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Abstract

This paper presents a probabilistic information retrieval framework in witietretrieval

problem is formally treated as a statistical decision problem. In this framewad¢jes

and documents are modeled using statistical language models, usermreseaee mod-
eled through loss functions, and retrieval is cast as a risk minimization pnoliVe discuss
how this framework can unify existing retrieval models and accommodatensgstede-

velopment of new retrieval models. As an example of using the framework tinmon-

traditional retrieval problems, we derive retrieval models for subtogitexal, which is

concerned with retrieving documents to cover many different subtopiageheral query
topic. These new models differ from traditional retrieval models in that teiaxkrthe tra-

ditional assumption of independent relevance of documents.
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1 Introduction

Over the course of decades of research in information vedfienany different
information retrieval models have been proposed and sludihile significant
progress has been made, no single retrieval model has prowenmost effective,
and several major challenges remain. For example, theatefiiidelines and for-
mal principles have rarely led to good performance direatistead, a theoretically
well defined formula often needs to be heuristically modifiedrder to perform
well empirically. It is thus a significant scientific chaltgto develop principled
retrieval approaches that also perform well empiricaltlyatidition, most retrieval
models have been developed based on the assumption of hudapeelevance —
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the relevance value of a document is assumed to be indepeoidérat of other
documents, including those already viewed by a user. Clgaryyassumption does
not hold in real applications. A major challenge is to depeiwodels that can relax
such an assumption.

In this paper, we present a probabilistic information estal framework that begins
to address these challenges. The basic idea of the framésworkormally treat the

task of information retrieval as a statistical decisionipeon. Specifically, given a
collection of documents, a query, and any other informattiatt we know about the
user, a retrieval system needs to choose a subset of docuarghpresent them in
an appropriate way. For example, ranking all the documestsrding to a query,

as is done in a typical retrieval system, can be regarded esisioh problem where
the decision involves choosing the best ranking. We forreahis view of retrieval

using Bayesian decision theory. In particular, we treat aygaad a document as
observations from a probabilistic model, called a stadtianguage model, and
encode retrieval preferences with a loss function definetherlanguage models
and a retrieval action. According to Bayesian decision thebe optimal retrieval

action (e.g., the optimal ranking in the case when the datisivolves choosing

a ranking) is the one that minimizes the Bayes risk, which & dkpected loss
associated with the chosen action given the observed qudrg@uments.

This framework unifies several existing retrieval modetgluding the recently
proposed language modeling approach, within a single pibé@c framework,
and provides guidance on how one can further improve a vatriraodel and sys-
tematically explore new approaches to information regie8everal new retrieval
models derived using the risk minimization framework hagerbshown to be quite
effective empirically.

In addition to its generality, this risk minimization framerk has several poten-
tial advantages over a traditional formulation of the infiation retrieval problem.
First, it systematically incorporates statistical langeianodels as components in a
retrieval framework. Statistical language models proageincipled way to model
text documents and queries, making it possible to set vatrgarameters through
statistical inference and estimation methods. Secondjgkeninimization frame-
work makes it possible to systematically and formally stagimal retrieval strate-
gies. For example, through making different assumptioosiie loss function for
ranking we can derive an optimal ranking principle, whiclsiisilar to the prob-
ability ranking principle, but which addresses severaititions of this standard
principle. Finally, the risk minimization framework ex@sthe traditional notion
of independent, topical relevance. For example, it is fbs$0 formalize retrieval
models for a non-traditional retrieval task where the geabi retrieval as many
different subtopics of a general topic as possible.

The rest of the paper is organized as follows. In Section Zynedly review existing
retrieval models and discuss how the risk minimization eamrk is related to



them. In Section 3, we present the basic idea and setup ofskeninimization
framework. In Section 4.1 and Section 4.2, we derive sevggratial cases of the
framework, demonstrate how it can cover existing retriematlels and also how
it can facilitate development of new retrieval models, uithg those appropriate
for the non-traditional subtopic retrieval task, as disedkin detail in Section 5.
Finally, we summarize the contributions of the paper in 8ed and Section 7.

2 Existing Retrieval Models

Through years of research, many different retrieval motialgee been proposed,
studied, and tested. Their mathematical basis spans adpegtrum, including al-
gebra, logic, set theory, and probability and statistickhdugh it is impractical
to provide a complete survey of all the existing retrievald@is in this paper, we
can roughly classify the existing models into three broadgaries, depending on
how they define and measure relevance. In one categoryarglevs assumed to
be correlated with the similarity between a query and a dainin another cate-
gory, a binary random variable is used to model relevanceariahbilistic models
are used to estimate the value of this relevance variablihelthird category, the
uncertainty of relevance is modeled by the uncertainty farnmg queries from
documents or vice versa. In order to place the risk mininoeparamework in con-
text, we discuss each of these three categories below.

2.1 Similarity-based Models

In a similarity-based retrieval model (Dominich, 2000, 2)qt is assumed that
the relevance status of a document with respect to a quemyrislated with the
similarity between the query and the document at some ldwelppesentation; the
more similar to a query a document is, the more relevant tcerdent is assumed
to be. In practice, we can use any similarity measure thagpves such correlation
to generate a relevance status value (RSV) for each documeémanak documents
accordingly.

The vector space model is the most well known model of thig f&alton et al.,

1975a; Salton and McGill, 1983; Salton, 1989), in which audoent and a query
are represented as two term vectors in a high-dimensional $pace and each
term is assigned a weight that reflects its “importance” ® dlocument or the
guery. Given a query, the relevance status value of a doduimegiven by the

similarity between the query vector and document vector aasured by some
vector similarity measure, such as the cosine of the anghedd by the two vectors.

The vector space model naturally decomposes a retrievaehoth three com-



ponents: (1) a term vector representation of a query; (2)rma tector representa-
tion of a document; (3) a similarity/distance measure betw& document vector
and a query vector. However, the “synchronization” amorggtthtee components
is generally unspecified; in particular, the similarity ree@ does not dictate the
representation of a document or query. Thus, the vectorespadel is actually a
general retrievaframework in which the representation of query and documents
as well as the similarity measure are all, in principle, tagoy.

