Rethinking Networking Architectures for Cognitive Control

Karen Zita Haigh, Talib S. Hussain, Craig Partridge, Gregory D. Troxel
BBN Technologies
10 Moulton Street, Cambridge, MA 02138
{khaigh, thussain, craig, gdt}@bbn.com

Abstract

The field of adaptable communication networks is a rich
application area for artificial intelligence technology. Re-
cent developments in software defined radio technology have
opened up the opportunity to develop networks that are, in
principle, highly adaptable and effective under a much wider
range of operating conditions than currently possible. Now
is the time to work with the networking community to en-
sure that network architectures that actively support intelli-
gent control are designed in such a way that they will be
adopted by the networking community.

We present a design for a network architecture—developed
collaboratively by Al and networking researchers—that ex-
poses significant portions of the network for cognitive control
in a robust, consistent manner. We also identify some of the
cultural issues that arise due to differences in the approaches
of the networking and artificial intelligence communities.

Our project is not only the first networking architecture for
network modules to expose internals to a cognitive controller,
but also the first demonstration of cognitive control in a real-
world (not simulation) mobile network. '

Introduction

The demand is increasing for networking technologies that
support robust communication and functionality under chal-
lenging operating conditions. Network configurations are
currently hand-tuned and remain static during operations.
However, since user needs and operating conditions both
change over time, cognitive networks must be designed that
are be aware of their performance needs, determine if their
needs are being met, and revise system configurations to bet-
ter meet their needs. (Note that Al-style cognition is only
one method to build a cognitive network.)

In the Adaptive Dynamic Radio Open-Source Intelligent
Team (ADROIT) project, we designed a network architec-
ture that supports both real-time composibility of the net-
work stack, and cognitive control of the network for cogni-
tive radio teams.

The ADROIT architecture provides rich support for cog-
nitive applications, and allows the creation of a system that
recognizes that the situation has changed and adapts the

! This paper is based upon work supported by the Defense Advanced Research Projects Agency
(DARPA) under contract number NBCHC050166. Any opinions, findings and conclusions or rec-
ommendations expressed in this paper are those of the author(s) and do not necessarily reflect the
views of the Defense Advanced Research Projects Agency (DARPA); or its Contracting Agent, the
U.S. Department of the Interior, National Business Center, Acquisition & Property Management
Division, Southwest Branch.

node for improved performance; anticipates changes in net-
working needs and plans appropriate changes in configu-
ration for improved performance; and is able to make the
appropriate changes needed in any module within a node,
at any level of the networking stack and across multiple
nodes of the network. This paper describes ADROIT’s ar-
chitectural design, highlighting the main components that
allow a cognitive application to monitor and control a net-
work stack. We also summarize key discoveries and lessons
learned about how networking and Al researchers should
collaborate to realize cognitive networks.

Recent developments in software defined radio technol-
ogy have opened up the opportunity to develop networks
that are, in principle, highly adaptable and effective under
a much wider range of operating conditions than currently
possible. However, while these tools provide new flexibility,
none have addressed the issue of how to manage or control
them [1; 5; 9], instead expecting the network designer to ap-
propriately exploit the tools.

The unfortunate aspect of these approaches is that they
rely on APIs that are carefully designed to expose each pa-
rameter separately. This approach to network configuration
is not maintainable, for example as protocols are redesigned
or new parameters are exposed. It is also not amenable to
cognitive control. One issue is that there is no way to get
a “directory” of the parameters that can be observed or con-
trolled. Another issue is that there is no coordination mecha-
nism: what happens if a cognitive controller wants to set the
same parameter that another module wants to set? ADROIT
is the first architecture that supports changes to existing pro-
tocols and the addition of new protocols, without changes to
other existing components.

Most of the related work for adapting network behaviour
falls under the hat of cross-layer optimization, which has
a tremendous amount of literature. They generally adjust
only one (occasionally two) parameters, usually with hand-
built models, e.g. [6; 7; 10]. There are a few approaches
that learn models of the parameter interactions, e.g. [2;
13; 17], but even these have limited numbers of parameters.
Many of these approaches face two additional limitations:
they are used only in simulated environments, and they do
not support node mobility. Applications and protocols de-
veloped for the fixed, wired environment do not adapt trans-
parently to the mobile, wireless environment [4]. ADROIT’s
architecture was designed to support the control of any num-
ber of parameters and use any kind of model to control them.
ADROIT is also the first known cognitive control mecha-

nism that was demonstrated in a real-world networking sys-
tem (not simulation); it used neural networks to dynamically
control radio behavior for a team of mobile nodes [16].

