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1 Graph Kernels by Spectral Transforms

Xiaojin Zhu

Jaz Kandola

John Lafferty

Zoubin Ghahramani

Many graph-based semi-supervised learning methods can be viewed as imposing

smoothness conditions on the target function with respect to a graph representing

the data points to be labeled. The smoothness properties of the functions are

encoded in terms of Mercer kernels over the graph. The central quantity in such

regularization is the spectral decomposition of the graph Laplacian, a matrix derived

from the graph’s edge weights. The eigenvectors with small eigenvalues are smooth,

and ideally represent large cluster structures within the data. The eigenvectors

having large eigenvalues are rugged, and considered noise.

Different weightings of the eigenvectors of the graph Laplacian lead to different

measures of smoothness. Such weightings can be viewed as spectral transforms,

that is, as transformations of the standard eigenspectrum that lead to different

regularizers over the graph. Familiar kernels, such as the diffusion kernel resulting

by solving a discrete heat equation on the graph, can be seen as simple parametric

spectral transforms.

The question naturally arises whether one can obtain effective spectral trans-

forms automatically. In this paper we develop an approach to searching over a

nonparametric family of spectral transforms by using convex optimization to maxi-

mize kernel alignment to the labeled data. Order constraints are imposed to encode

a preference for smoothness with respect to the graph structure. This results in a

flexible family of kernels that is more data-driven than the standard parametric

spectral transforms. Our approach relies on a quadratically constrained quadratic

program (QCQP), and is computationally practical for large datasets.

1.1 The Graph Laplacian
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We are given a labeled dataset of input-output pairs (Xl, Yl) = {(x1, y1), . . . , (xl, yl)}

and an unlabeled dataset Xu = {xl+1, . . . , xn}. We form a graph g = (V, E) where

the vertices V are x1, . . . , xn, and the edges E are represented by an n × n ma-

trix W . Entry Wij is the edge weight between nodes i, j, with Wij = 0 if i, j

are not connected. The entries of W have to be non-negative and symmetric,

but it is not necessary for W itself to be positive semi-definite. Let D be the

diagonal degree matrix with Dii =
∑

j Wij being the total weight on edges con-

nected to node i. The combinatorial graph Laplacian is defined as L = D − W ,graph Laplacian

which is also called the unnormalized Laplacian. The normalized graph Laplacian

is L = D−1/2LD−1/2 = I − D−1/2WD−1/2.

In graph-based semi-supervised learning the Laplacian L (or L) is a central

object. Let us denote the eigenvalues of L by λ1 ≤ . . . ≤ λn, and the complete

orthonormal set of eigenvectors by φ1 . . . φn. Therefore the spectral decomposition

of the Laplacian is given as L =
∑n

i=1
λiφiφ

>

i . We refer readers to Chung [1997] for aspectral

decomposition discussion of the mathematical aspects of this decomposition, but briefly summarize

two relevant properties:

Theorem 1.1 The Laplacian L is positive semi-definite, i.e., λi ≥ 0.

Indeed, it is not hard to show that for any function f : [n] → R,

f>Lf =
1

2

∑

i,j

Wij (f(i) − f(j))
2
≥ 0 (1.1)

where the inequality holds because W has non-negative entries.

Equation (1.1) measures the smoothness of f on the graph1. Roughly speaking, fsmoothness of f

is smooth if f(i) ≈ f(j) for those pairs with large Wij . This is sometimes informally

expressed by saying that f varies slowly over the graph, or that f follows the data

manifold. In particular, the smoothness of an eigenvector is

φ>

i Lφi = λi (1.2)

Thus, eigenvectors with smaller eigenvalues are smoother. Since {φi} forms a basis

on R
n, we can always write any function f as

f =

n
∑

i=1

αiφi , αi ∈ R (1.3)

and equation (1.1) which measures the smoothness of f can be re-expressed as

f>Lf =

n
∑

i=1

α2
i λi (1.4)

For semi-supervised learning a smooth function f is part of what we seek, because

this is the prior knowledge encoded by the graph—but we also require that the

1. Note that a smaller value means smoother f .
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function f fits the labels Yl on the inputs Xl.

Theorem 1.2 The graph g has k connected components if and only if λi = 0 for

i = 1, 2, . . . , k.

The corresponding eigenvectors φ1, . . . , φk of L are constant on the nodes within

the corresponding connected component, and zero elsewhere. Note λ1 is always 0

for any graph (Chung [1997]). We will make use of this property later.

(a) a linear unweighted graph with two segments

λ
1
=0.00 λ

2
=0.00 λ

3
=0.04 λ

4
=0.17 λ

5
=0.38

λ
6
=0.38 λ

7
=0.66 λ

8
=1.00 λ

9
=1.38 λ

10
=1.38

λ
11

=1.79 λ
12

=2.21 λ
13

=2.62 λ
14

=2.62 λ
15

=3.00

λ
16

=3.34 λ
17

=3.62 λ
18

=3.62 λ
19

=3.83 λ
20

=3.96

(b) the eigenvectors and eigenvalues of the Laplacian L

Figure 1.1 A simple graph and its Laplacian spectral decomposition. Note the eigen-
vectors become rougher with larger eigenvalues.

