate the boundary-respecting path distance
between each non-boundary pixel and the nearest destina-
tion pixel. There also exist operators for calculating hori-
zontal and vertical symmetry transforms over a sketch, and
computing the convex hull. Most of these operators were
described in Halelamien (2004).

Similar operators are found in other computer vision pack-
ages, such as OpenCV, the Intel open source computer vi-
sion library (Landre, 2004). Our current operator set is less
comprehensive than that of OpenCV, and not optimized for
efficiency. Our goal is not to compete with OpenCV; rather
it is to show that an approach that combines iconic and sym-
bolic representations is useful for robot vision. The iconic
portion of our framework could in principle be built on top
of OpenCV, although since the AIBO uses a MIPS chip,
it would not benefit from Intel’s architecture-specific opti-
mizations (IPP, or Intel Performance Primitives) that speed
up OpenCV on the Pentium.

3.2 Tic-tac-toe

The first stages of processing the tic-tac-toe board are shown
in Fig. 1. We begin by importing a color segmented cam-
era image as a sketch of unsigned bytes. The color seg-
mentation is done using CMVision (Bruce et al., 2000).
The result is Fig. 1(b). We then locate the pink pixels us-
ing a comparison operator, colormask, which performs an
equality test between each pixel and a 1-byte color in-
dex value; the result is a sketch of bools (Fig. 1(c)). Af-
ter shrink-and-grow region smoothing, we skeletonize the
smoothed sketch (Fig. 1(d)) in preparation for extracting
line shapes (Fig. 1(e)). Similar operations are used to ex-
tract the green and yellow pixels representing the game
pieces.

Each sketch is assigned a unique integer id, and parent
id’s are maintained automatically by operators that derive
new sketches from old ones. Thus, the parent of the skeleton
sketch is the smoothed sketch, whose parent is the sketch
indicating all the pink pixels, whose parent is the color-
segmented camera image, which has no parent. For unary
sketch operations like skeletonization, the parent relation-
ship is obvious. For binary operations such as pixel-wise
arithmetic or comparison, we have established the conven-
tion that the left argument is always the parent of the result.
This makes parentage predictable and consistent. Parent in-
formation is used to organize sketches into a derivation tree,
as discussed in Section 7, and also governs inheritance of
certain properties, such as color for sketches of bools.

4 Symbolic representations: Shape space

While sketches are well-suited to manipulating regions in an
image, for many operations it is more productive to describe
image elements in symbolic form, in terms of geometric
constructs such as points, lines or ellipses. (Circles lying in
the ground plane are more properly treated as ellipses due to
perspective effects.) We define a family of shape objects anal-
ogous to the family of sketches of various types. The most
basic shape types are point, line, ellipse, and blob. Shapes
exist within a shape space, which is directly associated with
a sketch space. Parent information for shapes is maintained
automatically, as for sketches.

Lines, rays, and line segments are all represented using
the line shape. The difference is in the number of effective
endpoints. A line segment has two endpoints, a ray has one,
and a line has none. If fewer than two endpoints are known,
a line can be created by specifying a point through which
it passes, plus an orientation. When extracting lines from a
camera image, an endpoint is noted but marked invalid if it
occurs at the edge of the sketch, since in that case the true
endpoint of the line is unknown.

Ellipse shapes have a center, an orientation for their major
axis, and lengths for their major and minor axes. Blob shapes
are represented by a bounding box, and by a run-length
encoded list of pixels which form the region.

All shapes also have a color attribute, which is used when
rendering them iconically or displaying them using the GUI
tool. Color is an inheritable property of both sketches and
shapes. Thus, when pink pixels are extracted from a color-
segmented image by the colormask operator, the resulting
sketch of bools is assigned color pink. When line shapes are
then extracted from this sketch, the lines are also marked as
pink (Fig. 1(e)).

4.1 Shape construction and updating

There are three fundamental kinds of shape operations: con-
struction, updating, and relational calculations. The simplest
way to construct new shapes is by directly specifying val-
ues for each of their components, e.g., constructing a line
by giving the two endpoints. In practice it is more common
to construct new shapes by specifying their relationships to
existing ones. For example, given a line A, one might want
to construct a bisector B that runs perpendicular to A and
passes through its midpoint. We provide a variety of con-
structor functions to handle the common cases; users can
add their own constructors to augment this set.

