Chapter 4

Logistic Regression as a Classifier

In this chapter, we discuss how to approximate the probalﬁ(m“ So Xg), i.€e., the probability
that if the underlying system 1, corresponding to a certain inpxy, the system’s output is
Yq- We explore a new memory-based methodally weighted logistic regressiomhich aims

at approximatind®(yy | $,, %) when the outpuy is categorical.

Figure 4-1 illustrates the task of this chapter. Suppose there is a s\&fenmose input space

is 2-dimensional, and the output is boolean. Suppose a unlabeled data poityg,(to
approximateP(yy | S, %), we need some knowledge of syst&n Memory-based methods
assume that the knowledge comes from the previous observations of the system’s behavior, i.e.
the memory data points or the training data points, as the circles and crosses in Figure 4-1. The
circles correspond to those memory data point§afith outputs equal t@, the crosses cor-
respond to the other memory data points with outputs equalfmow, if there come two que-

ries, residing at the positions of the dark triangles, if both of the queries’ outputs are “cross”,
then intuitivelyP((yq = “cross”) | S, = (2.0, 3.0)") should be close th.0because the major-

ity of its neighbors are crosses, whit(yy = “cross’) | §,, xq= (4.5, 1.0)T ) should be near

0.0, based on the similar reasoning.
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Figure 4-1: An illustration of the classification task.

4.1 Classification methods

Since the outpuy is categorical, the approximation By, | S,, Xg) is a classification problem

by itself. System classification is to summarize a sequence of such classifications. There are
many classification methods. The simplest one is nearest neighbor [Duda et al, 73; Aha et al,
89]. Its derivative k-nearest neighbors, is more popular. Kernel regression, as mentioned in
Chapter 2, is another important method. These methods are referrednenasry-basedr
instance-basedlassification methods [Atkeson et al, 97], while non-memory-based classifica-
tion methods include neural network [Bishop, 95], decision-tree [Quinlan, 93], hierarchical
mixtures of experts (HME) [Jordan, et al, 93], Bayes classifier [James, 85], etc. Both memory-
based classifiers and non-memory-based ones assume the knowledge of theSsysteres

from the training data points. The distinguishing characteristic of memory-based classification
methods is that they defer most of the processing of the training data points until after a query
is made. This characteristic is desirable for processing continuous streams of training data and
gueries in real-time systems. In addition, the memory-based classifiers are capable of self-tun-
ing according to the distribution and noise level of the training data points. Non-memory-based
methods try to learn the underlying function model of the sys¥gimefore any query comes.

For example, neural networks have been proved capable of approximating any functions, if
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there is no restriction of the numbers of its hidden layers and its hidden nodes. Given a suffi-
cient number of training data points, neural network uses them to approximate the underlying
function relationship of the input and output. Once the training is done, the training data points
are tossed away. Then, we wholly rely only on the trained neural network to process any que-

ries.

Let's pick up some popular classification methods, and discuss them in a little depth.

1. Nearest neighborhood @rnearest neighborhood doesn’t perform satisfactorily in most
cases, because it is too sensitive to the noise of the single nearest neighboring data point.
k-nearest neighborhood performs quite well in many domains. But notice that it does not
recognize the “boundary” of the different patterns. Besi#tasgarest neighborhood may
be influenced by the density of the neighboring data points along the border. In the follow-

ing diagram, intuitively the output of the query (the dark triangle) should be a cross,

because it is on the cross side. Howekengarest neighborhood’s conclusion tends to be a

circle, because among tkeearest neighboring data points, the majority are circles.

2. Kernel regression is a good method for interpolation. However, it is not ideal for extrapo-
lation. Suppose a query resides at a location remote from the centroid of other memory
data points, like the reversed triangles in the above diagram, Kernel regression can not
clearly decide if the category of the reversed triangle. Instead, it tends to assign 50% to the

probability for the query’s output to be “cross” (or “circle”).

3. The simple Bayes classifier, referring to Section 3.3, puts too strong assumptions on the

distribution of the data points. The conventional Bayes classifier assumes that if the out-
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puts are boolean, the memory data points distribute in two clusters, one for the memory
data points with output equal to 0, the other cluster for the data points with output equal to

1. Furthermore, the points are Gaussian-distributed in the input space so that the shapes of
the clusters are ellipses. Referring to Figure 4-1, these restrictions are too strong for most
classification problems. Even if we extend Bayes classifier to consider multiple clusters, it

is still too hard to meet the requirement that the shapes of these clusters must be ellipses.
Another concern about Bayes classifier is that it needs a large number of parameters to
decide the centroids and the shapes of the Gaussian ellipses, this problem becomes more

severe when we employ multiple ellipses.