The flexibility of the vector space approach makes it easy¢orporate different
indexing models. For example, the 2-Poisson probabilistiexing model can be
used to select indexing terms or assign term weights (Haréat5; Bookstein and
Swanson, 1975). Latent semantic indexing can be appliegdiace the dimension
of the term space and to capture the semantic “closenessigtaons, in an effort
to improve the representation of the documents and quergr(izester et al., 1990).
A document can also be represented by a multinomial digioibwver the terms,
as in the distribution model of indexing proposed in (Wond aao, 1989).

The main criticism of the vector space model is that it pregicio formal frame-
work for the representation, making the study of represemtanherently separate
from the estimation of relevance. The separation of thevaglee function from
the weighting of terms has the advantage of being flexibletHaidisadvantage of
making difficult the study of the interaction between repreation and relevance
measurement. The optimality of a similarity/relevancection is highly depen-
dent on the actual representation (i.e., term weights) efainery and the docu-
ment. As a result, the study of representation in the veqiacs model has been
largely heuristic. The two central problems in document qunery representation
are the extraction of indexing terms, or other units, andwke&hting of the in-
dexing terms. The choice of different indexing units hasnbedensively studied,
but no significant improvement has been achieved over thplsgnhword-based
indexing (Lewis, 1992), although recent evaluation hasnshmore promising
improvement through the use of linguistic phrases (EvanlsZirai, 1996; Strza-
Ikowski, 1997; Zhai, 1997). Many heuristics have also beeppsed to improve
term weighting, but again, no weighting method has beenddarbe significantly
better than the heuristic TF-IDF term weighting (Salton Badkley, 1988). To ad-
dress the variance in the length of documents, an effectaigiing formula also
needs to incorporate document length heuristically (Sahgt al., 1996). Salton
et al. introduced the idea of thdscrimination valueof an indexing term (Salton
et al., 1975b), which is the increase or decrease in the nmtarrdocument dis-
tance caused by adding the indexing term to the term spadexbrepresenta-
tion. Salton et al. found that the middle frequency termshagher discrimination
value. Given a similarity measure, the discrimination eatwovides a principled
way of selecting terms for indexing. However, there arétsiib deficiencies. First,
the framework is not modeling relevance, but rather reliesadixed similarity
measure. Second, it is only helpful for selecting indexiegns, but not for the
weighting of terms. Other criticisms about the vector-gpaodel can be found in



(Bollmann-Sdorra and Raghavan, 1993; Dominich, 2002).

As seen below, the risk minimization framework suggestsvafoemal similarity-
based retrieval model in which the representation of quedytcuments is associ-
ated with statistical language models. The use of statiddoguage models makes
it possible to replace the traditional ad hoc tuning of paeters with statistical
estimation of parameters.

2.2 Probabilistic Relevance Models

In a probabilistic relevance model, one is interested inghestion “What is the
probability thathisdocument is relevant this query?” (Sparck Jones et al., 2000).
Given a query, a document is assumed to be either relevaoieratevant, but the
system relies on a probabilistic model to infer this value.

Formally, let random variable® and(@ denote a document and query, respectively.
Let R be a binary random variable that indicates whethas relevant tay or not.

It takes two values which we denote ag¢'relevant”) andr (“not relevant”). The
task is to estimate the probability of relevance, iR = r | D, Q). Depending
on how this probability is modeled and estimated, there @versl special cases of
this general probabilistic relevance model.

First,p(R = r| D, Q) can be estimated directly using a discriminative (regoegsi
model. Essentially, the relevance varialiias assumed to be dependent on “fea-
tures” that characterize how wdll matcheg). Such a regression model was first
introduced, with some success, by Fox (1983), where featsmeh as term fre-
guency, authorship, and co-citation were combined usimggli regression. Fuhr
and Buckley (1991) used polynomial regression to approxnmatevance. Gey
used logistic regression involving information such asrgterm frequency, docu-
ment term frequency, IDF, and relative term frequency irvthele collection, and
this model shows promising performance in three smallrigstollections (Gey,
1994). Regression models provide a well studied framewomkhith to explore
the use of heuristic features. One important advantagegoéssion models is their
ability to learn from all the past relevance judgments, i skense that the param-
eters of a model can be estimated based on all the relevatigm@nts, including
the judgments for different queries or documents. Howev&rge amount of data
and empirical experimentation may be needed in order to figet af good fea-
tures. The regression framework thus provides only limgeidlance for extending
a retrieval model.

Alternatively,p(R = r | D, @) can be estimated indirectly using a generative model,
and documents can be ranked according to the following titsoatio:
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There are two different ways to factor the conditional ploliy p(D,Q | R),
corresponding t@locument generatioand query generatior(Lafferty and Zhai,
2003). Most classic probabilistic retrieval models (Rosentand Sparck Jones,
1976; van Rijsbergen, 1979; Robertson et al., 1981; Fuhr,)1@@2ased on doc-
ument generation (i.ep(D,Q | R) = p(D|Q, R)p(Q | R)). The Binary Indepen-
dence Retrieval (BIR) model (Robertson and Sparck Jones, 19if8; £992) is
perhaps the most well known classical probabilistic modeissumes that terms
are independently distributed in each of the two relevangdets, so is essentially
a ndve Bayes classifier for document ranking (Lewis, 1998).

There have been several efforts to improve the binary reptason. Van Rijsber-
gen extended the binary independence model by capturing senm dependency
as defined by a minimum-spanning tree weighted by averageahuformation
(van Rijbergen, 1977). Croft (1981) investigated how the isiaiterm significance
weight can be incorporated into probabilistic models iniagpled way. Another
effort on improving document representation is to intragltice term frequency
directly into the model by using a multiple 2-Poisson migtuepresentation of
documents (Robertson et al., 1981). While this model has rtisisuperior em-
pirical performance itself, an approximation of the modaséd on a simple TF
formula turns out to be quite effective (Robertson and Walkée4). A different
way of introducing term frequency into the model is implicitext categorization
approaches which view a document as being generated frongeaomlanguage
model (Kalt, 1996; McCallum and Nigam, 1998).