Each shape potentially has an iconic representation (as a
sketch of bools) that is computed when needed and cached
for reuse. Updating a shape by altering its parameter values
invalidates this cached rendering. A common type of update
for line segments is to temporarily inactivate their endpoints,

Springer

Auton Robot (2007) 22:425–435 429

so that they become infinite lines and can serve as boundaries
for region coloring operations.

4.2 Relational calculations

Relational calculations are the richest group of shape opera-
tions. Our goal is to provide a natural-sounding language for
talking about shape relations, so that algorithms for parsing
a scene can be described in intuitive terms. For example,
the two endpoints that define a line segment must be dis-
tinguished somehow, but the choice of which should be the
“first” endpoint and which the “second” is arbitrary. It is
more natural to talk in terms of the “left” and “right” end-
points (for a line that can be seen as horizontal), or the “top”
and “bottom” endpoints (for a line that can be seen as ver-
tical). We provide accessor functions for lines that compute
these relations and return the appropriate endpoint. Simi-
larly, when looking at any two shapes, we provide functions
to select the leftmost or rightmost of the two, or the topmost
or bottommost, based on their centroids.

In some situations, such as when matching one line against
another, absolute orientation isn’t important, but we want to
see whether corresponding endpoints match, e.g., whether
two line segments are coextensive, or if one segment is a con-
tinuation of the other. We define the “first” endpoint of a line
to be the leftmost endpoint if the line can be seen as horizon-
tal (slope less than 60◦); otherwise it is the topmost endpoint.
Then we can talk about first and second endpoints without
explicitly considering line orientation. But this raises a prob-
lem when comparing two lines near the horizontal/vertical
cutoff: if only one of them passes the horizontal test, we
could end up comparing the leftmost point of one with the
topmost (which could be rightmost) of the other. The solu-
tion is for the endpoint selection function to allow one line
to make the horizontal/vertical decision for both. Even if the
second line is a little too steep to pass the horizontal test, it
can’t be that far off in orientation from the first line if the
match is to succeed, so the notion of a leftmost point must
still be well-defined.

The built-in line relationship tests include parallel,
perpendicular, and colinear relationships (all with user-
overridable comparison tolerances), an intersection test, and
length comparison. The latter can be used with a sort prim-
itive if we wish to consider lines in order of decreasing
length.

5 Translation between representations

5.1 Iconic to symbolic: Shape extraction

Extraction operators translate from the iconic space to the
symbolic space, i.e., they extract shapes from sketches. In

the simplest case, these operators take as input a sketch of
bools and produce zero or more shapes as output. Three
such operators are currently provided. The line extraction
operator uses moment statistics (Prokop and Reeves, 1992)
to extract a line shape with the orientation and endpoints
of the most prominent line segment in the image. Multiple
lines can be extracted by applying a line-clearing operation
(using the logical AND-NOT function) to the sketch and re-
running the operator to extract another line. The user can
specify the colors of “occluder” objects, and the line ex-
tractor will continue a line through any occluder regions.
The user can also specify a maximum number of lines to
be extracted, and a minimum length in pixels for each line.
The result of the extraction is returned as a vector of line
shapes.

The ellipse extraction operator returns a vector of el-
lipse shapes corresponding to all the ellipse-like regions
in the sketch. It uses connected-components region la-
beling to find candidate ellipses, and computes the ma-
jor axis length, minor axis length, and principal orienta-
tion using moment-based calculations (Prokop and Reeves,
1992). Regions smaller than a minimum size, or with
extreme ratios of major to minor axis lengths, are dis-
carded. Blob extraction is done by connected components
labeling.

The complete set of extracted shapes from the tic-tac-toe
board is shown in Fig. 2(a).

5.2 Symbolic to iconic: Rendering

All symbolic objects potentially have iconic renderings
as sketches of bools, created on demand. Lines are ren-
dered using variations on the Bresenham algorithm (Bre-
senham, 1965). Blobs are rendered by filling in their
runs.

When a symbolic object is rendered, the iconic represen-
tation created in the sketch space links back to its symbolic
parent in the associated shape space. The two representa-
tions form one entity, with the sketch dependent upon the
shape, such that any change to the symbolic parameters will
invalidate the sketch. If the user then attempts to access the
iconic representation again, it will be re-rendered from the
symbolic parameters.