4. The idea of a decision tree [Quinlan, 93] is to partition the input space into small seg-
ments, and label these small segments with one of the various output categories. However,
conventional decision tree only does the partitioning to the coordinate axes. It is plausible
that with the growth of the tree, the input space can be partitioned into tiny segments so as
to recognize subtle patterns. However, overgrown trees lead to overfitting. More flexible
than the conventional decision tree, CART [Breiman et al, 84] and Linear Machine Deci-
sion Tree [Utgoff et al, 91] can divide the input space using oblique lines. However, any
nonlinear boundary may either make the tree overgrown or reduce the accuracy of the

classification.

In this thesis, we explore a locally weighted version of logistic regression which can be used as
a new memory-based classification method. Our method shares the properties of other mem-
ory-based classification methods. Besides, our method has some other good properties, includ-
ing simplicity, capability of extrapolating, and a known confidence interval. Concerning the

accuracy, our new method is competitive with others, supported by the experimental results.
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4.2 Global logistic regression

Locally weighted logistic regression can be used to approxiPgte] S, X;). Let's begin with

a very simple case with boolean output, shown in the following figure.

The straightforward way to approximate this function is to use two line segments to fit the dots,
which are also referred to as training data points. However, to be learnable, we want to use a
differentiable function to do the fitting instead of using two line segmeudgistic function,

which is also referred to asigmoidfunction, can be employed here. Logistic function is a
monotonic, continuous function betwe@mand1, whose shape is shown as the grey curve in

the above figure. Mathematically, it is defined as,

_ 1
TT

= 4-1
T 1+ exp((L x)B) o

where x,, is the input vector of the query, afild  is the parameter vegfor.  as the probability

q
for Yq to bel,i.e.

T, = P(yq = 1|Sp, xq) Or, equivalently,

s with probability T,
Ya = 5 with probability 1-T,

Therefore, deciding the output of a query is now equivalent to finding the val@eGibbal
logistic regression assumes that all data points share the same parameter vector with the query,

i.e.
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[31:[32:--- :BN:B

While local logistic regression allow§,  vary cross the input space, but it changes smoothly.
For example, ifx; and, are neighboring to each other, then we asyme f(,and  must be
close to each other, too. Back to global logistic regression, a good estimfite of  should fit, or
in plain words, “go through”, all the training data points as well as possible. Mathematically,

the estimate of3  can be derived by maximizing the likelihood as following,

N N

[TPOIS %) = [/ (a-m)

i=1 i=1

N { 1 H exp(—(L, X/ )B) T‘Vi

il:ll 1+ exp(—(1 ¥ )B)] [ 1+ exp(~(1 % )B)

Lik
(4-2)

Global logistic regression is a well-established algorithm in statistical literature [McCullagh et
al, 89]. Although we discuss only the binary output case here, global logistic regression is ready

to be extended to multiple categorical output cases. We will talk about this later.

The simplest classification problem is illustrated as Figure 4-2. The input is one-dimensional,
which is represented by the horizontal axis; the output is boolean, represeried bpn the
vertical axis. The small circles in the pictures are the data points in memory. Global logistic
regression works perfectly in the noise free case illustrated by Figure 4-2 (a), because the logis-
tic function curve goes through most of the data points in memory. Global logistic regression
also works in the noisy case shown as Figure 4-2 (b). Although the function curve moves mid-
way between the data points, the curve is close to most of the data points. In summary, global

logistic regression can be used as a noise tolerant classification method.
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Figure 4-2: (Global) logistic regression for classification.

The fatal weakness of global logistic regression is shown in Figure 4-2 (c). Since it contains
more than two segments, global logistic regression does not work. Recalling logistic function
is a monotonic function, that is the reason global logistic regression fails whenever there are
more than two segments. There are two approaches to solve this problem. One way to think is
that although one logistic function does not work, we can combine several logistic functions.
In fact, neural networks, especially feed-forward multi-layer perceptrons, can be regarded as

an implementation of this idea.

The second approach resorts to the localization paradigm. The idea of local logistic regression
is that although no single logistic function works well globally, in any local region a single

function should be capable of doing the classification.