Al Challenges in Networking

The goal of a cognitive network is to optimize the overall be-
havior of the distributed nodes in the network, for a given ob-
jective function, determined by current needs, e.g. as in [8].
Network effectiveness quantifies how well the network sat-
isfies application and node requirements from mission, situ-
ational, and social standpoints. It can include a wide variety
of issues including bandwidth, application-level quality of
service, energy, network connectivity, and security.

There are many interesting challenges for Al in network-
ing. The most immediate one is the massive scale in-
volved: there are roughly 600 observable parameters and
400 controllable parameters (possibly continuous-valued)
to configure per node’>. We thus have a distributed,
low-communication, partially-observable, high-latency op-
timization problem of approximately p”™V choices per
timestep®; one second would be a large timestep. Charac-
teristics that make this an interesting domain for Al include:

Low-communication: Nodes cannot share all knowledge
with all other nodes; it would overwhelm the network.
Partially-observable: Many factors that affect communi-
cation can not be observed. Few radios, for example, have

a “fog” sensor.

High-latency: Many actions cause a delayed effect. For ex-
ample, data transmissions from one node may only affect
downstream nodes; the result takes time to propagate back
to the first transmitter.

Ambiguous observations: Detection and understanding of
a change in situation is not always simple. For example,
how does the system automatically tell the difference be-
tween short-term fade versus entering a building?

Complex interactions: Networking parameters have deep,
poorly-understood interactions with each other and with
system performance. In many cases, specific pair-wise
interactions can be identified, such as increased power re-
duces battery life. However, most of these pair-wise inter-
actions are carefully caveatted by the networking commu-
nity, with conditionals that are rarely observable or com-
putable. Cognitive control in the general case is therefore
seldom simple: the level at which symptoms appear may
not be the level at which changes to the node configura-
tion must be made; symptoms may be ambiguous at one
level or at a given time and require more context; changes
at one layer may impact other layers and may cause new
issues; and the timing of changes may be critical.

Complex temporal feedback loops: Within a node, cer-
tain activities occur at very rapid speeds (e.g., between
the Medium Access Control (MAC) and Physical layers)
requiring very a very tight feedback loop to support cog-
nitive control. Other activities (e.g., at the Routing layer)

2No current system exposes all; the highest known is about 100
parameters, of which 30 are controllable.

3 P = number of parameters, N = number of nodes, and j is the
average number of values that a parameter can take.

occur on a longer time-scale and cognitive control algo-
rithms may need to take into account a wider range of
factors in a slow feedback loop. Between nodes, there is
yet a longer feedback loop between changes that are made
and the effects that are observed in network-level perfor-
mance. The variety of temporal loops and their dramatic
speed differences means that correlating cause and effect
of actions is particularly challenging.

In addition to the natural complexities of the domain, hu-
man users complicate the problem by requiring a certain
quality of service for their application. Multiple users have
interacting requirements and policies, thus creating a com-
plex multi-objective function [8] that captures mission, situ-
ational and social standpoints.

Multi-node coordination is a particularly interesting chal-
lenge. There is a very strong norm in the networking com-
munity that all nodes must be designed and (statically) con-
figured to interoperate. Further, typical ad hoc network or
radio projects build a group of homogenous nodes. ADROIT
represents a radical departure from this stance, in that each
node has an independently operating cognitive controller,
and thus network nodes may be heterogeneous, and may
be in non-interoperable configurations. Independent cog-
nitive controllers allow nodes to make decisions on a rapid
timescale (based on locally observable values), even when
the network is partitioned.* Meanwhile traditional Al has
always assumed that that communication is “safe,” negotiat-
ing and coordinating only the application-level tasks [11; 12;
18]; moreover they also generally require very high commu-
nications overhead. Ensuring that multiple nodes are coor-
dinated enough to maintain basic communications is a key
research area for cognitive networking.