Models based on query generationD, @ | R) = p(Q | D, R)p(D | R)) have been
explored in (Maron and Kuhns, 1960), (Robertson et al., 19&2)hr, 1992) and
(Lafferty and Zhai, 2003). Indeed, the Probabilistic Indexmodel proposed in
(Maron and Kuhns, 1960) is the very first probabilistic etal model, in which
the indexing terms assigned to a document are weighted byrtdimbility that a
user who likes the document would use the term in the quergt iBhthe weight
of term¢ for documentD is p(t| D, r). However, the estimation of the model is
based on user’s feedback, not the conterfPoT he Binary Independence Indexing
(BIl) model proposed in (Fuhr, 1992) is another special cdsaequery gener-
ation model. It allows the description of a document (withgided terms) to be
estimated based on arbitrary queries, but the specific paesization makes it dif-
ficult to estimate all the parameters in practice. In (Lajf@nd Zhai, 2003), it has
been shown that the recently proposed language modelingagipto retrieval can
be viewed as a special probabilistic relevance model whernyqgeneration is used
to decompose the generative model. This work provides aaete-based justi-

1 The required underlying independence assumption for the final rdtfeevaula is actu-
ally weaker (Cooper, 1991).



fication for this new family of probabilistic models based satistical language
modeling.

The language modeling approach was first introduced by PaondeCroft (1998)
and also explored in (Hiemstra and Kraaij, 1998; Miller et 4099; Berger and
Lafferty, 1999; Song and Croft, 1999). The estimation of ajleage model based
on a document (i.e., the estimationf. | D, r)) is the key component in the lan-
guage modeling approach. Indeed, most work in this diradtitiers mainly in the
language model used and the way of language model estim&maothing of a
document language model with some kind of collection lagguaodel has been
very popular in the existing work. For example, geometri®@sthing was used
in (Ponte and Croft, 1998); linear interpolation smoothirgswised in (Hiemstra
and Kraaij, 1998; Berger and Lafferty, 1999), and was viewea 2-state hid-
den Markov model in (Miller et al., 1999). Berger and Laffegtyplored “semantic
smoothing” by estimating a “translation model” for mappagocument term to a
guery term, and reported significant improvements over #iselne language mod-
eling approach through the use of translation models (BengeLafferty, 1999).

The language modeling approach has two important coniitsit First, it intro-
duces an effective probabilistic ranking function basedlan query generation.
While the earlier query generation models have all encoadtdifficulty in esti-
mating the parameters, the model proposed in (Ponte and, @B8¥8) explicitly
addresses the estimation problem through the use of statisinguage models.
Second, it reveals the connection between the difficult [pralof text represen-
tation in IR and the language modeling techniques that haea well studied in
other application areas such as statistical machine atmsland speech recogni-
tion, making it possible to exploit various kinds of langaagodeling techniques
to address the representation probtem

Although the classic document generation probabilistidet® and the language
modeling approach can be seen as being based on the sanreafottevance and
are probabilistically equivalent, they have several intgatr differences from an
estimation perspective, as they involve different paransefior estimation. When
no relevance judgments are available, it is easier to e&ip(@) | D, r) in the lan-
guage modeling approach than to estimat® | ), r) in the classic probabilistic
models. Intuitively, it is easier to estimate a model forléwant queries” based
on a document than to estimate a model for relevant docurbastd on a query.
Indeed, the BIR model has encountered difficulties in estimgat(¢|Q,r) and
p(t|Q,7) when no explicit relevance information is available. Tydig, p (¢ | Q, r)

is set to a constant andt | Q, 7) is estimated under the assumption that the each
document in the collection is not relevant (Croft and Hari®79; Robertson and
Walker, 1997). Recently, Lavrenko and Croft made progresstimating the rel-

2 The use of a multinomial model for documents was actually first introduced angw
and Yao, 1989), but was not exploited as a language model.



evance model without relevance judgments by exploitingugage modeling tech-
niques (Lavrenko and Croft, 2001). On the other hand, whetioc#xpelevance
judgments are available, the classic models, being base@d@ment generation,
have the advantage of being able to naturally improve thmasbn of the compo-
nent probabilistic models by exploiting such explicit kgace information. This is
because the relevance judgments from a user provide diegaintg data for esti-
matingp (t | @, r) andp(t | Q, 7), which can then be applied to new documents. The
same relevance judgments can also provide direct trairatg for improving the
estimate ofp (¢ | D, r) in the language modeling approach, but only for those doc-
uments judged relevant. Thus, the directly improved modaisnot be expected
to improve our ranking of other unjudged documents. Intergly, such improved
models can potentially be beneficial for new queries—a feainavailable in doc-
ument generation models.

Instead of imposing a strict document generation or quenegdion decompo-
sition of the joint probabilityp (D, @ | R), one can also “generate” a document-
guery pair simultaneously. Mittendorf and Schauble (1994)lored a passage-
based generative model using Hidden Markov Model (HMM), alihcan be re-
garded as such a case. In this work, a document query paiptiesented as a
sequence of symbols, each corresponding to a term at alpartfosition of the
document. All term tokens are clustered according to thelaiity between the
token and the query. In this way, a term token at a particudaition of a document
can be mapped to a symbol that represents the cluster the beftengs to. Such
symbol sequences are modeled as the output from an HMM withstates, one
corresponding to relevant passages and the other to thgroarid noise. The rel-
evance value is then computed based on the likelihood ratleecsequence given
the passage HMM model and the background model.

As seen below, probabilistic relevance models can be shovire ta special case
of the risk minimization framework when a “constant costlexance-based loss
function is used.

2.3 Probabilistic Inference Models

In a probabilistic inference model, the uncertainty of valece of a document, with
respect to a query, is modeled by the uncertainty associtkanferring the query

from the document. Different inference models are posslblgending on what it
means to “infer a query from a document.”

Van Rijsbergen introduced a logic-based probabilisticreriee model for text re-
trieval (van Rijsbergen, 1986). In this model, a documenglsvant to a query if
(and only if) the query can be inferred from the document. Bbelean retrieval
model can be regarded as a simple special case of this magebpe with the



inherent uncertainty of relevance, van Rijsbergen intredulogic for probabilis-
tic inference, in which the probability of a conditional,cbuasp — ¢, can be

estimated based on the notion of possible worlds. Wong and ¥@95) extended
the probabilistic inference model and proposed a unifietiénwsork for supporting

probabilistic inference with a concept space and a proipabiistribution defined

over the concepts in the space. The probabilistic concegmtesmodel is shown to
recover many other text retrieval models such as the Boolesstor space, and
the classic probabilistic models through different waysmaddeling terms (thus
document and query representations) in the concept spabe shows that some
particular form of the language modeling approach can a¢sddrived using this
general probabilistic concept space model (Fuhr, 2001).