On a broader view, the rendering of a shape onto a sketch
can be seen as analogous to activity induced in primary
visual cortex by higher level visual areas responsible for the
perception of edges or boundaries in an image. These areas
are responsible for such psychophysical phenomena as the
illusory contours seen in the well-known Kanizsa triangle.
Within our framework, the addition of gestalt perception
operations for inferring boundaries in an image would, via
the rendering operation, result in an explicit representation
of these boundaries as activated pixels.

Springer

430 Auton Robot (2007) 22:425–435

Fig. 2 Stages in parsing the tic-tac-toe board. (a) Extracted line and ellipse shapes; (b) board boundary lines; (c) board regions; (d) bottom edges
of game pieces; (e) completed parse

6 Parsing the tic-tac-toe board

Because the robot is playing against a human, we must take
pains to interpret the scene in the same way as the human
opponent. The task of parsing real board images in a human-

like way is complicated by two considerations. First, game
pieces that have not yet been placed on the board may lie
nearby. Thus it is necessary to find the outer boundaries of
the board—which are not marked explicitly in the scene—in
order to determine which game pieces are truly on the board

Springer

Auton Robot (2007) 22:425–435 431

and which merely lie beside it. Second, perspective effects
and noise introduced by the segmentation and line extraction
processes lead to uncertainty in the line parameters. We must
therefore seek heuristics to produce results in agreement with
human assumptions about what the board must look like.

Having extracted a set of lines from the image, and two
sets of ellipses, our heuristic algorithm for parsing the scene
is as follows:

1. Find the board lines: From the set of extracted lines, find
the longest pair of roughly horizontal lines. Then find the
longest two lines that are not parallel to the first set. (We
consider lines to be not parallel if their orientations differ
by more than 20◦.) Note that the latter two lines need
not be vertical, nor mutually parallel, due to perspective
effects.

2. Bound the board: Construct boundary lines from the most
extreme points on the board lines, keeping in mind that
perspective effects mean the two roughly vertical lines
may actually be converging. If so, the vertical boundary
lines should pass through this convergence point; other-
wise they are made to parallel the slopes of the two vertical
board lines. In either case, the vertical boundary lines pass
through the most extreme leftmost or rightmost point of
the two horizontal board lines. The result is Fig. 2(b).
These tan-colored lines mark the edges of the board.

3. Break the board into cells: Locate the nine board regions
delineated by the board lines and boundary lines. This
can be done by coloring the half-planes defined by each
line segment (a sketch operation), and then computing
various combinations of intersections of colored regions.
The result is Fig. 2(c).

4. Determine occupancy: decide which board positions are
occupied, and by which color game pieces, by intersect-
ing the board region sketches with the bottom edges of
the renderings of the ellipses, as shown in Fig. 2(d).
We use the bottom edges because the game pieces have
non-negligible height, violating the quasi-planar world
assumption. The bottom edges are the best indicator of
where the ellipse contacts the ground plane.

The final parse is shown in Fig. 2(e). This example il-
lustrates how a dual-coding representation fosters simple,
natural descriptions of visual reasoning algorithms.

7 Visualizing the computation

To facilitate debugging of vision algorithms, we provide a
graphical viewer for examining the contents of a sketch space
and its associated shape space while the robot is running.
Sketches and shapes are organized into a derivation tree, us-
ing automatically maintained parent information. The viewer
displays this tree, as in Fig. 3, and the user can individu-

Fig. 3 GUI tool for examining the derivation tree. Clicking on one or
more items causes them to be displayed in another window; this is how
the images in Figs. 1(b)–(e) and 2 were produced

ally select and deselect objects to be displayed. If multiple
sketches are selected, they are combined by addition. Se-
lected shapes are then drawn on top of the sketch image.

To begin examining the parse of an image, the viewer
program downloads a “table of contents” from the robot:
a listing of all available sketches and shapes. To conserve
time and wireless bandwidth, the robot does not transmit all
its sketches at once. Instead, individual sketches are down-
loaded to the viewer on demand when the user clicks on
the corresponding menu item. But since each shape is de-
scribed by just a few parameters, such as endpoints for a
line, centroid and major/minor axes for an ellipse, or bound-
ing box for a blob, full shape descriptions are included as
part of the table of contents rather than being transmitted on
demand.