ADROIT Architecture Overview

The ADROIT project focused on designing the architecture
to support cognitive control of the stack. Central to our ar-
chitecture is the concept of networking modules, where a
traditional network layer maps to multiple modules in our
system. This required major modifications to how network-
ing protocols function, and a rich treatment of how modules
interact with each other and other system components, as
illustrated in Figure 1. Application data flows through the
collection of network modules. Application data flows down
from the applications, through the networking protocols and
the radio and out into the ether. Similarly, data flows up from
the the radio and networking protocols to the applications.
Network modules form the basic element of ADROIT.
A module encapsulates a portion of a networking protocol
that represents an important property or behavior to observe
and/or an important property or behavior to adjust. The
network modules work together to implement the particular
type of radio required for the applications to do their work.
The ability to change and reconfigure modules is central to
ADROIT’s flexibility, and a module may be added, removed,

“The alternative is to have one cognitive controller for several
nodes; while coordination issues are reduced, communication over-
head increases dramatically and intelligent control is vulnerable to
network partitions.

Reconfiguration M anager

Controls run-time
execution order Get Configurations
Invoke Modules

Remove Modules

Requesting Modules,

Module

Network Broker Parameters and
. . Properties
L ayer Registering Modules = Assigns unique handles P
to modules and parameters
- Sets UF event monitoring
< o poll, value-change, threshold .
g3 - Sets up notifications of Re/Setting Values
T 8 events .
z= : - Pass through of set/get Cognitive
Re/Setting Values values X Layer
- Note: Broker—broker Observing Parameters
communication with other
nodes
- Pass through of Reconfig
commands Get Configurations
Network Observing Parameters Invoke Modules

Remove Modules

Figure 1: At the heart of ADROIT, the Broker functions as a system bus, relaying commands and information among its clients.

started or stopped while the radio is running. In a running
system, each active module is an instance (or “Invocation’)
of a specific type (or “Implementation). A given Imple-
mentation defines a suite of observable and comtrollable pa-
rameters. These parameters are revealed to other compo-
nents in the system, such as the Cognitive Layer and other
network modules, via the Broker.

The network modules are directly managed by two enti-
ties: the Reconfiguration Manager and the Broker. Network
modules are indirectly managed by clients of the Broker.

The Broker serves as a kind of system bus between the
modular software and any entity that wishes to change how
a running module Invocation behaves. So, for instance, if a
timer parameter is to be adjusted, that request is sent to the
Broker, which passes the request on to the relevant module
Invocation. Communication goes through the Broker even
for module-to-module requests. Anything that wishes to ob-
serve, monitor, or change the state of an ADROIT radio will
do so via a command relayed by the Broker. Furthermore,
the Broker will notify interested parties of any changes in
the radio’s state or configuration.

The Reconfiguration Manager is responsible for creat-
ing working configurations of network modules. In general,
a valid configuration may be imagined in terms of a tra-
ditional network stack, but where each layer contains one
or more high-level modules that each contain sub-modules
nested to an arbitrary depth. The architecture also allows
for more radical arrangements of modules in principle (i.e.,
blurring lines between the layers). Different Implementa-
tions define different functional and data flow requirements
& capabilities, and the Reconfiguration Manager will ensure
that the Invocations in a proposed configuration together sat-
isfy those requirements.

The Cognitive Layer is a collection of cognitive con-
trollers that manage the radio’s behavior, based on their eval-
uation of the radio’s performance, information from appli-
cations about how applications perceive the radio’s perfor-

mance, and perhaps information from cognitive controllers
on other radios.

A cognitive controller needs to improve the performance
of a highly complex, partially observable, dynamic system
in a distributed enviroment. Based on this vision, the net-
work modules and the Cognitive Layer play different, but
cooperative functional roles. Table 1 discusses some of the
key roles, categorized using OODA loop terminology [3].
Note that we break out the core Observe capability into two
categories: state and performance, highlighting the differ-
ence between internal module properties that are significant
and relatively stable, versus moment-to-moment variations
in internal module activity that capture important trends and
indicate potential events of interest. The table also outlines
some of the shared knowledge representations that may be
required for effective coordination. These are meant to be
illustrative and indicative, rather than exhaustive.