The inference network model is also based on probabilieferénce (Turtle and
Croft, 1991). It is essentially a Bayesian belief network thetdels the depen-
dency between the satisfaction of a query and the obsenvatidocuments. The
estimation of relevance is based on the computation of thditonal probability
that the query is satisfied given that the document is obde@ther similar uses of
Bayesian belief network in retrieval have been presentdéling and Favero, 1995;
Ribeiro and Muntz, 1996; Ribeiro-Neto et al., 2000). Kwok'swak model may
also be considered as performing a probabilistic inferéKeeok, 1995), though it
is based on spread activation. The inference network medehery general for-
malism; with different ways to realize the probabilistidat@onship between the
evidence of observing documents and the satisfaction afsuséormation need,
one can obtain many different text retrieval models as sppeeises, including the
Boolean, extended Boolean, vector space, and conventiooladlpifistic models.
More importantly, it can potentially go beyond the tradii@b notion of topical rel-
evance.

3 TheRisk Minimization Framewor k

Informally, a retrieval system can be regarded as an inigeainformation service
system that answers a user’s query by presenting a list afrdents. Usually the
user would examine the presented documents and reformailgtesry if neces-
sary; the new query is then executed by the system to prochateer new list of
documents to present. At each iteration in this cycle, theexal system faces a
decision-making problem — it needs to choose a subset ofnglegts and present
them to the user in some way, based on the available infoom&b the system,
which includes the current user, the user’s query, the ssuof documents, and
a specific document collection. For example, the system neaydd to select a
subset of documents and present them without any partioud@r (as in Boolean
retrieval); alternatively, it may decide to select all theedments and present them
as a ranked list (as in the vector space model). In genemie ttould be many
choices for the decision space, and we can regard the prot@s®rmation re-
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Fig. 1. Generative model of quegyand document.

trieval as consisting of a series of such decision makinkstas

We now formally define this decision problem. We view a querpaing the output
of some probabilistic process associated with the Usend similarly, we view a
document as being the output of some probabilistic processcated with an au-
thor or document sourcg,. A query (document) is the result of choosing a model,
and then generating the query (document) using that modsétAf documents
is the result of generating each document independentisilply from a differ-
ent model. (The independence assumption is not essemtéisanade here only
to simplify the presentation.) The query model could, impiple, encode detailed
knowledge about a user’s information need and the contextich they make their
qguery. Similarly, the document model could encode compiéarmation about a
document and its source or author.

More formally, letd, denote the parameters of a query model, anéijetenote the
parameters of a document model. A udegenerates a query by first selectifig
according to a distributiop (6 | ¢/). Using this model, a queryis then generated
with probability p (¢ | 6g). Note that since a user can potentially use the same text
query to mean different information needs, strictly spegkthe variablé/ should

be regarded as corresponding to a user witlctiveentcontext. Since this does not
affect the presentation of the framework, we will simplyaretfol/ as a user. Simi-
larly, the source selects a document matehccording to a distributiop (6p | S),

and then uses this model to generate a documeantording ta(d | 6p). Thus, we
have Markov chain& — 6y — qandS — 0, — d. Thisis illustrated in Figure 1.

LetC = {di,...,dy} be a collection of documents obtained from sourSes-
(81, ..., Sy). Our observations are thuds, q, S, andC. With this setup, we can
now define retrieval actions. A retrieval action correspotala possible response
of the system to a query. For example, one can imagine thasysiem would
return an unordered subset of documents to the user. Alieghga a system may
decide a ranking of documents and present a ranked list afrdents. Yet another
possibility is to cluster the (relevant) documents and gmées structured view of
documents. Formally, a retrieval action can be defined asngpoond decision
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involving selecting a subset of documerbsfrom C and presenting them to the
user who has issued quegyaccording to some presentation strategy et I1 be
the set of all possible presentation strategies. We caesept all actions byl =
{(D, )}, whereD C C is a subset of andr € II is some presentation strategy.

In the general framework of Bayesian decision theory, to eaah actiorn =
(D,7) € A there is associatedlass L(a, 8, F (i), F(S)), which in general de-
pends upon all of the parameters of our matled (6, {0;}Y,) as well as any rel-
evant user factors' (/) and document source factaf§S), whered; is the model
that generates documetjt For convenience of notation, we will typically assume
that the user factorB(l/) are included as part of the query moégl| and similarly

that the source factors(S) are included as part of the document modgjghus
our loss function can be written dsa, ).

Theexpected risk of actioa is given by

R(D7|U.q.5,C) = [ L(D.7.0)p(6|U,q,5.C)db

where the posterior distribution is given by

N

i=1

The Bayes decision rule is then to choose the aciiohaving the least expected
risk:
a* = (D*,7") = argmin R(D, 7 |U,q,S,C)
D,

Thus, the document séX* is selected and presented to the user with stratégy

Note that this gives us a very general formulation of retti@g a decision problem,
which involves searching fab* andz* simultaneously. The presentation strategy
can be fairly arbitrary in principle, e.g., presenting dmeunts in a certain order,
presenting a summary of the documents, or presenting aedlugtview of the
documents. However, we need to be able to quantify the |ossceded with a
presentation strategy.

We now consider several special cases of the risk mininoizdtamework.
3.1 Set-based Retrieval

Let us consider the case when the loss function does not depethe presentation
strategy, which means that all we are concerned with is ecsah optimal subset

11



of documents for presentation. In this case, the risk miration framework leads
to the following general set-based retrieval method.