Complex scene parsing algorithms can generate many
intermediate results, producing a cluttered derivation tree.
We allow the programmer to control which objects are visible
to the viewer by setting an attribute of the sketch or shape.
Unimportant entities can thereby be suppressed from the
display.

Springer

432 Auton Robot (2007) 22:425–435

8 Building a world map

In the preceding example, the tic-tac-toe board fit within a
single camera image, so all processing could be done in cam-
era space. But in general this will not be the case. We have
incorporated a map building facility that can piece together
larger maps from multiple snapshots. Starting with an ini-
tial camera image, the first step in this process is to project
the extracted shapes onto the groundplane. We thus go from
a camera-centered reference frame to a body-centered one.
This projection requires knowing the camera’s pose relative
to the ground, which is computed by Tekkotsu’s kinematics
engine. The orientation of the ground plane with respect to
the body is calculated by using the AIBO’s accelerometers
(which indicate the gravity vector) and a heuristic that at-
tempts to determine three points on the frame of the body
most likely to be in contact with the ground.

Once shapes are translated into body coordinates, they
are used to create the first draft of a local (egocentric) map.
When the next camera image is processed, its shapes are
also projected onto the groundplane and then heuristically
matched against those already in the local map, taking noise
and uncertainty into account. Heuristics are used to generate
a sequence of gazepoints to maximize the information gained
with each head movement. For example, if a line runs off the
edge of the camera frame, a new gazepoint will be proposed
to try to locate the true endpoint; if an object has only been
detected in one image, a new gazepoint centered on the object
will be proposed to confirm that the object is really there. In
this way, lines that are only partially visible in one camera
frame can be pieced together from several images, while
spurious shapes can be rejected.

The map builder also has a “rapid scan” mode in which it
moves the head along a continuous trajectory to rapidly scan
a user-specified region, looking for color patches of poten-
tial interest. It then goes back and examines those patches
systematically to extract shapes.

In addition to the egocentric local map, the map builder
also maintains an allocentric world map on which the robot’s
own position and orientation are represented. The world map
is assembled from multiple local maps as the robot moves
through its environment. A simple particle filter is used for
localization. Since the local and world maps are both shape
spaces, they are visible using the same GUI tool that monitors
the camera’s shape space.

Figure 4(a) shows another task to which we’ve applied our
dual coding approach: walking a binary tree. The tree is laid
out on a table top with colored masking tape. Only a small
portion is visible at any one time through the AIBO’s camera.
Figure 4(b) shows a world map automatically constructed by
the map builder from multiple camera images as the AIBO
stood at the root of the tree. To produce such a map, the user
simply indicates the colors of the different shape types and

Fig. 4 (a) Binary tree, drawn with masking tape, which the AIBO
is asked to traverse; (b) world map representation of part of the tree,
constructed by the map builder. The blue triangle indicates the AIBO’s
position and orientation

occluders expected in the scene, and certain other parameters
such as the region around the body that is to be scanned, and
the minimum acceptable length for any extracted lines. Head
motion, shape extraction, and shape matching are performed
by the map builder based on these parameters.

A complication arises from the fact that different shape
spaces use different coordinate systems. Camera space fol-
lows the usual image processing convention where the first
coordinate is horizontal position, the second coordinate is
vertical position, and the origin is at the upper left corner
of the image. Local space, defined relative to the robot’s
body, follows the Denavit-Hartenberg convention used by
Tekkotsu’s kinematics package: the x coordinate increases
in the forward direction from the robot’s midline, and the y
coordinate increases to the robot’s left.

Springer

Auton Robot (2007) 22:425–435 433

Shapes in camera space are projected into local space via a
coordinate transformation based on the current camera pose.
If the robot’s head is pointing straight ahead, relationships
between shapes in camera space should appear similar to
those between corresponding shapes in local space, e.g., ob-
jects that appear near the top of the camera image (smaller y
coordinates in camera space) should be judged farther away
(larger x coordinates in local space). The GUI tool corrects
for the difference in coordinate conventions, so shapes that
are distant in local space appear near the top of the local
space display.