As an example, Figure 1.1(a) shows an unweighted graph (Wij = 1 if there is an

edge) consisting of two linear segments. The spectral decomposition of its Laplacian

L is shown in (b). Note that the eigenvectors do indeed look smoother for small λi,

and that the graph has two connected components.
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1.2 Kernels by Spectral Transforms

Kernel methods are increasingly being used for classification because of their

conceptual simplicity, theoretical properties, and good performance on many tasks.

It is attractive to create kernels specifically for semi-supervised learning. We restrict

ourselves to transduction, i.e., the unlabeled data Xu is also the test data. As a

result we only need to consider kernel matrices K ∈ R
n×n on nodes 1, . . . , n in the

graph.

In particular, we want K to respect the smoothness preferences encoded in a

graph. That is, as a regularizer the kernel should penalize functions that are not

smooth over the graph. To establish a link to the graph, we consider K having the

form

K =
n

∑

i=1

µiφiφ
>

i (1.5)

where φ are the eigenvectors of the graph Laplacian L, and µi ≥ 0 are the

eigenvalues of K. Since K is the non-negative sum of outer products, it is positive

semi-definite, i.e., a kernel matrix.

The matrix K defines a Reproducing Kernel Hilbert Space (RKHS) with norm

‖f‖2

K = 〈f, f〉K =
n

∑

i=1

α2
i

µi
(1.6)

for a function f =
∑n

i=1
αiφi. Note if some µi = 0 the corresponding dimension is

not present in the RKHS, and we might define 1

0
= 0 here.

In many learning algorithms, regularization is expressed as an increasing function

of ‖f‖K . From a semi-supervised learning point of view, we want f to be penalized

if it is not smooth with respect to the graph. Comparing the smoothness of f in

equation (1.4) with equation (1.6), we find this can be achieved by making µi small

if the Laplacian eigenvalue λi is large, and vice versa.

Indeed, Chapelle et al. [2002] and Smola and Kondor [2003] both suggest a general

principle for creating a semi-supervised kernel K from the graph Laplacian. Define a

spectral transformation function r : R+ → R+ that is non-negative and decreasing.spectral

transformation Set the kernel spectrum by µi = r(λi) to obtain the kernel

K =

n
∑

i=1

r(λi)φiφ
>

i (1.7)

Note that r essentially reverses the order of the eigenvalues, so that smooth φi’s

have larger eigenvalues in K. Since r is decreasing, a greater penalty is incurred if

a function is not smooth.

The transform r is often chosen from a parametric family, resulting in some

familiar kernels. For example Chapelle et al. [2002] and Smola and Kondor [2003]

list the following transformations on L
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regularized Laplacian: r(λ) = 1

λ+ε

diffusion kernel: r(λ) = exp
(

−σ2

2
λ
)

one step random walk: r(λ) = (α − λ) with α ≥ 2

p-step random walk: r(λ) = (α − λ)p with α ≥ 2

inverse cosine: r(λ) = cos(λπ/4)

step function: r(λ) = 1 if λ ≤ λcut

Each has its own special interpretation. The regularized Laplacian is also known

as the Gaussian field kernel (Zhu et al. [2003]). Of course there are many other

natural choices for r. Although the general principle of equation (1.7) is appealing,

it does not address the question of which parametric family to use. Moreover, the

hyperparameters (e.g., σ or ε above) in a particular parametric family may not suit

the task at hand, resulting in overly constrained kernels.

Is there an optimal spectral transformation? The following sections address

this question. The short answer is yes, in a certain sense. We select a spectral

transformation that optimizes kernel alignment to the labeled data, while imposing

an ordering constraint but otherwise not assuming any parametric form. Kernel

alignment is a surrogate for classification accuracy, and, importantly, leads to a

convex optimization problem.

1.3 Kernel Alignment

The empirical kernel alignment (Cristianini et al. [2001], Lanckriet et al. [2004])

assesses the fitness of a kernel to training labels. The alignment has a number

of convenient properties: it can be efficiently computed before any training of

the kernel machine takes place, and based only on training data information.

The empirical alignment can also be shown to be sharply concentrated around

its expected value, allowing it to be estimated from finite samples. A connection

between high alignment and good generalization performance has been established

in Cristianini et al. [2001].

As we will compare matrices, we introduce here the Frobenius product 〈., .〉FFrobenius

product between two square matrices M and N of the same size:

〈M, N〉F =
∑

ij

mijnij = Tr(MN)

The empirical kernel alignment compares the l×l kernel matrix Ktr on the labeled

training set x1, . . . , xl, and a target matrix T derived from the labels y1, . . . , yl. One

such target matrix is Tij = 1 if yi = yj , and -1 otherwise. Note for binary {+1,−1}

training labels Yl = (y1 . . . yl)
> this is simply the rank one matrix T = YlYl

>. The

empirical kernel alignment is defined as follows.