D* = argmin R(D |L{,q,§,C)
D

= argmin/@ L(D,0)p(0|U,q,8,C)db
D

The loss function can encode the user’s preferences on ldwtesst subset. Gener-

ally, the loss function will depend on the relevance stafuk@documents selected

so that the optimal subset should contain the documentstbanost likely to be

relevant. But other preferences, such as the desired divarsi the desired size of

a subset, can also be captured by an appropriate loss fanctio

The traditional Boolean retrieval model can be viewed as a@iapease of this
general set-based retrieval framework, where we the waiogtabout the query
models and document models is not modeled (é§+ ¢ andd;, = d;), and the
following loss function is used:

L(D.6) = Y ~d(d.q)

deD

whered(d, q) = 1 if and only if document! satisfies the Boolean quegy other-
wised(d, q) = —1. This loss function is actually quite general, in the sehse if

we allowd(d, ¢) to be any deterministic retrieval rule applied to quergnd doc-
umentd, such that(d, ¢) > 0 if d is relevant ta;, otherwisej(d, q) < 0, then the
loss function will always result in a retrieval strategytthvolves making an inde-
pendent binary retrieval decision for each document aaegrib 6. In particular,
the functiond can be defined on a structured query. One can easily imaging ma
other possibilities to specialize the set-based retrieethod.

3.2 Rank-based Retrieval

Let us now consider a different special case of the risk mization framework
where the selected documents are presented to the user aked tast of doc-
uments, so a possible presentation strategy corresporalpaossible ranking of
documents. Such a ranking strategy has been assumed in madstmretrieval
systems and models.

Formally, we may denote an action by= (D, 7), wherer is a complete ordering
on D3 . Taking actionz would then mean presenting the selected documents in
one by one in the order given by This means that we can denote an action by a

3 We could allow partial ordering in principle, but here we only consider deteprder-
ing.
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sequenc®f documents. So we will write. = (dr (1), dr(2), ---, dzx)), Wheren ()
is the index of the document ranked at théh rank according to the permutation

mappingr.

Let us further assume that our actions essentially invoifferdnt rankings of doc-
uments in the entire collectia®. That is,. 4 = {(C, 7)}, wherer is a permutation
over [1..N], i.e., a complete ordering of th¥ documents irC. To simplify our

notation, we will user to denote actiom = (C, ).

In this case, the optimal Bayes decision is given by the fahgvwgeneral ranking
rule:

—

7 =argmin R(7 | ¢,C,U,S)

—

:argmin/@ L(m,0)p(6q,C,U,S)db

wheref = (6, {6;}Y.,). We see that the loss function is now discriminating dif-
ferent possible rankings of documents.

How do we characterize the loss associated with a rankingaiments? Present-
ing documents by ranking implies that the user would appipesgtopping crite-
rion — the user would read the documents in order and stopewvéeis appropriate.
Thus, the actual loss (or equivalently utility) of a rankinguld depend on where
the user actually stops. That is, the utility is affectedhwy tiser’s browsing behav-
ior, which we could model through a probability distributiover all the ranks at
which a user might stop. Given this setup, we can now define#ssfor a ranking
as the expected loss under the assumed “stopping distnitiuti

Formally, lets; denote the probability that the user would stop reading a#eing
the top: documents. We havgfil s; = 1. We can treas, ..., sy as user factors
that depend ot¥. Then the loss is given by

N

L(m,0) = > s;l(m(1:1),0)

i=1

where/(w(1 : i),0) is the actual loss that would be incurred if the user actually
views the firsti documents according to. Note thatZ(x, ) and/(x, ) are dif-
ferent: the former is the expected loss of the ranking unkeruser’s “stopping
probability distribution,” while the latter is the exactst® of the ranking when the
user actually views the whole list.

Assuming that the user would view the documents in the ortesgmted, and the

total loss of viewingi documents is the sum of the loss associated with viewing
each individual document, we have the following reasondb@mposition of the
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loss:
g(ﬂ'(l : Z), 9) = Z g(dﬁ(j) | dﬂ(l), ceuy dﬂ—(j_l), 9)
j=1
wherel(dy ;) | dxq), ..., dx(j—1), 0) is the conditional loss of viewind,; given that
the user has already viewéd, 1, ..., di-1).

Putting all of this together, we have

—

7 = argmin R(7 | ¢q,C,U,S)

—

N %
— argmin}_ 5 > /@ Udmiiy | dnirys - i1y, 0) p(0 | ,C. U, S) dO

i=1

Now, define the following conditional risk

—,

r(dk’dla"wdk*h(LC?u?g) d:afg(dk‘dla7dk179)p(9‘Q7cau78)d6
(C]

which can be interpreted as the expected risk of the usexsing documenti,,
given thatd, ..., d,_, have been previously viewed. We can then write

i
N

R(m|q,C,U,S)

—

T.(dﬂ'(j) ’ d7r(1)7 SES) dﬂ'(j—l)? q, C7 Z/{, S)

I
™=
@

o
I
A
. '
I
H

—

Si) r(dw(]) ‘ d7r(1)7 ) dw(j—l)a q, CJ Z/{, 8)

<.
Il
-

Il
M =
™=

<.
I
.

This is the general framework for ranking documents withia tisk minimization
framework. It basically says that the optimal ranking miizies the expected con-
ditional loss (under the stopping distribution) assoclaté&h sequentially viewing
each document.

We see that the optimal ranking depends on the stoppinghdison s;. If a user
tends to stop early, the optimal decision would be more tdteby the loss asso-
ciated with the top ranked documents; otherwise, it will berenequally affected
by the loss associated with all the documents. Thus, thestgprobability dis-
tribution provides a way to model a “high-precision” (eastppping) preference
or a “high-recall” (late stopping) preference. The seqiaidiecomposition of the
loss is reasonable when presenting a ranked list to the @arly, when using
other presentation strategies (e.g., clustering), suatardposition would not be
appropriate.
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4 LossFunctionsfor Ranking

In this section we discuss specific loss functions, and shaivthe risk minimiza-
tion framework includes several traditional retrieval ratsdas special cases.

4.1 Independent Loss Functions

Let us first consider the case when the loss of viewing eachrdent is indepen-
dent of viewing others. That is,

Udniy | deay, - dr(j-1),0) = L0n(5), 0)
which means .
U(m(1:1),0) = (05, 0q)
j=1

In this case, the expected risk for rankings

i
N

R(m|q,C,U,S)

—

T(dw(j) ’ q, C,Z/l, S)

I
1=
>

o
I
_
. '
I
H

Si) r(de) | 4,C, U, S)

<.
Il
-

Il
M =
™=

<.
I
.