To keep things intuitive for the programmer, relations like
“left of” should mean the same thing in either display, so their
implementation must be sensitive to the reference frame in
use. Each shape space therefore has a reference frame at-
tribute whose value can be camera-centric, egocentric, or
allocentric. Relational primitives are defined separately for
each reference frame type. “Left of” means a smaller x co-
ordinate in a camera-centric space, and a larger y coordinate
in an egocentric space. In world space, where the robot’s po-
sition and orientation are explicitly represented, the meaning
of “left of” is defined to be from the robot’s perspective, so
whether one object is viewed as “left of” another depends
on the robot’s current location on the map.

9 Conclusions

Our goal has been to show the ease with which a dual cod-
ing representation system can be employed to parse a scene
and reason about spatial relationships. Geometric operations,
e.g., finding parallel lines and determining relative line po-
sitions, are performed in shape space, where they are most
easily described. Iconic operations, e.g., region labeling and
manipulation, are performed in sketch space, where region-
type spatial relationships are easily computed. The power of
this approach comes in its use of meaningful higher-level
functions in each space, enabling the programmer to express
each processing step with clarity and ease.

Students in CMU’s undergraduate Cognitive Robotics
course had no trouble mastering these primitives and solving
simple visual parsing problems, including parsing the tic-
tac-toe board. They were provided with four sample images
with varying viewing angles and board configurations to use
as test data. Their solutions were then tested on an additional
set of images to verify their robustness.

An example of a simpler problem the students were given
is: find all the blue ellipses within a closed convex boundary
formed from pink tape. This was initially solved by locat-
ing the exterior of the boundary with seedfill (which fills a
bounded region starting from a seed location), using the top
left pixel as the seed location. The result was then inverted
to obtain the interior. But one should not assume that the

upper left corner of an image cannot be part of the boundary.
So a completely correct implementation must first search
along the border of the sketch for empty pixels to use as
proper seeds. (Multiple seeds makes the solution more ro-
bust.) Realizing this, we subsequently added fillInterior and
fillExterior operators that automate this process.

The identification of useful primitives is continuing as we
gain experience programming in the framework. As another
example, in the first version of the tic-tac-toe board parser, to
find the top row of board positions we manually deactivated
the two endpoints of the top horizontal line segment, making
it an infinite line, then rendered it, and then applied the
seedfill operator to the rendering, with the seed pixel in the
upper left corner of the sketch. This found all pixels lying
above the line. We subsequently realized that determining
what lies on each side of a line is a common operation, so
we added topHalfPlane, bottomhalfPlane, leftHalfPlane, and
rightHalfplane operators that take a line segment as input and
return the desired result as a sketch of bools.

With the exception of one lab exercise, most of the stu-
dents’ programs in the first offering of the course operated
on single camera images, because the map builder compo-
nent was very new and not yet robust. It has subsequently
been reimplemented and made easier to use. As we gain
experience programming algorithms to operate on local and
world map representations, our collection of useful sketch
and shape primitives will likely expand further.

The framework can be extended in a variety of ways.
We are currently working on perceiving three-dimensional
entities such as spheres, bricks, and pyramids, using a com-
bination of sketch and shape primitives. (The planar world
assumption is only partially relaxed: we assume that these
objects lie on the ground plane.) We have also extended the
line representation to allow us to represent polygons in the
ground plane, which the map builder can assemble from mul-
tiple images. Polygons are useful for representing the bound-
aries of the arena, or other closed spaces. With the addition
of more abstract concepts such as object-centered frames
of reference, gestalt perception operators such as boundary
tracing and boundary completion, and mechanisms for shift-
ing the focus of attention, we can see the beginnings of a
“cognitive programming language” for robot vision.

Acknowledgments This work was supported by a National Science
Foundation grant 0540521, an REU supplement to NSF award IIS-
9978403 to support NSH, an NSF graduate fellowship to support JJW,
and a grant from the Sony Corporation.

References

Agre, P. and Chapman, D. 1987. PENGI: An implementation of a theory
of activity. In Proceedings of the Sixth National Conference on
Artificial Intelligence (AAAI-87), pp. 268–272.

Springer

434 Auton Robot (2007) 22:425–435

Bresenham, J.E. 1965. Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1):25–30.

Bruce, J., Balch, T., and Veloso, M. 2000. Fast and inexpensive
color image segmentation for interactive robots. In Proceed-
ings of the 2000 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 00), vol. 3, pp. 2061–
2066.

Forbus, K.D., Mahoney, J.V., and Dill, K. 2001. How qualitative spatial
reasoning can improve strategy game AIs. In 15th International
Workshop on Qualitative Reasoning.