Figure 2 illustrates the ADROIT system we designed [14;
15]. The network layers correspond to traditional network
layers, but comprise a number of modules which together
provide the layer’s functionality. All modules provide ob-
servable and/or controllable parameters that the Cognitive
Layer and/or other modules have access to (via the Broker).

The Broker

The Broker mediates among the various modules of the
ADROIT radio system and between modules and the appli-
cations such as network management and Cognitive Layer
that wish to observe or manage the modules. Inspired by
Al’s agent-based systems and blackboard architectures, the
Broker solution may seem familiar. However, for the net-
working community it represents a radical departure from
traditional approaches. While the networking community
has long exported named parameters for network and host
management, the tradition has been to have a single writer
of those parameters, for the writer to be human or a proxy
for a human, and for parameter changing to be fairly rare.

Table 1: Roles within the ADROIT cognitive architecture

Network Module Role Cognitive Layer Role Shared Knowledge

Observe e Inform the Cognitive Layer about cur- | e Provide modules with guidance on impor- | e Ontology of state elements

(State) rent and anticipated state. (e.g., expose in- | tant state elements (e.g., define goal, setup | e Defined descriptors for report-
ternal state, pollers, reachback) up listeners) ing state elements (scalar, cate-
o Indicate whether there is outstanding ac- | e Collect patterns of state from potentially | gorical)
tivity that affect decisions (e.g., current re- | multiple sources.
source commitments) e Set observation frequency

Observe e Provide means for informing the Cogni- | e Provide modules with guidance on perfor- | e Categories of performance

(Perfor- tive Layer about current performance pro- | mance objectives (set performance goals and | goals

mance) file (positive results and deficiencies). target levels). e Generic types of measures (#s
o Inform Cognitive Layer about key per- | e Collect patterns of activity from poten- | & categorical)
formance dimensions (e.g., most impor- | tially multiple sources. e Categories of performance di-
tant parameters) e Track performance trends mensions

Orient e Provide Cognitive Layer with internal | e Evaluate information from multiple | e Overall health value (# vs cat-
analysis results (e.g., single self-reported | sources egorical)
health value, provide accessor to internal | e Interpret current observations e Cognitive-technique-specific
evaluator) o Identify potential factors influencing cur- | knowledge representation (e.g.,
e Provide estimates of the potential | rent observations conditions on rules-of-thumb)
sources of problems e Anticipate future activity

Decide e Provide Cognitive Layer with possible | e Determine new configuration (Decide new | e Format for a reconfigura-
configuration changes (e.g., dependencies, | parameter values or change module connec- | tion spec (e.g., list of parame-
parameters) tivity) ter/values)

o Indicate reasons behind decision e Ontology for describing likely
effect of a re-configuration

Act e Set new value of parameter e Initiate reconfiguration (initiate setting of | e Categories of results for a re-
e Attempt to achieve a goal new parameter values or changing of module | configuration (success, partial,
e Implement a reconfiguration connectivity) illegal, postponed)
e Report the completion of a reconfigura-
tion (e.g., success, illegal)

The Broker therefore set out to solve two difficult problems
in networking communication. The first is that we wish to
have one consistent interface to any and all network modules
so that if it changes, or when additional modules are created,
none of their controlling applications need to be modified
(including other modules in the network stack, applications,
the Cognitive Layer, or even the user via a command-line in-
terface). The second problem the Broker solves is that of co-
ordination of control. Multiple controllers may be actively
seeking to manage modules at the same time, and to avoid
control battles, they need to know about each other.

To perform these services, the Broker implements an in-
terface that supports the following functions:

Directory Services: Implementations and Invocations reg-
ister themselves with the Broker. Registration is the pro-
cess of notifying the Broker that they are present and
available. Modules are required to describe themselves,
their configuration dependencies, their expose parame-
ters. It is possible to ask the Broker to search for active
Invocations based on their Implementation or type.

Parameter Management: The Broker views every invo-
cation as containing a suite of parameters. These param-
eters may be read, monitored (e.g. to determine if they
change to a value outside expected limits), and some may
be altered (to change system behavior).