We see that the risk of is a weighted sum of the risk of viewing each individual
document. As the rank increases, the weight decreasesthagithieight on the first
rank being the largest (i.€5,2, s;). Thus, the optimal ranking*, independent of
{s;}, is in ascending order of the individual risk:

r(d]q.C.U.S) = [ €(d.0p(0]4,C.U.S)do ®

This is equivalent to the situation where we assume a p@sadtion is to present a
singledocument. The loss functidiid, §) can be interpreted as the loss associated
with presenting/viewing documenmt or equivalently the expected utility of pre-
senting document. Equation (1) thus specifies a general optimal rankingesjsat
which is very similar to the Probability Ranking Principle (fwtson, 1977); this
connection will be further discussed in Section 6.

In general, there could be many different ways of specifytimg loss function,
which lead to different ranking functions. We now show thathwappropriate
choices of loss functions, many existing rank-based rettiemodels can be de-
rived in the risk minimization framework, including the wec space model, the
classic probabilistic retrieval model, and the recentlygmsed language modeling
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Model selection Query generation
U = bq - q
p(q |U) p(q]0q)

p(R[0q,0p) R

Model selection Doc generation
S - Op - d
p(0p|S) p(dl6p)

Fig. 2. Generative model of quegy document!, and relevance.

approach. We also show that novel retrieval models, pdatigLthose using statis-
tical language models, can be systematically developeddise risk minimization
framework.

4.1.1 Relevance-based loss functions

To show that the traditional relevance based probabilietidels are special cases
of risk minimization, we consider the special case whereldiss functionL is
defined through some binary relevance variabl&pecifically, we assume that for
each document;, there is a hidden binary relevance variahlgthat depends on
8, andg; according top (R; | 0, 0;), which is interpreted as representing the true
relevance status af; with respect tgy (1 for relevant and) for non-relevant); see
Figure 2. The random variablg; is observed when we have the user’s relevance
judgment ond;, and is unobserved otherwise. Let us assumeRhat not observed

for now. Note that because the query modglcan encode detailed knowledge
about the use/, the distribution of this relevance variable can be usecHit.

Introducing the variablé: into our parameter space, equation (1) becomes:

r(d|q,C,U,S)

3 / / (R, 0p,60) p(R|0p,00)p(0p, 00 | d,q,C. U, S) dIgdip  (2)
Re{0,1} ©q

Now let us assume that the loss functitdepends o only through the relevance
variableR. That is, let/ be defined

Co|fR:0
C1 |fR:1

U(R,0p,0q) = U(R) =

where,cy andc, are two cost constants, angl > ¢; for any reasonable loss func-
tion.

From equation (2), we have
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—

T(d\q,C,LLS) = COp(R:O|qad)+clp(R: 1’(],(1)
= co+ (c1 —co) p(R=1]q,d)

This means that the risk minimization ranking criterionnsthis case equivalent
to ranking based op(R = 1]q,d), i.e., the probability of relevance givenand
d*. This is the basis of all probabilistic relevance retriavaidels. Thus, we have
shown that the variants of the probabilistic relevance reogiewed in Section 2
are all special cases of the risk minimization frameworlparticular, this includes
both the classic document generation probabilistic redfienodels and the lan-
guage modeling approach, which is based on query generétaiferty and Zhai,
2001).

4.1.2 Proportional distance loss functions

Let us now consider a loss functiénvhich is proportional to a distance or similar-
ity measureA betweerd, andfp, i.e.,

(0p,0g) = cA(bg,0p)

wherec is a constant cost. Intuitively, if the modelsd’ are closer (more simi-
lar), thenA(6, ¢") should be small, reflecting a user’s goal of retrieving doents
whose models are close to the query model.

With this loss function, from equation (1), we have

- -,

T(d|QaCauv‘S) X /9 /@A(HQveD)p(eQ‘%U)p(eD‘d?‘S)deDdeQ
Q D

This means that the risk minimization ranking criterion@swequivalent to ranking
based on the expected model distance. To make this distase 8 compute, we
can approximate it by its value at the posterior mode of thiarpaters. That is,

r(d|q,C.U,8) ~ cA(fg,0p)
WhereéQ = argmax,, p (0| q,U) andd, = arg max,, p(fp|d, S).

Note that the factop (0 | d,S) includes prior information about the document,
and in general must be included when comparing the risk féegrdnt documents.
This is critical when incorporating query-independenk lamalysis, or other ex-
trinsic knowledge about a document. Thus we see that unésetassumptions
and approximations;(d | ¢,C,U,S) « A(fp,0y) We can view the vector space

4 Sincecy > c1, a decreasing order inis equivalent to an increasing order iR =
1]g,d).
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model as a special case of this general similarity model,hicméQ andép, are
simply term vector parameters estimated heuristicallytheddistance function is
the cosine or inner product measure.

As a special case of the distance-based model, we assumg,thadd,, are the
parameters of unigram language models, and choose as thaadisunction the
Kullback-Leibler divergence. This leads to

Ay 00) = DUall00) = Splw|00)log L2 1%)

and

r(d|q,C,U,S) < = p(w|8,)logp(w]|b,) + condq)

25" p(w|0,) log p(w | 4)

Thus the ranking function is essentially the cross entrdpthe query language
model with respect to the document language model. The édbppnstant is minus
the query model entropy. The value of the cross entropy isydwarger than or
equal to the query model entropy. The minimum value (i.erguedel entropy)

is achieved whe#, is identical tod,, which makes sense for retrieval.

The KL-divergence model covers the popular query likeltheanking function as
a special case. Indeed, suppd@seas just the empirical distribution of the query
q=(q1,9,-..,qm), Thatis,f, is the language model given by

R 1 m
p(w|by) = Ezé(u&qi)
=1

whered(w, ¢;) is the indicator function. We obtain

m

- 1 ~

i=1

This is precisely the log-likelihood criterion used by Roand Croft (1998) in in-
troducing the language modeling approach, which has beshinsll work on the
language modeling approach to date. In (Zhai and LaffeQ@12, new methods
were developed to estimate a moégl leading to significantly improved perfor-
mance over the use of the empirical distributin
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4.1.3 “Binned” distance loss functions

We now consider another special loss function based on angistfunction, in-
dexed by a small constast

0 if A(6g,0p) < €

66(0D7 QQ) = {
¢ otherwise

whereA : ©y x ©p — R is a model distance function, ands a constant positive

cost. Thus, the loss is zero when the query model and the datdumodel are

close to each other, anddtherwise, capturing a user’s preference for retrieving

documents whose models are close to the query model.