Definition 1.3 (Empirical Kernel Alignment) Let Ktr be the kernel matrix
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restricted to the training points, and T the target matrix on training data. We

define the empirical kernel alignment as:empirical kernel

alignment
Â(Ktr, T ) =

〈Ktr, T 〉F
√

〈Ktr, Ktr〉F 〈T, T 〉F
(1.8)

The empirical alignment is essentially the cosine between the matrices Ktr and

T . The range of the alignment is [0, 1]. The larger its value the closer is the kernel

to the target. This quantity is maximized when Ktr ∝ T .

1.4 Optimizing Alignment using QCQP for Semi-Supervised Learning

Having introduced the alignment quantity, now let us consider the problem of

semi-supervised kernel construction using a principled non-parametric approach.

In short, we will learn the spectral transformation {µi ≡ r(λi)} (1.7) by optimizing

the resulting kernel alignment, with certain restrictions. Notice we no longer assume

a parametric function r(), instead we work with the transformed eigenvalues µi’s

directly.

When the kernel matrix is defined as K =
∑n

i=1
µiφiφi

> and the target T

given, the kernel alignment between the labeled submatrix Ktr and T is a convex

function in µi’s. Nonetheless in general we have to make sure K is a valid kernel

matrix, i.e. it is positive semi-definite. This is a Semi-Definite Program (SDP),

which has high computational complexity (Boyd and Vandenberge [2004]). We thus

restrict µi ≥ 0, ∀i. This guarantees K to be positive semi-definite, and reduces the

optimization problem into a quadratically constrained quadratic program (QCQP),

which is computationally more efficient. In a QCQP both the objective functionquadratically

constrained

quadratic

programs

and the constraints are quadratic as illustrated below,

minimize
1

2
x>P0x + q>0 x + r0 (1.9)

subject to
1

2
x>Pix + q>i x + ri ≤ 0 i = 1 · · ·m (1.10)

Ax = b (1.11)

where Pi ∈ Sn
+, i = 0, . . . , m, where Sn

+ defines the set of square symmetric positive

semi-definite matrices. In a QCQP, we minimize a convex quadratic function over

a feasible region that is the intersection of ellipsoids. The number of iterations

required to reach the solution is comparable to the number required for linear

programs, making the approach feasible for large datasets.

Previous work using kernel alignment did not take into account that the “building

blocks” Ki = φiφi
> were derived from the graph Laplacian with the goal of semi-

supervised learning. As such, the µi’s can take arbitrary non-negative values and

there is no preference to penalize components that do not vary smoothly over the

graph. This shall be rectified by requiring smoother eigenvectors to receive larger

coefficients, as shown in the next section.
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1.5 Semi-Supervised Kernels with Order Constraints

We would like to maintain a decreasing order on the spectral transformation µi

to reflect the prior knowledge encoded in the graph, that smooth functions are

preferred. This motivates the set of order constraintsorder constraints

µi ≥ µi+1, i = 1 · · ·n − 1 (1.12)

And we can specify the desired semi-supervised kernel as follows.

Definition 1.4 (order constrained kernel) An order constrained semi-supervisedorder constrained

kernel kernel K is the solution to the following convex optimization problem:

maxK Â(Ktr, T ) (1.13)

subject to K =
∑n

i=1
µiKi (1.14)

µi ≥ 0 (1.15)

Tr(K) = 1 (1.16)

µi ≥ µi+1, i = 1 · · ·n − 1 (1.17)

where T is the training target matrix, Ki = φiφ
>

i and φi’s are the eigenvectors of

the graph Laplacian.

This formulation is an extension to the original kernel alignment of Lanckriet et al.

[2004], with the addition of order constraints, and with special components Ki’s

from the graph Laplacian. Since µi ≥ 0 and Ki’s are outer products, K will

automatically be positive semi-definite and hence a valid kernel matrix. The trace

constraint is needed to fix the scale invariance of kernel alignment. It is important

to notice the order constraints are convex and as such, Definition 1.4 is a convex

optimization problem.convex

optimization The problem is equivalent to

maxK 〈Ktr, T 〉F (1.18)

subject to 〈Ktr, Ktr〉F ≤ 1 (1.19)

K =
∑n

i=1
µiKi (1.20)

µi ≥ 0 (1.21)

µi ≥ µi+1, i = 1 · · ·n − 1, (1.22)

where the trace constraint is replaced by (1.19) (up to a constant factor). Let vec(A)

be the column vectorization of a matrix A. Defining

M =
[

vec(K1,tr) · · · vec(Km,tr)
]

(1.23)
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it is not hard to show that the problem can then be expressed as

maxµ vec(T )>Mµ (1.24)

subject to ||Mµ|| ≤ 1 (1.25)

µi ≥ 0 (1.26)

µi ≥ µi+1, i = 1 · · ·n − 1 (1.27)

The objective function is linear in µ, and there is a simple cone constraint, making

it a quadratically constrained quadratic program (QCQP).