There are several versions of local logistic regression that can be investigatedrest neigh-
bor local regression would only select those neighboring data points, and ignores all others.
Locally weighted version of logistic regression does not ignore any data points in memory,

instead, it discriminates the data points by assigning weights to them.
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4.3 Locally Weighted Logistic Regression

4.3.1 Maximum Likelihood Estimation

Locally weighted logistic regression is very similar to the global logistic regression, except that
the locally weighted version assign a weighPt(yi|Sp, x;) . Differing from Equation 4-2, the

locally weighted version of likelihood is,

: N W, _ _ [ distancéXx;, xq)z[
Lik, = |_| P(Y;|Sp %)) in whichw, = exp% 2 : (4-3)
i=1 w

The weight is a function of the Euclidean distance fromittiienemory data point to the query.

Other metrics of distance are also possible depending on the specific domains, The in the
weighting function definition is referred to &&rnel width The influence of Kernel width will

be discussed shortly. Due to the weights, those data points remote from the query have smaller

weights, while the neighboring memory data points have bigger weights.

Using Newton-Raphson algorithm, and through some algebraic manipulations, the maximum

likelihood estimate o can be simplified as,

~ ~ -1
Brr+1) = By + (XTWX) X' We (4-4)

Suppose there amd data points in the memory, each data point consists @flanensional
input vector and a boolean outpdtis then aN x (1 +d) matrix. Th&th row of X matrix is
(1,%). And W is a Nx N diagonal matrix, whoséh diagonals element is\V, = w,Tt,

wherett; is the derivative af, ~ with respectfio , i.e.,

L exp(<(Lx)B) g
(1+ exp(—(L X )B))" "

Tg

(4-5)
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Figure 4-3: Locally weighted logistic regression as a classification technique
works robustly.

w, is the weight defined in Equation 4-3. The lastiteen, isaratiopfm, ~ mto . Newton-
Raphson algorithm starts from a random vectofof , usually we a@@gn to be zero vector.
The recursive process converges very quickly, usually no more than 10 loops. Once we get the

maximum likelihood estimate ¢f , we can estimate the quety’s
Also notice that,(XtWX)_1 is the asymptotic variance matrif of

Now let us go back to the case of Figure 4-2 (c) and see if locally weighted logistic regression
classifier is capable of solving the problem where global logic regression fails. The result is
shown in Figure 4-3 (a). The circles are the memory data points. And each dot on the solid
curve, which ian , is plotted by doing its own locally weighted regression at that local region.
Locally weighted logistic regression works well in this case. Also, in the harder case of Figure
4-3 (b), it still works. Notice,nq is influenced by the noise but not the distribution of the data

points.
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Figure 4-4: Kernel width adjusts the weighting function.

4.3.2 Weighting Function and Kernel Width

Referring to Equation 4-3y; , the weight can be adjusted by the Kernel width.When the Kernel
width is big, more data points have high weights. Therefore, &} usually preferred when

the noise level in memory is high. Extremely, wh€g goes to infinity, locally weighted logis-

tic regression is equivalent to the global one. WHgpis small, only those close neighbors can
effect the regression. Hence, a smg)) is good at recognizing the details of the memory. The

influence ofK,, is demonstrated by Figure 4-4.

4.3.3 Confidence Interval

Our estimateﬁq IS a point estimate, which is our best guess for the true vaﬁde of . Reporting
only the point estimate is often unsatisfactory. Some measure of how close the point estimate

is likely to be the true value is required. Tdanfidence intervabk such a metric.

The confidence interval ot[q is an interval of plausible valuegf&)r[nu T, ] ; the probabil-
ity or the confidence for the true value of,  falling into this interval®( 1-a)% , in which

a is theconfidence levelJsually we pre-define a confidence level, then decide the lower and
upper boundsiy andry,, which are also effected by the density and consistency (noise level)
of the data points in the neighborhoodkgf
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Figure 4-5: Confidence intervals for classification.

Referring to Equation 4-Ifis a monotonic function of1, xg)g ; hence, to calculate the lower
and upper bounds, we need know the lower and upper bounds mb[} . Referring to Sub-
section 4.3.1, we can calculate the asymptotic variancf&qof whiaﬁixlTsWX)_l , Where

is decided by the memory data points &d is effected by the distances from the query to the
memory data points. Notice that the asymptotic variancécpf is likely to be small when there
are more data points in the memory, especially in the neighborhood of the query. It is straight-

forward to calculate the confidence interval fof based on the upper and lower bounds of

Xqu.

