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Chapter 4

Logistic Regression as a Classifier

In this chapter, we discuss how to approximate the probabilityP(yq | Sp, xq), i.e., the probability

that if the underlying system isSp, corresponding to a certain inputxq, the system’s output is

yq. We explore a new memory-based method,locally weighted logistic regression, which aims

at approximatingP(yq | Sp, xq) when the outputyq is categorical.

Figure 4-1 illustrates the task of this chapter. Suppose there is a system,Sp, whose input space

is 2-dimensional, and the output is boolean. Suppose a unlabeled data point is (xq, yq), to

approximateP(yq | Sp, xq), we need some knowledge of systemSp. Memory-based methods

assume that the knowledge comes from the previous observations of the system’s behav

the memory data points or the training data points, as the circles and crosses in Figure 4-

circles correspond to those memory data points ofSp with outputs equal to0, the crosses cor-

respond to the other memory data points with outputs equal to1. Now, if there come two que-

ries, residing at the positions of the dark triangles, if both of the queries’ outputs are “cr

then intuitivelyP((yq = “cross”) | Sp, xq= (2.0, 3.0)T ) should be close to1.0because the major-

ity of its neighbors are crosses, whileP((yq = “cross”) | Sp, xq = (4.5, 1.0)T ) should be near

0.0, based on the similar reasoning.
59
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4.1 Classification methods

Since the outputy is categorical, the approximation ofP(yq | Sp, xq) is a classification problem

by itself. System classification is to summarize a sequence of such classifications. The

many classification methods. The simplest one is nearest neighbor [Duda et al, 73; Aha

89]. Its derivative,k-nearest neighbors, is more popular. Kernel regression, as mention

Chapter 2, is another important method. These methods are referred to asmemory-basedor

instance-basedclassification methods [Atkeson et al, 97], while non-memory-based classi

tion methods include neural network [Bishop, 95], decision-tree [Quinlan, 93], hierarch

mixtures of experts (HME) [Jordan, et al, 93], Bayes classifier [James, 85], etc. Both mem

based classifiers and non-memory-based ones assume the knowledge of the systemSp comes

from the training data points. The distinguishing characteristic of memory-based classific

methods is that they defer most of the processing of the training data points until after a

is made. This characteristic is desirable for processing continuous streams of training da

queries in real-time systems. In addition, the memory-based classifiers are capable of se

ing according to the distribution and noise level of the training data points. Non-memory-b

methods try to learn the underlying function model of the systemSp before any query comes

For example, neural networks have been proved capable of approximating any functio

x1

x2

0

1.0

3.0

2.0 4.5

Figure 4-1: An illustration of the classification task.
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there is no restriction of the numbers of its hidden layers and its hidden nodes. Given a

cient number of training data points, neural network uses them to approximate the unde

function relationship of the input and output. Once the training is done, the training data p

are tossed away. Then, we wholly rely only on the trained neural network to process any

ries.

Let’s pick up some popular classification methods, and discuss them in a little depth.

1. Nearest neighborhood or1-nearest neighborhood doesn’t perform satisfactorily in mos

cases, because it is too sensitive to the noise of the single nearest neighboring data p

k-nearest neighborhood performs quite well in many domains. But notice that it does

recognize the “boundary” of the different patterns. Besides,k-nearest neighborhood may

be influenced by the density of the neighboring data points along the border. In the follo

ing diagram, intuitively the output of the query (the dark triangle) should be a cros

because it is on the cross side. However,k-nearest neighborhood’s conclusion tends to be

circle, because among thek nearest neighboring data points, the majority are circles.

2. Kernel regression is a good method for interpolation. However, it is not ideal for extrap

lation. Suppose a query resides at a location remote from the centroid of other mem

data points, like the reversed triangles in the above diagram, Kernel regression can

clearly decide if the category of the reversed triangle. Instead, it tends to assign 50% to

probability for the query’s output to be “cross” (or “circle”).

3. The simple Bayes classifier, referring to Section 3.3, puts too strong assumptions on

distribution of the data points. The conventional Bayes classifier assumes that if the o
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puts are boolean, the memory data points distribute in two clusters, one for the mem

data points with output equal to 0, the other cluster for the data points with output equa

1. Furthermore, the points are Gaussian-distributed in the input space so that the shap

the clusters are ellipses. Referring to Figure 4-1, these restrictions are too strong for m

classification problems. Even if we extend Bayes classifier to consider multiple clusters

is still too hard to meet the requirement that the shapes of these clusters must be ellip

Another concern about Bayes classifier is that it needs a large number of paramete

decide the centroids and the shapes of the Gaussian ellipses, this problem becomes

severe when we employ multiple ellipses.