We can further improve the kernel. Consider a graph that has a single connected

component, i.e., any node can reach any other node via one or more edges. Such

graphs are common in practice. By the basic property of the Laplacian we know

λ1 = 0, and the corresponding eigenvector φi is a constant. Therefore K1 = φiφ
>
i is

a constant matrix. Such a constant matrix acts as a bias term in the graph kernel,bias term

as in equation (1.7). We should not constrain µ1 as in Definition 1.4, but allow the

bias of the kernel to vary freely. This motivates the following definition:

Definition 1.5 (improved order constrained kernel) An improved order con-improved order

constrained

kernel

strained semi-supervised kernel K is the solution to the same problem in Definition

1.4, but the order constraints (1.17) apply only to non-constant eigenvectors:

µi ≥ µi+1, i = 1 · · ·n − 1, and φi not constant (1.28)

It should be pointed out that the improved order constrained kernel is identical

to the order constrained kernel when the graph has disjoint components. This is

because the first k eigenvectors are piece-wise constant over the components, but

not constant over all, when the graph has k > 1 connected components. We in

fact would like to emphasize these eigenvectors because they might correspond to

natural clusters in data. Thus we will still enforce the order constraints on them.

The definition in (1.28) is meant to target µ1 in connected graphs only. As discussed

above, in this situation µ1 is the bias term of the kernel. The only ‘improvement’ in

the improved order constrained kernel is that we do not constrain such bias term.

As the experiments show later, this improves the quality of the kernels markedly.

In practice we do not need all n eigenvectors of the graph Laplacian, or equiva-

lently all n Ki’s. The first m < n eigenvectors with the smallest eigenvalues work

well empirically. Also note we could have used the fact that Ki’s are from orthog-

onal eigenvectors φi to further simplify the expression. However we leave it as is,

making it easier to incorporate other kernel components if necessary.

It is illustrative to compare and contrast the order constrained semi-supervised

kernels to other related kernels. We call the original kernel alignment solution in

Lanckriet et al. [2004] a maximal-alignment kernel. It is the solution to Definition 1.4maximal-

alignment

kernel

without the order constraints (1.17). Because it does not have the additional

constraints, it maximizes kernel alignment among all spectral transformation. The

hyperparameters σ and ε of the diffusion kernel and Gaussian field kernel (described

in Section 1.2) can be learned by maximizing the alignment score also, although
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the optimization problem is not necessarily convex. These kernels use different

information from the original Laplacian eigenvalues λi. The maximal-alignmentdifferent

information usage kernels ignore λi altogether. The order constrained semi-supervised kernels only

use the order of λi and ignore their actual values. The diffusion and Gaussian

field kernels use the actual values. In terms of the degree of freedom in choosing

the spectral transformation µi’s, the maximal-alignment kernels are completely

free. The diffusion and Gaussian field kernels are restrictive since they have an

implicit parametric form and only one free parameter. The order constrained semi-

supervised kernels incorporates desirable features from both approaches.

1.6 Experimental Results

We evaluate kernels on seven datasets. The datasets and the corresponding graphs

are summarized in Table 1.1. baseball-hockey, pc-mac and religion-atheism

are binary document categorization tasks taken from the 20-newsgroups dataset.

The distance measure is the cosine similarity between tf.idf vectors. one-two, odd-

even and ten digits are handwritten digits recognition tasks originally from the

Cedar Buffalo binary digits database. one-two is digits “1” vs. “2”; odd-even is

the artificial task of classifying odd “1, 3, 5, 7, 9” vs. even “0, 2, 4, 6, 8” digits,

such that each class has several well defined internal clusters; ten digits is 10-way

classification. isolet is isolated spoken English alphabet recognition from the UCI

repository. For these datasets we use Euclidean distance on raw features. We use

10-nearest-neighbor (10NN) unweighted graphs on all datasets except isolet which

is 100NN. For all datasets, we use the smallest m = 200 eigenvalue and eigenvector

pairs from the graph Laplacian. These values are set arbitrarily without optimizing

and do not create an unfair advantage to the order constrained kernels. For each

dataset we test on five different labeled set sizes. For a given labeled set size, we

perform 30 random trials in which a labeled set is randomly sampled from the whole

dataset. All classes must be present in the labeled set. The rest is used as unlabeled

(test) set in that trial.

dataset instances classes graph

baseball-hockey 1993 2 cosine similarity 10NN unweighted

pc-mac 1943 2 cosine similarity 10NN unweighted

religion-atheism 1427 2 cosine similarity 10NN unweighted

one-two 2200 2 Euclidean 10NN unweighted

odd-even 4000 2 Euclidean 10NN unweighted

ten digits 4000 10 Euclidean 10NN unweighted

isolet 7797 26 Euclidean 100NN unweighted

Table 1.1 Summary of datasets
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We compare a total of 8 different types of kernels. Five are semi-supervised ker-

nels: improved order constrained kernels, order constrained kernels, Gaus-

sian field kernels (Section 1.2), diffusion kernels (Section 1.2), and maximal-

alignment kernels (Section 1.5). Three are standard supervised kernels, which do

not use unlabeled data in kernel construction: linear kernels, quadratic kernels,

and radial basis function (RBF) kernels.