The confidence intervals of the cases of Figure 4-3 (a) and (b) are plotted in Figure 4-5 (a) and
(b). When the data points distribute uniformly as Figure 4-5 (a), the confidence interval is quite

consistent. Otherwise, the confidence interval varies cross the input space.

According ot ’s definition, referring to Equation 4-5, whég is closd 1@ we tend to
predict that the query’s outpy, is likely to bel. However, if at the same timirﬁ 's confidence
interval is too big, we should be conservative about our prediction. Figure 4-5 (b) shows such
a situation:f'[q is almost zero, therefore, if we only relyf]@ , we should predict the output
will be 0. But since the confidence interval is very wide, we should be aware that there is still

a lot of chance for the outpy to bel.
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Confidence interval is helpful for active learning and/or experimental designs. Wherever the

confidence interval is wide, we need more data points in that region.

4.3.4 Multi-categorical classification inference

Up to now, we focus on boolean classification. In case the output has more than two output cat-
egories, locally weighted logistic regression method is still useful. But we should do some

modifications.

1. Suppose there arma output categories, we can represent the output bycdamensional
vector. If a data point falls into the first category, its outpyt, [is0, ..., qT pifitisin

T

the second categoryy [, 1, ..., Q . In general, the distribution of output is multino-

mial, in the form of,
Yo Y, m

—_ q q —_
P(yq|Sp, gq) =M. T = | |

where T; the probability for the data point falling into jltle category.

2. We assume; is decided by a function similar to logistic function,

T = (exp((L%g)B,))/ Y exp((L xg)B)
j=1

Notice that the sum oﬁj 1,=1, ...,m,is 1.0. And for each output category, there is a uni-

fying Qj; totally, there aren of them.

3. The likelihood can be constructed following the descriptions in Section 4.2 and section
4.3. For example, the global likelihood, which assumes all data points share thelsame , is

defined by Equation 4-6,
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N N m
Lika(B) = T P4[So) = [T ™ (4-6)

=1 I=1j=1

Now it is straightforward to follow the same inferences described in Sections 4.3 to figure out

the locally weighted regression @E and the confidence inter\m(! of

4.4 Comparison Experiment

Artificial Experiments

We artificially generate three data sets, each data consists of two input attribatep(t) and
a boolean output. In Figure 4-6, we represent those data points with output values €nmal to

circles, and represent the other data points, whose outputshgrerosses.

Figure 4-6 (a-c) are the contours of th@ values corresponding to three different memory data
sets. Figure 4-6 (a) shows a simple case, in which locally weighted logistic regression does a
perfect job. Figure 4-6 (b) is similar to Figure 4-6 (a) except that, the “boundary” of the two
regions is messier, and there is noise involved as well. In this ¢gse,  value increas®s from
to 1, starting from the bottom left corner to the top right one; hence, locally weighted logistic
regression works well, too. The small gradient of the contou“tqof shows the influence of the
inconsistency (noise) of the data points in memory. Figure 4-6 (c) is the hardest case, in which
locally weighted logistic regression still works well. Figure 4-6 (d) is the contoapaofidence
interval for the same memory as Figure 4-6 (c). It is apparent that the memory data points’

noise level, as well as their distribution and density, influence the confidence interval.
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Figure 4-6: Three artificially generated data sets as the testbeds of locally
weighted logistic regression classifier.

Real World Datasets

We use four binary output data sets from UCI's machine learning dataset repository, lonos.,
Pima., Breast., and Bupa. We try six different classifiers, including nearest neighbor method (
Neares}, k-nearest neighborsk{Nearest, Kernel regression (Kernel), conventional Bayes
classifier with two clusters (Bayes), C4.5 decision trBedjsion, feedforward perceptron
(Neural), global logistic regressiorlobal Logistiq and our locally weighted logistic regres-

sion methodl(ocal Logistig. The dimensionalities of the inputs vary fréad to 34-d

We split each data set into two parts, the first part contains two thirds of the data points, which
are used as the memory or the training dataset. The remaining one third of the data points are

used as the test set. We can approximate the accuracy of a certain method for a certain dataset
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by theerror rate, which is the ratio of the number of the failures to the number of the testing
data points. For the same dataset, the lower the error rate, the better the classification method

performs.