General Message-board architecture: The Broker pro-
vides a message-board in which messages are posted to
and read asynchronously. The purpose is to allow any In-

vocation to track what other Invocations are doing.

Configuration Management Pass Through: The Broker
is not responsible for configuration management. How-
ever, because so many of the Broker’s clients need to
know the configuration and also for simplication of APIs,
the Broker maintains a pass-through interface, in which
requests regarding configuration (including checking the
viability of proposed new configurations) are passed
through to the Reconfiguration Manager.

All clients of the Broker use the same interface to ex-
pose their parameters and to read or set parameters of other
clients. A module may not expose its parameters for outside
control via any interface except the Broker. This restriction
allows the Broker to consolidate requests and control thrash-
ing (e.g., if multiple clients wish to control the same module
in different incompatible ways). The Broker thus provides
as much visibility or control over the modules as they offer
via their exposed parameters.

Calls to and from the Broker are asynchronous so that no
real-time network module is blocked while waiting for a re-
sponse from the Broker. A request to change a parameter
or configuration is acknowledged by the Broker on receipt,
but the actual change may take place some time later. This
requirement was key to making ADROIT’s new architecture
acceptable to the networking community. From the cogni-
tive control side, there were also advantages. Changing the
state of the radio might require changing dozens of param-
eters and the fastest way to achieve this change is to issue

CONTROL PLANE —_— 1 DATA PLANE
o !
[N O TCP/UDPIRTP!... TRANS
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, et
~{----f---= IPMulticast 1P address IP Routing : IPE di
PR PR — control -= | mapping I orwarding P
JEPRS [S e A (eg.ARP) |__. |(e.g. OSPF) :
[P P S (eg. IGMP)[- __ | N I -
,,,,,,,,,,,,,,,,,,, o _______SdbnetAPt = ————————————
I
Cognitivg | 1L gupnet Neigh' hood Routing 1
Laver 1 10 Layer -- | Assessemt Information : ADROIT Forwarding SUBNET
ayer o | _|&l Security |- Control -=| Mgmt \ (incl. recvr coordination
DU uny] ontrol . I ~| alaExOR)
m |
DO - |
e ___.___Subnet™acAPI_
I
D e B B e T B -
I
MAC/LINK
[R Reliability : Channel Access
D e Floor Acg. and control |+ and I [e.g. carrier sense,
i i e [eg. RTSICTS] o Queueing TooAr e % xmit, recv, backoff]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Radoapl L~
: 4,3,,,: ,,,,, » Software Radio PHYSICAL

change requests for all the parameters concurrently and then
confirm the changes as they actually take place.

Cognitive Control within ADROIT

The ADROIT architecture provides a rich suite of oppor-
tunities for cognitive control across the networking stack,
and places few limits on the types of techniques used to per-
form the control and the motivations for control. For in-
stance, rules of thumb or relationships among parameters
may be easily captured and exploited within ADROIT. This
knowledge could be used for a variety of purposes, includ-
ing state-space reduction, feature construction, and guidance
for configuration, optimization, control and experimenta-
tion. Via real-time access to observable parameters, a statis-
tical learning technique can gather high-fidelity data about
system performance and learn to categorize/recognize key
changes in behavior or operating conditions. Distributed
planning techniques may be used to coordinate the config-
urations of different nodes to maximize connectivity and
throughput. For instance, the communication frequencies
and/or protocols used may be adjusted collaboratively based
on performance feedback.

We have developed a number of walkthroughs based on
the system design of Figure 2 to flesh out potential cases for
cognitive control. We summarize two of these cases here to
highlight the possible uses of different Al techniques within
ADROIT. More details and additional walkthroughs exist
elsewhere [15].