We compute the spectral transformation for improved order constrained kernels,

order constrained kernels and maximal-alignment kernels by solving the QCQP us-

ing the standard solver SeDuMi/YALMIP, see Sturm [1999] and Löfberg [2004].

The hyperparameters in the Gaussian field kernels and diffusion kernels are learned

with the fminbnd() function in Matlab to maximize kernel alignment. The band-

width of the RBF kernels are learned using 5-fold cross validation on labeled set

accuracy. Here and below we use cross validation – it is done independent of and

after kernel alignment methods, to optimize a quantity not related to the proposed

kernels.

We apply the 8 kernels to the same support vector machine (SVM) in order to

compute the accuracy on unlabeled data. For each task and kernel combination, we

choose the bound on SVM slack variables C with 5-fold cross validation on labeled

set accuracy. For multiclass classification we perform one-against-all and pick the

class with the largest margin.

Table 1.2 through Table 1.8 list the results. There are two rows for each cell: the

upper row is the average test(unlabeled) set accuracy with one standard deviation;

the lower row is the average training(labeled) set kernel alignment, and in parenthe-

sis the average run time in seconds for QCQP on a 2.4GHz Linux computer. Each

number is averaged over 30 random trials. To assess the statistical significance of

the results, we perform paired t-test on test accuracy. We highlight the best accu-

racy in each row, and those that cannot be distinguished from the best with paired

t-test at significance level 0.05.

We find that:

The five semi-supervised kernels tend to outperform the three standard supervised

kernels. It shows that with properly constructed graphs, unlabeled data can help

classification.

The order constrained kernel is often quite good, but the improved order con-

strained kernel is even better. All the graphs on these datasets happen to be con-

nected. Recall this is when the improved order constrained kernel differs from the

order constrained kernel, by not constraining the bias term. Obviously a flexible

bias term is important for classification accuracy.

Figure 1.2 shows the spectral transformation µi of the five semi-supervised kernels

for different tasks. These are the average of the 30 trials with the largest labeled

set size in each task. The x-axis is in increasing order of λi (the original eigenvalues

of the Laplacian). The mean (thick lines) and ±1 standard deviation (dotted lines)

of only the top 50 µi’s are plotted for clarity. The µi values are scaled vertically

for easy comparison among kernels. As expected the maximal-alignment kernels’
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semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 200

10 95.7 ± 8.9 93.9 ±12.0 63.1 ±15.8 65.8 ±22.8 93.2 ± 6.8 53.6 ± 5.5 68.1 ± 7.6 68.1 ± 7.6

0.90 ( 2) 0.69 ( 1) 0.35 0.44 0.95 ( 1) 0.11 0.29 0.23

30 98.0 ± 0.2 97.3 ± 2.1 91.8 ± 9.3 59.1 ±17.9 96.6 ± 2.2 69.3 ±11.2 78.5 ± 8.5 77.8 ±10.6

0.91 ( 9) 0.67 ( 9) 0.25 0.39 0.93 ( 6) 0.03 0.17 0.11

50 97.9 ± 0.5 97.8 ± 0.6 96.7 ± 0.6 93.7 ± 6.8 97.0 ± 1.1 77.7 ± 8.3 84.1 ± 7.8 75.6 ±14.2

0.89 (29) 0.63 (29) 0.22 0.36 0.90 (27) 0.02 0.15 0.09

70 97.9 ± 0.3 97.9 ± 0.3 96.8 ± 0.6 97.5 ± 1.4 97.2 ± 0.8 83.9 ± 7.2 87.5 ± 6.5 76.1 ±14.9

0.90 (68) 0.64 (64) 0.22 0.37 0.90 (46) 0.01 0.13 0.07

90 98.0 ± 0.5 98.0 ± 0.2 97.0 ± 0.4 97.8 ± 0.2 97.6 ± 0.3 88.5 ± 5.1 89.3 ± 4.4 73.3 ±16.8

0.89 (103) 0.63 (101) 0.21 0.36 0.89 (90) 0.01 0.12 0.06

Table 1.2 Baseball vs. Hockey

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 100

10 87.0 ± 5.0 84.9 ± 7.2 56.4 ± 6.2 57.8 ±11.5 71.1 ± 9.7 51.6 ± 3.4 63.0 ± 5.1 62.3 ± 4.2

0.71 ( 1) 0.57 ( 1) 0.32 0.35 0.90 ( 1) 0.11 0.30 0.25

30 90.3 ± 1.3 89.6 ± 2.3 76.4 ± 6.1 79.6 ±11.2 85.4 ± 3.9 62.6 ± 9.6 71.8 ± 5.5 71.2 ± 5.3

0.68 ( 8) 0.49 ( 8) 0.19 0.23 0.74 ( 6) 0.03 0.18 0.13

50 91.3 ± 0.9 90.5 ± 1.7 81.1 ± 4.6 87.5 ± 2.8 88.4 ± 2.1 67.8 ± 9.0 77.6 ± 4.8 75.7 ± 5.4