4. The idea of a decision tree [Quinlan, 93] is to partition the input space into small se

ments, and label these small segments with one of the various output categories. How

conventional decision tree only does the partitioning to the coordinate axes. It is plaus

that with the growth of the tree, the input space can be partitioned into tiny segments s

to recognize subtle patterns. However, overgrown trees lead to overfitting. More flexi

than the conventional decision tree, CART [Breiman et al, 84] and Linear Machine De

sion Tree [Utgoff et al, 91] can divide the input space using oblique lines. However, a

nonlinear boundary may either make the tree overgrown or reduce the accuracy of

classification.

In this thesis, we explore a locally weighted version of logistic regression which can be us

a new memory-based classification method. Our method shares the properties of other

ory-based classification methods. Besides, our method has some other good properties,

ing simplicity, capability of extrapolating, and a known confidence interval. Concerning

accuracy, our new method is competitive with others, supported by the experimental res
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4.2 Global logistic regression

Locally weighted logistic regression can be used to approximateP(yq | Sp, xq). Let’s begin with

a very simple case with boolean output, shown in the following figure.

The straightforward way to approximate this function is to use two line segments to fit the

which are also referred to as training data points. However, to be learnable, we want to

differentiable function to do the fitting instead of using two line segments.Logistic function,

which is also referred to assigmoidfunction, can be employed here. Logistic function is

monotonic, continuous function between0 and1, whose shape is shown as the grey curve

the above figure. Mathematically, it is defined as,

(4-1)

where is the input vector of the query, and is the parameter vector. as the proba

for  to be1, i.e.

.

Therefore, deciding the output of a query is now equivalent to finding the value of .Global

logistic regression assumes that all data points share the same parameter vector with the

i.e.
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While local logistic regression allows vary cross the input space, but it changes smoo

For example, if and are neighboring to each other, then we assume and mu

close to each other, too. Back to global logistic regression, a good estimate of should

in plain words, “go through”, all the training data points as well as possible. Mathematic

the estimate of  can be derived by maximizing the likelihood as following,

(4-2)

Global logistic regression is a well-established algorithm in statistical literature [McCullag

al, 89]. Although we discuss only the binary output case here, global logistic regression is

to be extended to multiple categorical output cases. We will talk about this later.

The simplest classification problem is illustrated as Figure 4-2. The input is one-dimens

which is represented by the horizontal axis; the output is boolean, represented by0 or 1 on the

vertical axis. The small circles in the pictures are the data points in memory. Global log

regression works perfectly in the noise free case illustrated by Figure 4-2 (a), because the

tic function curve goes through most of the data points in memory. Global logistic regres

also works in the noisy case shown as Figure 4-2 (b). Although the function curve moves

way between the data points, the curve is close to most of the data points. In summary,

logistic regression can be used as a noise tolerant classification method.

β1 β2 ... βN β= = = =

β
˜ i

x
˜1 x

˜2 β
˜ 1

β
˜ 2

β
˜

β
˜

Lik G P yi Sp xi,( )
i 1=

N

∏ πi
yi 1 πi–( )

1 yi–

i 1=

N

∏= =

1

1 1 x
˜ i

T,( )β
˜

–( )exp+
-----------------------------------------------

yi 1 x
˜ i

T,( )β
˜

–( )exp

1 1 x
˜ i

T,( )β
˜

–( )exp+
-----------------------------------------------

1 yi–

i 1=

N

∏=



Chapter 4: Logistic Regression as a Classifier 65

tains

ction

re are

hink is

ions.

ed as

ssion

gle

thers.

ory,
The fatal weakness of global logistic regression is shown in Figure 4-2 (c). Since it con

more than two segments, global logistic regression does not work. Recalling logistic fun

is a monotonic function, that is the reason global logistic regression fails whenever the

more than two segments. There are two approaches to solve this problem. One way to t

that although one logistic function does not work, we can combine several logistic funct

In fact, neural networks, especially feed-forward multi-layer perceptrons, can be regard

an implementation of this idea.

The second approach resorts to the localization paradigm. The idea of local logistic regre

is that although no single logistic function works well globally, in any local region a sin

function should be capable of doing the classification.