Walkthrough: Minimize Retries

Consider a Reliability Control and Queueing Module in the
MAC layer that uses an Automatic Repeat-reQuest (ARQ)
algorithm for error control with a single ACK for a data
burst. It could expose the following parameters:

e Observable

— Percentage of frames dropped

— Number of requested re-transmissions
— Average confirmation time (i.e., round-trip for ACK)

e Controllable

— Maximum confirmation time to wait before re-trying
— Maximum number of retries before dropping

Also consider a Link Characterization Module in the Subnet
layer that collects observations about the performance of the
links the node has to its neighbours, including

e Observable

— An estimate of the number of transmissions needed to
reach the neighbor

— Percentage of frames received by a neighbor within a
large time window

Over time, due to changes in factors, such as frequency
of transmission, environmental effects, distances among
nodes, congestion, etc., the round-trip time for a trans-
mitted frame/ACK may increase resulting in confirmation
times that are consistently above MaxConfirmationTime. If
this happens, then the node will be consistently re-sending
frames more than once on average, unnecessarily.

Based on observations from these two modules and
knowledge about the state of local queues, a cognitive con-
troller in the Cognitive Layer can determine how many re-
tries are required on average for each neighbor and across all
neighbors, and can infer whether earlier frames are generally
received or lost. If the average number of re-tries increases
significantly without corresponding frame loss, an oppor-
tunity for corrective action occurs: a sufficient increase in
MaxConfirmationTime should result in a decrease in the
number of re-tries. If queues fill and frames are dropped
consistently, then there is another opportunity: a sufficient
decrease in MaxConfirmationTime should reduce drops.

To continually minimize the number of retries, the cog-
nitive controller could use various Al techniques, such as

rules-of-thumb (e.g., increase MaxConfirmationTime incre-
mentally by 10% until there is a decrease in number of re-
tries), or statistical learning (e.g., learn patterns of behavior
based on past performance and associate key patterns with
successful corrective actions).

Walkthrough: Maintain Accuracy of Knowledge

Consider a Neighborhood Assessment module that applies
an algorithm based on collecting heartbeats over a window
of time in order to assess whether a link is up or down. Such
a module could expose the following parameters:

e Observable
— Total number of heartbeat points received in window
o Controllable

— HeartbeatInterval: Number of seconds to wait between
sending heartbeat messages

— WindowSize: Number of seconds over which to collect
heartbeats to determine if a link is up or down

As events occur within the world and/or within the net-
work, connectivity between nodes can change. If a high fre-
quency of heartbeats is used, accurate knowledge about links
can be maintained but a high overhead traffic is incurred.

Based on observations from this module as well as knowl-
edge about the state of local queues, a cognitive controller in
the Cognitive Layer can determine the frequency with which
link status changes occur. If the frequency has increased sig-
nificantly and remained high for a prolonged period of time,
and if local queues are getting bigger, there is an opportu-
nity for corrective action: a lower HeartbeatInterval can re-
sult in more responsive computation of link status, better
maintenance of bi-directional links, more effective routing
decisions and smaller queues (since we are less likely to be
waiting for a down link). If the frequency has decreased sig-
nificantly and remained low for a prolonged period of time,
then there is another opportunity: a higher HeartbeatInterval
can reduce network overhead with minimal effect on link
status maintenance.

The cognitive controller would help maximize informa-
tion sharing and multi-node coordination by minimizing
routing via down links. It could also coordinate with other
cognitive controllers (e.g., for communication frequency
used) to maximize network connectivity.

Networking and Al: Cultural Issues

There were several revelations and lessons learned during
the development of the architecture related to the differences
in the approaches used by networking and Al practitioners.
We identified numerous technical and cultural issues.

Benefits and scope of cross-layer design. Most network-
ing people are familiar with “cross-layer design.” How-
ever, within the networking community, this concept usu-
ally means two layers, and one or two parameters in each
layer. Networking people were generally somewhat skep-
tical about how much benefit multi-layer coordination
would bring. Together, we developed detailed drill-down
walkthroughs, each focusing on how certain changes in
parameters could produce novel changes in networking

protocols and behavior under certain observed conditions.
The walkthrough process benefitted both groups, with
networking people becoming more accepting of system-
wide cognitive control, Al people understanding more of
the reasons for traditional networking approaches, and ev-
eryone having a better understanding of how to make the
new approach work better.

Relinquishing control outside the stack. Networking
people were very concerned about an outside controller
making decisions about performance. Al researchers
meanwhile, like to say “give me everything and I'll give
you the answer.” Neither extreme is appropriate. We
therefore added several technical modules that helped
us meet in the middle, including “failsafe” mechanisms
that would allow a network module to reject things that
didn’t make sense, and constraint publishing & checking
mechanisms that would require the Cognitive Layer to
keep settings consistent. The walkthroughs also helped
both sides to see the concerns and benefits.