0.64 (31) 0.46 (31) 0.16 0.20 0.68 (25) 0.02 0.14 0.10

70 91.5 ± 0.6 90.8 ± 1.3 84.6 ± 2.1 90.5 ± 1.2 89.6 ± 1.6 74.7 ± 7.4 80.2 ± 4.6 74.3 ± 8.7

0.63 (70) 0.46 (56) 0.14 0.19 0.66 (59) 0.01 0.12 0.08

90 91.5 ± 0.6 91.3 ± 1.3 86.3 ± 2.3 91.3 ± 1.1 90.3 ± 1.0 79.0 ± 6.4 82.5 ± 4.2 79.1 ± 7.3

0.63 (108) 0.45 (98) 0.13 0.18 0.65 (84) 0.01 0.11 0.08

Table 1.3 PC vs. MAC

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 130

10 72.8 ±11.2 70.9 ±10.9 55.2 ± 5.8 60.9 ±10.7 60.7 ± 7.5 55.8 ± 5.8 60.1 ± 7.0 61.2 ± 4.8

0.50 ( 1) 0.42 ( 1) 0.31 0.31 0.85 ( 1) 0.13 0.30 0.26

30 84.2 ± 2.4 83.0 ± 2.9 71.2 ± 6.3 80.3 ± 5.1 74.4 ± 5.4 63.4 ± 6.5 63.7 ± 8.3 70.1 ± 6.3

0.38 ( 8) 0.31 ( 6) 0.20 0.22 0.60 ( 7) 0.05 0.18 0.15

50 84.5 ± 2.3 83.5 ± 2.5 80.4 ± 4.1 83.5 ± 2.7 77.4 ± 6.1 69.3 ± 6.5 69.4 ± 7.0 70.7 ± 8.5

0.31 (28) 0.26 (23) 0.17 0.20 0.48 (27) 0.04 0.15 0.11

70 85.7 ± 1.4 85.3 ± 1.6 83.0 ± 2.9 85.4 ± 1.8 82.3 ± 3.0 73.1 ± 5.8 75.7 ± 6.0 71.0 ±10.0

0.29 (55) 0.25 (42) 0.16 0.19 0.43 (51) 0.03 0.13 0.10

90 86.6 ± 1.3 86.4 ± 1.5 84.5 ± 2.1 86.2 ± 1.6 82.8 ± 2.6 77.7 ± 5.1 74.6 ± 7.6 70.0 ±11.5

0.27 (86) 0.24 (92) 0.15 0.18 0.40 (85) 0.02 0.12 0.09

Table 1.4 Religion vs. Atheism

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 1000

10 96.2 ± 2.7 90.6 ±14.0 58.2 ±17.6 59.4 ±18.9 85.4 ±11.5 78.7 ±14.3 85.1 ± 5.7 85.7 ± 4.8

0.87 ( 2) 0.66 ( 1) 0.43 0.53 0.95 ( 1) 0.38 0.26 0.30

20 96.4 ± 2.8 93.9 ± 8.7 87.0 ±16.0 83.2 ±19.8 94.5 ± 1.6 90.4 ± 4.6 86.0 ± 9.4 90.9 ± 3.7

0.87 ( 3) 0.64 ( 4) 0.38 0.50 0.90 ( 3) 0.33 0.22 0.25

30 98.2 ± 2.1 97.2 ± 2.5 98.1 ± 2.2 98.1 ± 2.7 96.4 ± 2.1 93.6 ± 3.1 89.6 ± 5.9 92.9 ± 2.8

0.84 ( 8) 0.61 ( 7) 0.35 0.47 0.86 ( 6) 0.30 0.17 0.24

40 98.3 ± 1.9 96.5 ± 2.4 98.9 ± 1.8 99.1 ± 1.4 96.3 ± 2.3 94.0 ± 2.7 91.6 ± 6.3 94.9 ± 2.0

0.84 (13) 0.61 (15) 0.36 0.48 0.86 (11) 0.29 0.18 0.21

50 98.4 ± 1.9 95.6 ± 9.0 99.4 ± 0.5 99.6 ± 0.3 96.6 ± 2.3 96.1 ± 2.4 93.0 ± 3.6 95.8 ± 2.3

0.83 (31) 0.60 (37) 0.35 0.46 0.84 (25) 0.28 0.17 0.20

Table 1.5 One vs. Two
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semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 1500

10 69.6 ± 6.5 68.8 ± 6.1 65.5 ± 8.9 68.4 ± 8.5 55.7 ± 4.4 65.0 ± 7.0 63.1 ± 6.9 65.4 ± 6.5

0.45 ( 1) 0.41 ( 1) 0.32 0.34 0.86 ( 1) 0.23 0.25 0.27

30 82.4 ± 4.1 82.0 ± 4.0 79.6 ± 4.1 83.0 ± 4.2 67.2 ± 5.0 77.7 ± 3.5 72.4 ± 6.1 76.5 ± 5.1