There are several versions of local logistic regression that can be investigated.K-nearest neigh-

bor local regression would only select those neighboring data points, and ignores all o

Locally weighted version of logistic regression does not ignore any data points in mem

instead, it discriminates the data points by assigning weights to them.

Figure 4-2: (Global) logistic regression for classification.

Global logistic regression  Global logistic regression
 works for simple pattern
 with noise.

Global logistic regression
does not work for complex
pattern.

works perfectly for simple
pattern.

(a) (b) (c)

x x x

y=1 y=1

y=0

y=1

y=0 y=0
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4.3 Locally Weighted Logistic Regression

4.3.1 Maximum Likelihood Estimation

Locally weighted logistic regression is very similar to the global logistic regression, excep

the locally weighted version assign a weight to . Differing from Equation 4-2,

locally weighted version of likelihood is,

(4-3)

The weight is a function of the Euclidean distance from thei’th memory data point to the query

Other metrics of distance are also possible depending on the specific domains. The

weighting function definition is referred to asKernel width. The influence of Kernel width will

be discussed shortly. Due to the weights, those data points remote from the query have s

weights, while the neighboring memory data points have bigger weights.

Using Newton-Raphson algorithm, and through some algebraic manipulations, the max

likelihood estimate of  can be simplified as,

(4-4)

Suppose there areN data points in the memory, each data point consists of ad-dimensional

input vector and a boolean output.X is then a matrix. Thei’th row of X matrix is

(1, xi
T). And is a diagonal matrix, whosei’th diagonals element is, ,

where  is the derivative of  with respect to , i.e.,

. (4-5)
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is the weight defined in Equation 4-3. The last item, is a ratio of to . Newt

Raphson algorithm starts from a random vector of , usually we assign to be zero v

The recursive process converges very quickly, usually no more than 10 loops. Once we g

maximum likelihood estimate of , we can estimate the query’s .

Also notice that,  is the asymptotic variance matrix of .

Now let us go back to the case of Figure 4-2 (c) and see if locally weighted logistic regre

classifier is capable of solving the problem where global logic regression fails. The res

shown in Figure 4-3 (a). The circles are the memory data points. And each dot on the

curve, which is , is plotted by doing its own locally weighted regression at that local reg

Locally weighted logistic regression works well in this case. Also, in the harder case of Fi

4-3 (b), it still works. Notice, is influenced by the noise but not the distribution of the d

points.

wi e yi πi– π'i

β
˜

βˆ
˜

0( )

β
˜

πq

XtWX( ) 1– β̂
˜

πq

πq

Locally weighted logistic
regression works well
for this noise free multi-
segment classification.

Figure 4-3: Locally weighted logistic regression as a classification technique
works robustly.

(a) (b)
x

y=0

y=1



68 Chapter 4: Logistic Regression as a Classifier

ernel

n

he

rting

timate

bil-

h

and

vel)
4.3.2 Weighting Function and Kernel Width

Referring to Equation 4-3, , the weight can be adjusted by the Kernel width.When the K

width is big, more data points have high weights. Therefore, a bigKw is usually preferred when

the noise level in memory is high. Extremely, whenKw goes to infinity, locally weighted logis-

tic regression is equivalent to the global one. WhenKw is small, only those close neighbors ca

effect the regression. Hence, a smallKw is good at recognizing the details of the memory. T

influence ofKw is demonstrated by Figure 4-4.

4.3.3 Confidence Interval

Our estimate is a point estimate, which is our best guess for the true value of . Repo

only the point estimate is often unsatisfactory. Some measure of how close the point es

is likely to be the true value is required. Theconfidence interval is such a metric.

The confidence interval of is an interval of plausible values for , ; the proba

ity or the confidence for the true value of falling into this interval is , in whic

is theconfidence level. Usually we pre-define a confidence level, then decide the lower

upper bounds,πL andπU, which are also effected by the density and consistency (noise le

of the data points in the neighborhood ofxq.

wi

Small K reduces bias Big K smoothes noise

(a) (b)

Figure 4-4: Kernel width adjusts the weighting function.

y=0

y=1

x
y=0

y=1

x
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Referring to Equation 4-1,π is a monotonic function of ; hence, to calculate the low

and upper bounds, we need know the lower and upper bounds of . Referring to

section 4.3.1, we can calculate the asymptotic variance of which is , wher

is decided by the memory data points and is effected by the distances from the query

memory data points. Notice that the asymptotic variance of is likely to be small when t

are more data points in the memory, especially in the neighborhood of the query. It is stra

forward to calculate the confidence interval of based on the upper and lower boun

.