Glassner, A.S. 1990. Graphics Gems. Academic Press.
Halelamien, N.S. 2004. Visual routines for spatial cognition on a

mobile robot. Senior honors thesis, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA. Available at
<http://www.Tekkotsu.org/media/thesis_neilh
.pdf>.

Landre, J. 2004 Programming with Intel IPP (Integrated Per-
formance Primitives) and Intel OpenCV (Open Com-
puter Vision) Under GNU Linux. Accessed May 31 at:
http://sourceforge.net/projects/opencvlibr-
ary.

Paivio, A. 1986. Mental Representations: A Dual-Coding Approach.
New York: Oxford University Press

Prokop, R.J. and Reeves, A.P. 1992. A survey of moment-based tech-
niques for unoccluded object representation and recognition. In
CVGIP: Graphical Models and Image Processing, vol. 54, pp.
438–460.

Rao, R.P.N. and Ballard, D.H. 1995. An active vision architecture based
on iconic representations. In Artificial Intelligence, 78(1–2):461–
505.

Roelfsema, P.R., Lamme, V.A.F., and Spekreijse, H. 2000. The imple-
mentation of visual routines. Vision Research, 40: 1385–1411.

Sony Corp. 2004. OPEN-R SDK: Model Information for ERS-7.
Tira-Thompson, E.J. 2004. Tekkotsu: A Rapid Develop-

ment Framework for Robotics. Masters thesis, Robotics
Institute, Carnegie Mellon University. Available at
<http://www.cs.cmu.edu/˜tekkotsu/media/the-
sis_ejt.pdf>.

Ullman, S. 1984. Visual routines. Cognition, 18:97–159.

David S. Touretzky is a Research Professor in the Computer Sci-
ence Department and the Center for the Neural Basis of Cogni-
tion at Carnegie Mellon University. He earned his B.A. in Com-
puter Science from Rutgers University in 1978, and his M.S. (1979)
and Ph.D. (1984) in Computer Science from Carnegie Mellon. Dr.
Touretzky’s research interests are in computational neuroscience, par-
ticularly representations of space in the rodent hippocampus and re-
lated structures, and high level primitives for robot programming.
He is presently developing an undergraduate curriculum in cognitive
robotics based on the Tekkotsu software framework described in this
article.

Neil S. Halelamien earned a B.S. in Computer Science and a B.S.
in Cognitive Science at Carnegie Mellon University in 2004, and is
currently pursuing his Ph.D. in the Computation & Neural Systems
program at the California Institute of Technology. His research inter-
ests are in studying vision from both a computational and biological
perspective. He is currently using transcranial magnetic stimulation
to study visual representations and information processing in visual
cortex.

Ethan J. Tira-Thompson is a graduate student in the Robotics Institute
at Carnegie Mellon University. He earned a B.S. in Computer Science
and a B.S. in Human-Computer Interaction in 2002, and an M.S. in
Robotics in 2004, at Carnegie Mellon. He is interested in a wide variety
of computer science topics, including machine learning, computer vi-
sion, software architecture, and interface design. Ethan’s research has
revolved around the creation of the Tekkotsu framework to enable the
rapid development of robotics software and its use in education. He
intends to specialize in mobile manipulation and motion planning for
the completion of his degree.

Jordan J. Wales is completing a Master of Studies in Theology at the
University of Notre Dame. He earned a B.S. in Engineering (Swarth-
more College, 2001), an M.Sc. in Cognitive Science (Edinburgh, UK,
2002), and a Postgraduate Diploma in Theology (Oxford, UK, 2003).
After a year as a graduate research assistant in Computer Science at
Carnegie Mellon, he entered the master’s program in Theology at Notre
Dame and is now applying to doctoral programs. His research focus
in early and medieval Christianity is accompanied by an interest in
medieval and modern philosophies of mind and their connections with
modern cognitive science.

Springer

Auton Robot (2007) 22:425–435 435

Kei Usui is a masters student in the Robotics Institute at Carnegie
Mellon University. He earned his B.S. in Physics from Carnegie Mellon
University in 2005. His research interests are reinforcement learning,
legged locomotion, and cognitive science. He is presently working on
algorithms for humanoid robots to maintain balance against unexpected
external forces.

Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