0.32 ( 6) 0.28 ( 6) 0.21 0.23 0.56 ( 6) 0.10 0.11 0.16

50 87.6 ± 3.5 87.5 ± 3.4 85.9 ± 3.8 89.1 ± 2.7 76.0 ± 5.3 81.8 ± 2.7 74.4 ± 9.2 81.3 ± 3.1

0.29 (24) 0.26 (25) 0.19 0.21 0.45 (26) 0.07 0.09 0.12

70 89.2 ± 2.6 89.0 ± 2.7 89.0 ± 1.9 90.3 ± 2.8 80.9 ± 4.4 84.4 ± 2.0 73.6 ±10.0 83.8 ± 2.8

0.27 (65) 0.24 (50) 0.17 0.20 0.39 (51) 0.06 0.07 0.12

90 91.5 ± 1.5 91.4 ± 1.6 90.5 ± 1.4 91.9 ± 1.7 85.4 ± 3.1 86.1 ± 1.8 66.1 ±14.8 85.5 ± 1.6

0.26 (94) 0.23 (97) 0.16 0.19 0.36 (88) 0.05 0.07 0.11

Table 1.6 Odd vs. Even

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 2000

50 76.6 ± 4.3 71.5 ± 5.0 41.4 ± 6.8 49.8 ± 6.3 70.3 ± 5.2 57.0 ± 4.0 50.2 ± 9.0 66.3 ± 3.7

0.47 (26) 0.21 (26) 0.15 0.16 0.51 (25) -0.62 -0.50 -0.25

100 84.8 ± 2.6 83.4 ± 2.6 63.7 ± 3.5 72.5 ± 3.3 80.7 ± 2.6 69.4 ± 1.9 56.0 ± 7.8 77.2 ± 2.3

0.47 (124) 0.17 (98) 0.12 0.13 0.49 (100) -0.64 -0.52 -0.29

150 86.5 ± 1.7 86.4 ± 1.3 75.1 ± 3.0 80.4 ± 2.1 84.5 ± 1.9 75.2 ± 1.4 56.2 ± 7.2 81.4 ± 2.2

0.48 (310) 0.18 (255) 0.11 0.13 0.50 (244) -0.66 -0.53 -0.31

200 88.1 ± 1.3 88.0 ± 1.3 80.4 ± 2.5 84.4 ± 1.6 86.0 ± 1.5 78.3 ± 1.3 60.8 ± 7.3 84.3 ± 1.7

0.47 (708) 0.16 (477) 0.10 0.11 0.49 (523) -0.65 -0.54 -0.33

250 89.1 ± 1.1 89.3 ± 1.0 84.6 ± 1.4 87.2 ± 1.3 87.2 ± 1.3 80.4 ± 1.4 61.3 ± 7.6 85.7 ± 1.3

0.47 (942) 0.16 (873) 0.10 0.11 0.49 (706) -0.65 -0.54 -0.33

Table 1.7 Ten Digits (10 classes)

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 30

50 56.0 ± 3.5 42.0 ± 5.2 41.2 ± 2.9 29.0 ± 2.7 50.1 ± 3.7 28.7 ± 2.0 30.0 ± 2.7 23.7 ± 2.4

0.27 (26) 0.13 (25) 0.03 0.11 0.31 (24) -0.89 -0.80 -0.65

100 64.6 ± 2.1 59.0 ± 3.6 58.5 ± 2.9 47.4 ± 2.7 63.2 ± 1.9 46.3 ± 2.4 46.6 ± 2.7 42.0 ± 2.9

0.26 (105) 0.10 (127) -0.02 0.08 0.29 (102) -0.90 -0.82 -0.69

150 67.6 ± 2.6 65.2 ± 3.0 65.4 ± 2.6 57.2 ± 2.7 67.9 ± 2.5 57.6 ± 1.5 57.3 ± 1.8 53.8 ± 2.2

0.26 (249) 0.09 (280) -0.05 0.07 0.27 (221) -0.90 -0.83 -0.70

200 71.0 ± 1.8 70.9 ± 2.3 70.6 ± 1.9 64.8 ± 2.1 72.3 ± 1.7 63.9 ± 1.6 64.2 ± 2.0 60.5 ± 1.6

0.26 (441) 0.08 (570) -0.07 0.06 0.27 (423) -0.91 -0.83 -0.72

250 71.8 ± 2.3 73.6 ± 1.5 73.7 ± 1.2 69.8 ± 1.5 74.2 ± 1.5 68.8 ± 1.5 69.5 ± 1.7 66.2 ± 1.4

0.26 (709) 0.08 (836) -0.07 0.06 0.27 (665) -0.91 -0.84 -0.72

Table 1.8 ISOLET (26 classes)
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spectral transformation is zigzagged, diffusion and Gaussian field’s are very smooth,

while (improved) order constrained kernels are in between.

The order constrained kernels (green) have large µ1 because of the order con-

straint on the constant eigenvector. Again this seems to be disadvantageous — the

spectral transformation tries to balance it out by increasing the value of other µi’s,

so that the bias term K1’s relative influence is smaller. On the other hand the im-

proved order constrained kernels (black) allow µ1 to be small. As a result the rest

µi’s decay fast, which is desirable.