Reliance on a centralized Broker. Parts of the broker are
similar to traditional network management, but the new
system architecture called for the broker to be a manda-
tory part of the system, with failure of the broker hav-
ing grave consequences. Networking design has tried to
minimize the number of components that must be relied
upon, and relying on something “cognitive” (and there-
fore complicated and not entirely predictable) was viewed
with particular suspicion. Therefore each network mod-
ule was expected to have a failsafe default operation that
would work, even when the Broker was not functional.

Asynchrony and Threading The AI people were used to
programming in languages such as Java where threaded
operation was the norm, and programs waiting for an an-
swer might make a blocking call in a worker thread. The
networking people understood this model, but outright re-
jected an approach that would require network modules to
be written in this manner. Much networking code is writ-
ten in a single thread that must make only non-blocking
code, and it is often in an OS kernel with a reduced pro-
gramming environment. We implemented the Broker so
that the client library to be linked with networking mod-
ules could be used by non-threaded programs.

Boundaries. In traditional networking approaches, there is
a very clear boundary between application and network
module — often corresponding to a user/kernel boundary
with a widely known API (e.g., “BSD sockets”). Sim-
ilarly, there is a clear boundary between controller and
controllee. With the generic approach to exposing and
controlling parameters, these boundaries blur. Any client
of the Broker can choose to expose controllable param-
eters, and any client can choose to set another module’s
parameters. Thus, an application can choose to have com-
plete visibility into the stack, or be told to back off by the
network. While both groups believed that better perfor-
mance could be achieved, the Al people focused more on
the benefits of flexibility and the networking people more
on their concerns that complexity would lead to unreliable
systems. We expect that removing traditional restrictions
will result in interesting and significant new ideas.

Heterogeneous and non-interoperable nodes. A deeply-

held tenet in networking is conformance to written
protocol specifications; all nodes must always follow
the protocol, and from this one can conclude that they
will interoperate (but one cannot guarantee maximal
performance). Further, most nodes are homogeneous.
Cognitive controllers enable the network to become het-
erogeneous to the point of non-interoperability, resulting
in possible failure of the nodes to communicate, but also
enabling greater performance when managed correctly.
To address the mandate of maintaining connectivity,
while allowing for heterogeneity, our architecture in-
cludes an“orderwire” bootstrap channel to be used when
a node can not communicate with the rest of the network.
We planned to explore several different mechanisms for
coordinating the heterogeneity.

Conclusions

ADROIT is a unique system that combines software radios
with cognition. A very detailed architecture description ap-
pears in [14; 15]. Vital to making ADROIT work is a modu-
lar protocol architecture with a generic API that exposes pa-
rameters and modules for cognitive control in a consistent,
maintainable manner. The two most significant impacts of
our work are:

The implementation of the first networking stack architec-
ture that supports changes to existing network protocols,
such as exposing a new parameter, and the addition of new
protocols, without changes to other existing components.
This new design ideally supports the addition of cognitive
control modules.

The implementation of the first known cognitive control
mechanism that was demonstrated in a real-world net-
working system (not simulation). It used neural networks
to dynamically control radio behavior. Results are pre-
sented in [16].

The domain of cognitive networks is challenging and in-

teresting for Al researchers; it has many poorly understood
complex interactions, but is well-sensored and ripe for ex-
panding Al concepts.

Acknowledgements: The authors would like to thank Jonathan

S

mith and Lee Badger of DARPA for their support and insights.

We would also like to acknowledge the contributions of our fel-
low BBNers, authors of [16], to the ADROIT system design and
their commitment to the challenge of incorporating cognitive con-
trol into the network.

References

[1] E. Blossom. GNU radio: tools for exploring the radio fre-
quency spectrum. Linux Journal, 2004.

[2] J. A. Boyan and M. L. Littman. Packet routing in dynamically
changing networks: A reinforcement learning approach. In
Advances in Neural Information Processing Systems (NIPS),
pages 671-678. Morgan Kaufmann, 1994.