With different Kernel width, locally weighted logistic regression may have different accuracies.
We split the range of the Kernel width into ten equal-length steps, and tried the logistic regres-
sions using these ten different Kernel widths, so as to find the optimal Kernel width. Similarly,
for k-nearest neighbor method and kernel regression, we enumerated patamated O to
100with stepl0; for perceptron, we tried one-hidden layer feedforward perceptrontioh

10 hidden nodes. In this way, we found the best parameters for the various machine learning

methods.

For each dataset, we shuffled it five times; each time we split it into training set and testing set.
Hence, for each dataset by each method, we got five error-rates which were the best perfor-
mances of the method with the tuned-up parameter(s). We recorded the mean values of these

error-rates in Table 4-1, along with the standard deviations in parentheses.

Table 4-1: Comparison of logistic classifier with other methods

Error rate (%) lonos. (34-d) Pima (8-d Breast (9-d)  Bupa (6-d)
1-Nearest 12.7 (2.5) 33.9(1.8) 4.9 (0.6 40.0 (2.4)
k-Nearnest 13.9 (2.9) 31.5 (4.7 3.3(0.5 37.5(5.8)

Kernel 12.7 (3.3) 30.9 (3.2) 3.3(0.6) 37.3 (2.0)
Bayes 12.9 (1.2) 25.3 (2.3) 3.4 (1.2) 34.2 (3.6)
Decision 9.2 (2.1) 28.6 (3.0) 4.2 (1.1) 35.8 (3.2)
Neural 10.5 (3.2) 33.4 (2.0) 3.2 (0.6) 32.1 (4.5)
Global Logistic 12.4 (0.7) 24.9 (3.0) 3.9(1.4) 34.4 (3.4)

Local Logistic 13.0 (0.4) 22.5 (2.8) 3.1(0.7) 31.0 (2.7)
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The experiments show that the accuracy of the locally weighted logistic regression method
(Local Logistic) is competitive compared with other classification method. Some remarks are

listed as following,

1. Itis not surprising that locally weighted logistic regression is more accurate in most cases
than 1-nearest neighborhood:nearest neighborhood, Kernel regression, conventional
Bayes classifier, C4.5 decision tree, and global logistic regression according to our discus-

sion in Section 4.1.

2. Global logistic regression’s performance is similar to that of the conventional Bayes clas-
sifier with two clusters. But global logistic regression is computationally cheaper than the
conventional Bayes classifier. Suppose the input space’s dimensionaigndthe mem-
ory size is N, the computation cost of locally weighted logistic regression is
O(d3 +d x N), while that of the conventional Bayes classifier with improved efficiency

by some tricks i§)(d3 xN+dx Nx K , whetkeis the number of clusters.

3. Concerning neural networks, locally weighted logistic regression does not outperform it
in accuracy. Instead, an advantage comes from the general good properties of the memory-
based approach over non-memory-based ones. As mentioned in the beginning of this
chapter, Section 4.1, as well as [Atkeson et al., 97], because memory-based learning does
not process data until the query arrives, the parameters of the logistic regression are not
fixed in advance. When we update the memory, unlike neural network, less interference
will happen, because the previous arrived memory data points are treated equally as the
new comers. And by adjusting the parameters, we can shift the logistic regression continu-

ously along the global-local spectrum.

4. Locally weighted logistic regression performs poorly on the lonos dataset. The reason is
that the dimensionality of the input is very high (34-d). Maybe many input attributes are

irrelevant to the classification but only confuse the classifiers. When we selected the first,
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the fourth and the fifth attributes to be input, the mean value of error-rate of the local logis-
tic classifier dropped frorh3.0%to 10.7% with standard deviatiof.7%

To eliminate those less important input variables, recall that locally weighted logistic
regression estimates the parameter ve@or . In fact, each elem@nt of indicates the sig-
nificance of the corresponding input attribute for classification. If one elemeit of is
close to zero, it implies that the corresponding input attribute is not very relevant to the
classification job. We can get rid of the irrelevant input attributes using this heuristic.
Some preliminary experiments showed that the selection result was quite consistent with

the nodes of decision tree.

4.5 Summary

In this thesis, we explore a locally weighted version of logistic regression which can be used as
a new memory-based classification method. Our method shares the properties of other mem-
ory-based classification methods. Besides, our method has some other desirable properties,

including simplicity, competitive accuracy, capability of extrapolating, and confidence interval.

In Chapter 5 and Chapter 6, we will discuss the issue about how to improve the efficiency of

locally weighted logistic regression as well as other memory-based methods.
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