The confidence intervals of the cases of Figure 4-3 (a) and (b) are plotted in Figure 4-5 (a

(b). When the data points distribute uniformly as Figure 4-5 (a), the confidence interval is

consistent. Otherwise, the confidence interval varies cross the input space.

According to ’s definition, referring to Equation 4-5, when is close to1.0, we tend to

predict that the query’s outputyq is likely to be1. However, if at the same time ’s confidenc

interval is too big, we should be conservative about our prediction. Figure 4-5 (b) shows

a situation: is almost zero, therefore, if we only rely on , we should predict the ou

will be 0. But since the confidence interval is very wide, we should be aware that there is

a lot of chance for the outputyq to be1.

1 xq
T,( )β

˜
1 xq

T,( )β
˜

β̂q X
T
WX( )

1–
X

W

β̂q

π̂q

xqβ̂q

The upper curve and the
lower one are the two
boundaries of the confi-
dence interval.

The CI is influenced by
the distribution of the
memory data and the noise.

(a) (b)

Figure 4-5: Confidence intervals for classification.
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Confidence interval is helpful for active learning and/or experimental designs. Whereve

confidence interval is wide, we need more data points in that region.

4.3.4 Multi-categorical classification inference

Up to now, we focus on boolean classification. In case the output has more than two outp

egories, locally weighted logistic regression method is still useful. But we should do s

modifications.

1. Suppose there arem output categories, we can represent the output by am-dimensional

vector. If a data point falls into the first category, its output, , is ; if it is in

the second category, is . In general, the distribution of output is multino

mial, in the form of,

where  the probability for the data point falling into thej’th category.

2. We assume  is decided by a function similar to logistic function,

Notice that the sum of ,j = 1, ...,m, is 1.0. And for each output category, there is a uni-

fying ; totally, there arem of them.

3. The likelihood can be constructed following the descriptions in Section 4.2 and sect

4.3. For example, the global likelihood, which assumes all data points share the same

defined by Equation 4-6,
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(4-6)

Now it is straightforward to follow the same inferences described in Sections 4.3 to figur

the locally weighted regression of  and the confidence interval of .

4.4 Comparison Experiment

Artificial Experiments

We artificially generate three data sets, each data consists of two input attributes (2-d input) and

a boolean output. In Figure 4-6, we represent those data points with output values equal0 by

circles, and represent the other data points, whose outputs are1, by crosses.

Figure 4-6 (a-c) are the contours of the values corresponding to three different memor

sets. Figure 4-6 (a) shows a simple case, in which locally weighted logistic regression d

perfect job. Figure 4-6 (b) is similar to Figure 4-6 (a) except that, the “boundary” of the

regions is messier, and there is noise involved as well. In this case, value increases0

to 1, starting from the bottom left corner to the top right one; hence, locally weighted log

regression works well, too. The small gradient of the contour of shows the influence o

inconsistency (noise) of the data points in memory. Figure 4-6 (c) is the hardest case, in

locally weighted logistic regression still works well. Figure 4-6 (d) is the contour ofconfidence

interval for the same memory as Figure 4-6 (c). It is apparent that the memory data po

noise level, as well as their distribution and density, influence the confidence interval.
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Real World Datasets

We use four binary output data sets from UCI’s machine learning dataset repository, Io

Pima., Breast., and Bupa. We try six different classifiers, including nearest neighbor meth1-

Nearest), k-nearest neighbors (k-Nearest), Kernel regression (Kernel), conventional Baye

classifier with two clusters (Bayes), C4.5 decision tree (Decision), feedforward perceptron

(Neural), global logistic regression (Global Logistic) and our locally weighted logistic regres

sion method (Local Logistic). The dimensionalities of the inputs vary from6-d to 34-d.

We split each data set into two parts, the first part contains two thirds of the data points, w

are used as the memory or the training dataset. The remaining one third of the data poi

used as the test set. We can approximate the accuracy of a certain method for a certain
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Figure 4-6: Three artificially generated data sets as the testbeds of locally
weighted logistic regression classifier.
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by theerror rate, which is the ratio of the number of the failures to the number of the tes

data points. For the same dataset, the lower the error rate, the better the classification m

performs.