[3] J.R. Boyd. An organic design for command and control. In A
Discourse on Winning and Losing, 1976. Unpublished lecture
notes.

[4] W. W. Brown and T. Krout. Future performance expectations
for mobile wireless communication networks. In AFCEA
meeting, San Diego, CA, January 2006.

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

A. Casimiro, J. Kaiser, and P. Verssimo. An architectural
framework and a middleware for cooperating smart compo-
nents. In Proceedings of the Ist Conference on Computing
Crontiers, pages 28-39, Italy, 2004.

Q. Chen and Z. Niu. A delayed adaptive retransmission
scheme for false route failure in MANET. In Proc. 5th In-
ternational Symposium on Multi-Dimensional Mobile Com-
munications, pages 858-862, 2004.

H. Gharavi and K. Ban. Cross-layer feedback control for
video communications via mobile ad-hoc networks. In Proc.
IEEE 58th Vehicular Technology Conference, pages 2941—
2945, 2003.

K.Z. Haigh, O. Olofinboba, and C. Y. Tang. Designing an im-
plementable user-oriented objective function for MANETS.
In IEEE International Conference On Networking, Sensing
and Control, UK., April 2007.

M. A. Hiltunen and R. D. Schlichting. The cactus approach to
building configurable middleware services. In Proceedings of
the Workshop on Dependable System Middleware and Group
Communication (DSMGC), Germany, October 2000.

P. Lettieri and M. B. Srivastava. Adaptive frame length con-
trol for improving wireless link throughput, range and energy
efficiency. In Proc. International Conference on Computer
Communications INFOCOM (2), pages 564-571, 1998.

T. W. Malone and K. Crowston. The interdisciplinary study
of coordination. ACM Computing Surveys, 26(1):87-119,
March 1994.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. ADOPT:
Asynchronous distributed constraint optimization with qual-
ity guarantees. Artificial Intelligence, 161(1-2):149-180,
2005.

C. Monteleoni, H. Balakrishnan, N. Feamster, and
T. Jaakkola. Managing the 802.11 energy/performance trade-
off with machine learning. 2004.

G. D. Troxel, E. Blossom, S. Boswell, A. Caro, 1. Castineyra,
A. Colvin, T. Dreier, J. B. Evans, N. Goffee, K. Z. Haigh,
T. Hussain, V. Kawadia, D. Lapsley, C. Livadas, A. Med-
ina, J. Mikkelson, G. J. Minden, R. Morris, C. Partridge,
V. Raghunathan, R. Ramanathan, P. G. Rubel, C. Santi-
vanez, T. Schmid, D. Sumorok, M. Srivastava, R. S. Vincent,
D. Wiggins, A. M. Wyglinski, and S. Zahedi. Enabling open-
source cognitively-controlled collaboration among software-
defined radio nodes. Computer Networks, 52(4):898-911,
March 2008.

G. D. Troxel, S. Boswell, A. Caro, 1. Castineyra, A. Colvin,
Y. Gabay, N. Goffee, K. Z. Haigh, T. Hussain, V. Kawadia,
D. Lapsley, C. Livadas, A. Medina, J. Mikkelson, C. Par-
tridge, V. Raghunathan, R. Ramanathan, P. Rubel, C. San-
tivanes, D. Sumorok, B. Vincent, and D. Wiggins. Adaptive
dynamic radio open-source intelligent team (ADROIT): Ar-
chitecture and design. Technical Report BBN-TR-TBD, BBN
Technologies, 2007.

G. D. Troxel, A. Caro, I. Castineyra, N. Goffee, K. Z. Haigh,
T. Hussain, V. Kawadia, P. G. Rubel, and D. Wiggins. Cogni-
tive adaptation for teams in ADROIT. In IEEE Global Com-
munications Conference, Washington, DC, November 2007.
Invited.

T. Ye, H. T. Kaur, and S. Kalyanaraman. Large-scale network
parameter configuration using an on-line simulation frame-
work. In IEEE/ACM Transactions of Networking, 2003.

X. Zhang, V. Lesser, and S. Abdallah. Efficient Management
of Multi-Linked Negotiation Based on a Formalized Model.
Autonomous Agents and Multi-Agent Systems, 10(2):165—
205, 2005.