We can show that this loss function leads to a family of twagstlanguage models
explored in (Zhai and Lafferty, 2002). First, we see thatrtbk is

dq.C.U S)= —// 8o | ¢.U) p(0p | d,S) dbg, b
r(d|q )=c Jo,, eQese(eD)p(QM )p(Op|d,S)dbqdip

wheresS. (6p) = {00 | A6, 0p) < €}

Now, assuming that (0, | d, S) is concentrated on an estimated vaflie we can
approximate the value of the integral o\, by the integrand’s value &,. Note

that the constant can be ignored for the purpose of ranking. Thus, using the no-
tation A & B to mean thatd and B have the same effect for ranking, we have
that

r(d|gq,C,u,8) T — p(0qg|q.U)dbg

0gES:(6p)
When#d, andfp, belong to the same parameter space (Rg.= ©p) ande is very
small, the value of the integral can be approximated by theevaf the function at

6, times a constant (the volume SI(QD)) and the constant can again be ignored
for the purpose of ranking. That is,

rank

r(d|q,C,U,S) = —p(fp|q,U)

Therefore, using this loss we will be actually ranking doemts according to
p(0p|q,U), i.e., the posterior probability that the user used thevestd docu-
ment model as the query model. Applying Bayes’ formula, wereanite this as

p(Op|q,U) < p(q|0p,U)p(Op|U) (3)
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Equation (3) is the basic two-stage language model retrfevenula, in which

p(q] Op, U) captures how well the estimated document mé@eixplalns the query,
wherea@(eD |U) encodes our prior belief that the user would Aseas the query
model. It can also be regarded as a natural generalizatidheobasic language
modeling approach (i.e., the simple query likelihood md)hdn (Zhai and Laf-
ferty, 2002) this two-stage language model is shown to aehexcellent retrieval
performance through completely automatic setting of patars.

4.2 Dependent Loss Functions

We have demonstrated how the risk minimization frameworkregover existing

retrieval models and can motivate some interesting newevalrmodels through

independent loss functions. However, an independent losgibn is rarely an ac-
curate model of real retrieval preferences; the loss of vigwne document gener-
ally depends on the documents already viewed. For exanfie, uiser has already
seen the same document or a similar document, then the datsimauld incur a

much greater loss than if it were completely new to the usethis section, we

discuss dependent loss functions.

When an independent loss function is used, we can derive t eptimal rank-
ing strategy (i.e., equation (1)) which does not depend ersthpping probability
distribution and can be computed efficiently. However, waeependent loss func-
tion is used , the complexity of finding the optimal rankingkesthe computation
intractable. One practical solution is to use a greedy #lyarto construct a sub-
optimal ranking. Specifically, we can “grow” the target rartkby choosing the
document at each rank, starting from the very first rank. 8sppve already have
a partially constructed ranking(1 : i), and we are now choosing the document at
ranki + 1. Let k£ be a possible document index to be considered for fank, and
let7(1 : i, k) represent the orderin@), ..., d-, di). Then, the increase in risk
due to choosing, at ranki + 1 is

d(k|m(1:4) = R(x(1:4,k)|q,C.U,S) = R(x(1:i)|q,C.U.S)
= sit1 (r(di | deqrys oo dugiy, 4, C, U, S) +

Z T<dj | dﬂ'(l)? ey dﬂ'(j—l)? q, Cau7 5))

=1

Thus, at each step we just need to evaluate
8 (k| m(1:4)) = r(dy | deqry, s duiy, ¢, C, U, S)

and choose the that minimizesy (k| (1 : 7)).
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This gives us a general greedy and context-dependent gaalgorithm. Interest-
ingly, due to the use of a greedy strategy, we see again tedbgtimal” ranking
does not depend on the stopping probabilitie$n the next section, we discuss how
we may instantiate this general algorithm with specific sefeat loss functions in
the context of a non-traditional ranking task—subtopiciegal.

5 Modelsfor Subtopic Retrieval

5.1 The problem of subtopic retrieval

A regular retrieval task is often framed as the problem afeeing relevant docu-

ments based on the assumption that a single document iSénmation unit under

consideration. However, a topic usually has some degreghddpic structure. For
example, a student doing a literature survey on “machineieg’ may be most

interested in finding documents that cover representagyeoaches to the field
and the relations between these approaches. If a topic lofigea unique structure
that involves many different subtopics, a user with a higtalleretrieval prefer-

ence may prefer a ranking of documents where the top docsncerer different

subtopics. This problem, referred to as “aspect retrievas investigated in the
TREC interactive track (Over, 1998), where the purpose wastudy how an in-

teractive retrieval system can help a user to efficientihgatliverse information
about a topic.

How can we formally define a retrieval model for such a sulatogirieval problem?
Clearly, this requires non-traditional ranking of docunsgerstince ranking solely
based on relevance would not be optimal. We thus need ndititrazal ranking

models that can not only model relevance but also model g=haoy, novelty, and
subtopics. To model the subtopic retrieval task in the rigkimmization framework
we require a dependent loss function. In this section wespite®/o different types
of dependent loss functions that are appropriate for tsis ta

The first type of loss function is the Maximal Marginal Relesar{MMR) loss
function, in which we encode a preference for retrievinguoents that are both
topically relevant and novel (Carbonell and Goldstein, )988essence, the goal
is to retrieve relevant documents and, at the same timepmzaaithe chance that
the user will see redundant documents as he or she goes lthtlbeganked list
of documents. Intuitively, as we reduce the redundancy gndacuments, we can
expect the coverage of the same subtopic to be minimizednaisdihe coverage of
potentially different subtopics to increase.

The second type of loss function is the Maximal Diverse Relega MDR) loss
function, in which we encode a preference for retrievingutoents that best sup-
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plement the previously retrieved documents, in terms oédag different subtopics.
We thus need to model both topical relevance and subtopictate of documents.

Intuitively, an MDR loss function will assess which subtogphave been well cov-
ered and which are under covered, and then prefer a docuhaitest treats those
under-covered subtopics. We now discuss both types of dieppeioss functions in

detail.