With different Kernel width, locally weighted logistic regression may have different accurac

We split the range of the Kernel width into ten equal-length steps, and tried the logistic re

sions using these ten different Kernel widths, so as to find the optimal Kernel width. Simil

for k-nearest neighbor method and kernel regression, we enumerated parameterk from 10 to

100with step10; for perceptron, we tried one-hidden layer feedforward perceptron with1 to

10 hidden nodes. In this way, we found the best parameters for the various machine lea

methods.

For each dataset, we shuffled it five times; each time we split it into training set and testin

Hence, for each dataset by each method, we got five error-rates which were the best

mances of the method with the tuned-up parameter(s). We recorded the mean values o

error-rates in Table 4-1, along with the standard deviations in parentheses.

 Table 4-1: Comparison of logistic classifier with other methods

Error rate (%) Ionos. (34-d) Pima (8-d) Breast (9-d) Bupa (6-d)

1-Nearest 12.7 (2.5) 33.9 (1.8) 4.9 (0.6) 40.0 (2.4)

k-Nearnest 13.9 (2.9) 31.5 (4.7) 3.3 (0.5) 37.5 (5.8)

Kernel 12.7 (3.3) 30.9 (3.2) 3.3 (0.6) 37.3 (2.0)

Bayes 12.9 (1.2) 25.3 (2.3) 3.4 (1.2) 34.2 (3.6)

Decision 9.2 (2.1) 28.6 (3.0) 4.2 (1.1) 35.8 (3.2)

Neural 10.5 (3.2) 33.4 (2.0) 3.2 (0.6) 32.1 (4.5)

Global Logistic 12.4 (0.7) 24.9 (3.0) 3.9 (1.4) 34.4 (3.4)

Local Logistic 13.0 (0.4) 22.5 (2.8) 3.1 (0.7) 31.0 (2.7)
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The experiments show that the accuracy of the locally weighted logistic regression m

(Local Logistic) is competitive compared with other classification method. Some remark

listed as following,

1. It is not surprising that locally weighted logistic regression is more accurate in most ca

than 1-nearest neighborhood,k-nearest neighborhood, Kernel regression, convention

Bayes classifier, C4.5 decision tree, and global logistic regression according to our dis

sion in Section 4.1.

2. Global logistic regression’s performance is similar to that of the conventional Bayes cl

sifier with two clusters. But global logistic regression is computationally cheaper than t

conventional Bayes classifier. Suppose the input space’s dimensionality isd and the mem-

ory size is N, the computation cost of locally weighted logistic regression is

, while that of the conventional Bayes classifier with improved efficienc

by some tricks is , wherek is the number of clusters.

3. Concerning neural networks, locally weighted logistic regression does not outperform

in accuracy. Instead, an advantage comes from the general good properties of the mem

based approach over non-memory-based ones. As mentioned in the beginning of

chapter, Section 4.1, as well as [Atkeson et al., 97], because memory-based learning

not process data until the query arrives, the parameters of the logistic regression are

fixed in advance. When we update the memory, unlike neural network, less interfere

will happen, because the previous arrived memory data points are treated equally as

new comers. And by adjusting the parameters, we can shift the logistic regression cont

ously along the global-local spectrum.

4. Locally weighted logistic regression performs poorly on the Ionos dataset. The reaso

that the dimensionality of the input is very high (34-d). Maybe many input attributes a

irrelevant to the classification but only confuse the classifiers. When we selected the fi
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the fourth and the fifth attributes to be input, the mean value of error-rate of the local log

tic classifier dropped from13.0% to 10.7%, with standard deviation 0.7%.

To eliminate those less important input variables, recall that locally weighted logis

regression estimates the parameter vector . In fact, each element of indicates the

nificance of the corresponding input attribute for classification. If one element of

close to zero, it implies that the corresponding input attribute is not very relevant to t

classification job. We can get rid of the irrelevant input attributes using this heurist

Some preliminary experiments showed that the selection result was quite consistent

the nodes of decision tree.

4.5 Summary

In this thesis, we explore a locally weighted version of logistic regression which can be us

a new memory-based classification method. Our method shares the properties of other

ory-based classification methods. Besides, our method has some other desirable pro

including simplicity, competitive accuracy, capability of extrapolating, and confidence inte

In Chapter 5 and Chapter 6, we will discuss the issue about how to improve the efficien

locally weighted logistic regression as well as other memory-based methods.

β β

β
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