In summary, the improved order constrained kernel is consistently the best among

all kernels.

1.7 Conclusion

We have proposed and evaluated a novel approach for semi-supervised kernel

construction using convex optimization. The method incorporates order constraints,

and the resulting convex optimization problem can be solved efficiently using a

QCQP. In this work the base kernels were derived from the graph Laplacian, and no

parametric form for the spectral transformation was imposed, making the approach

more general than previous approaches. Experiments show that the method is both

computationally feasible and results in improvements to classification performance

when used with support vector machines.

There are several future directions:

In both order constrained kernels and improved order constrained kernels, we

are learning a large number of parameters µ1, . . . , µn based on l labeled examples.

Usually l � n, which suggests the danger of overfitting. However we have to consider

two mitigating factors: the first is that we in practice only learn the top m < n

parameters and set the rest at zero; the second is that the µ’s are order-constrained,

which reduces the effective complexity. One interesting question for future research

is an estimate of the effective number of parameters in these methods.

The QCQP problem may be transformed into a standard Quadratic Program

(QP), which may result in further improvements in computational efficiency.

The alignment is one example of a cost function that can be optimized. With

a fixed kernel, margin based upper bounds on misclassification probability can be

derived. As such, other cost functions that directly optimize quantities such as the

margin can also be used. This approach has been considered in the work of Chapelle

and Vapnik [2000] where the so called span bound was introduced and optimized

using gradient descent; and in Lanckriet et al. [2004], Bousquet and Herrmann [2002]

where optimization of tighter Rademacher complexity bounds has been proposed.
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Notation and Symbols

Sets of Numbers

N the set of natural numbers, N = {1, 2, . . .}

R the set of reals

[n] compact notation for {1, . . . , n}

x ∈ [a, b] interval a ≤ x ≤ b

x ∈ (a, b] interval a < x ≤ b

x ∈ (a, b) interval a < x < b

|C| cardinality of a set C (for finite sets, the number of elements)

Data

X the input domain

d (used if X is a vector space) dimension of X

M number of classes (for classification)

l, u number of labeled, unlabeled training examples

n total number of examples, n = l + u.

i, j indices, often running over [l] or [n]

xi input patterns xi ∈ X

yi classes yi ∈ [M ] (for regression: target values yi ∈ R)

X a sample of input patterns, X = (x1, . . . , xn)

Y a sample of output targets, Y = (y1, . . . , yn)

Xl labeled part of X , Xl = (x1, . . . , xl)

Yl labeled part of Y , Yl = (y1, . . . , yl)

Xu unlabeled part of X , Xu = (xl+1, . . . , xl+u)

Yu unlabeled part of Y , Yu = (yl+1, . . . , yl+u)



Kernels

H feature space induced by a kernel

Φ feature map, Φ : X → H

k (positive definite) kernel

K kernel matrix or Gram matrix, Kij = k(xi, xj)

Vectors, Matrices and Norms

1 vector with all entries equal to one

I identity matrix

A> transposed matrix (or vector)

A−1 inverse matrix (in some cases, pseudo-inverse)

tr (A) trace of a matrix

det (A) determinant of a matrix

〈x,x′〉 dot product between x and x′

‖·‖ 2-norm, ‖x‖ :=
√

〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(

∑N
i=1

|xi|
p
)1/p

, N ∈ N ∪ {∞}

‖·‖
∞

∞-norm , ‖x‖
∞

:= supN
i=1 |xi|, N ∈ N ∪ {∞}

Functions

ln logarithm to base e

log2 logarithm to base 2

f a function, often from X or [n] to R, R
M or [M ]

F a family of functions

Lp(X) function spaces, 1 ≤ p ≤ ∞

Probability

P{·} probability of a logical formula

P(C) probability of a set (event) C

p(x) density evaluated at x ∈ X

E [·] expectation of a random variable

Var [·] variance of a random variable

N(µ, σ2) normal distribution with mean µ and variance σ2



Graphs

g graph g = (V, E) with nodes V and edges E

G set of graphs

W weighted adjacency matrix of a graph (Wij 6= 0 ⇔ (i, j) ∈ E)

D (diagonal) degree matrix of a graph, Dii =
∑

j Wij

L normalized graph Laplacian, L = D−1/2WD−1/2

L un-normalized graph Laplacian, L = D − W

SVM-related

ρf (x, y) margin of function f on the example (x, y), i.e., y · f(x)

ρf margin of f on the training set, i.e., minm
i=1 ρf (xi, yi)

h VC dimension

C regularization parameter in front of the empirical risk term

λ regularization parameter in front of the regularizer

w weight vector

b constant offset (or threshold)

αi Lagrange multiplier or expansion coefficient

βi Lagrange multiplier

α, β vectors of Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

Q Hessian of a quadratic program

Miscellaneous

IA characteristic (or indicator) function on a set A

i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)

δx Dirac δ, satisfying
∫

δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants C > 0

and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants c > 0

and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right/left hand side”

the end of a proof