5.2 Maximal Marginal Relevance (MMR) Loss Functions

The idea of Maximal Marginal Relevance (MMR) ranking was firsigmsed and
formalized in (Carbonell and Goldstein, 1998). It is basedr@nassumption that
one should consider not only the relevance value, but alsadvelty (or equiv-
alently, redundancy) in the presented documents. Infdyngilen a set of previ-
ously selected documents, the next best document is onis thath relevant to the
guery topic and different from the already selected documémthe risk minimiza-
tion framework, we can encode such preferences with a dondltloss function
U(dy | dy, ..., dx_1,0) that “balances” the relevance value and the redundancy valu
of a document.

If arnrr(di | dy, ..., di—1,0q, 01, ...,0%) is such a loss function, the conditional risk
is then

—

T(dk|d17“‘7dk—17Q7cau78) =
:/@lMMR(dk|dl>-'-7dk—179Qa917'--aekz)p(e‘%Cauag)d‘g

If we assume that the parametérare concentrated at the moéle= (6, {6;}%_)),
then the posterior distribution is close to a delta functionthis simplified case,
ranking based on the conditional risk is approximately eajent to ranking based
on the value of the loss function at the mode, i.e.,

b rank

r(di | dyy oo di—1,q,CU,S) R Dyparr(dy | dy, .. de—1, 00,61, ..., 61)

An MMR loss function requires the combination of a relevanteasure and a
novelty measure. While there may be many different ways taigpsuch a loss
function, the problem of deriving a well motivated loss akttype largely remains
an open research question (Zhai, 2002).

Suppose we make the simplifying assumption that a relevecme and a novelty
score can be computed independently. In this case we caredrfiioss function

as a direct combination of the two scores. 15#(0;; 6;) be any relevance scor-
ing function andSy (0y; 01, ..., 0,_1) any novelty scoring function. An MMR loss
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function can then be defined as a combination of the two sgduinctions as

lMMR(dk | dl, ceey dk—h QQ, {91}’1“_1) = f(SR(Qk, QQ), SN<9k; Ql, ciey 0k—1)7 /J)

wherep € [0, 1] is a relevance-novelty trade-off parameter, such that

Sr(0k; 0g) if p=0

ZMMR<dk|d17"'7dk’—1a0Q7917'“a9k—1) rgk .
SN(Ok;Hl, ...791€_1) if pw=1

One such combination is the linear interpolatiorsgfand .Sy, given by

Lusir(dy | dyy oy di—1, 00, {0: Y51 = (1 — 1) Sr(0k; 0q) + uSn (Ok; 01, ..., Or—1)

which is precisely the original MMR formula presented in (@arell and Gold-
stein, 1998). Clearly, this loss function makes sense onlgnathe range of the
functionsSi andSy are comparable.

When relevance and novelty/redundancy are computed withl@apilistic model,
we can use the following general loss function:

Luar(dy | dys oy di1,00,{0:35) = cip(Rel|d)p(New| d)
+ cap(Rel|d)(1 — p(New|d))
+ c3(1 — p(Rel|d)p(New|d)
+ (1 —p(Rel[d))(1 — p(New|d))

wherecy, ¢y, c3, ande, are cost constantg(Rel| d) is the probability that docu-
mentd is relevant; anch(New| d) is the probability thatl is new with respect to
documentsly, ..., dj_1.

We may reasonably assume that= ¢4, since whether or not a non-relevant docu-
ment carries new information is presumably not interedtindpe user. We can also
reasonably assume that there is no cost incurred if the decui® both relevant
and (completely) new, i.ec; = 0. Under these two assumptions, we have

ZMMR(dk:’d1>---adk—1>9Qa{9i}]f_l) =
cop(Rel|d)(1 — p(New|d)) + c3(1 — p(Rel|d)

For any reasonable loss function, bethandc; should be some positive cost, and
usuallycs > c,. In generalg, andcz may change according fq or even the actual
documentsly, ..., d;_. Intuitively, ¢, is the cost of seeing a relevant, but redundant
document, whereas is the cost of seeing a non-relevant document. Clearly, when
co = 0, so that the user is assumed not to care about redundantys#fenction is
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based on the probability of relevance. We assume below-ihat0, which allows
us to re-write the loss function in the following equivaléotm for the purpose of
ranking documents:

C
Daan(di [, oo die, 00, {01171 = cs + cap(Rel|d)(1 = > — p(New| d))
2

= p(Reld)(1 — " ~ p(New|d))

Note that a highep (New| d) always helps to reduce the loss, and whefr, >

1, a higherp(Rel| d) also implies a smaller loss. However, reduction in loss af-
fected by the cost ratios/c,, which indicates the relative cost of seeing a non-
relevant document compared with seeing a relevant but dechirdocument. When
the ratio is large, i.e.¢cs > ¢, the influence ofp(New|d) could be negligi-
ble. This means that when the user has low tolerance for anyreélevant docu-
ment, the optimal ranking would essentially be relevanasel, and not affected
by the novelty of documents. When = c¢,, we would score documents based
on p(Rel| d)p(New| d), which is essentially the scoring formula for generating
temporal summaries proposed in (Allan et al., 2001), whéRel| d) is denoted
p(Useful| d). In practice, there will be a compromise between retriedoguments
with new content and avoiding non-relevant documents. ha{22002; Zhai et al.,
2003), this loss function is investigated wiitRel| d) being assumed to be propor-
tional top(q | d) andp(New| d) being estimated with a mixture language model.

A deficiency in way the MMR loss function combines the releasascore and the
novelty score lies in the assumption of independent relevamd novelty. In other
words, one does not have a direct measure of relevance ofbtred mformation
contained in a new document. Thus, a document formed by temaiang a pre-
viously seen (and therefore redundant) relevant documehtnew, but irrelevant
information may be ranked highly, even though it is uselesthé user. Several
alternative MMR loss functions that directly measure tHeua&nce of the new in-
formation are explored in (Zhai, 2002).

5.3 Maximal Diverse Relevance (MDR) Loss Functions

We now discuss a different type of loss function for the splatgetrieval task.
MMR loss functions aim to increase the subtopic coverageantly through elim-
inating the redundancy among documents. Here we the goal iimrove the
subtopic coverage more directly by modeling the possiblagics in the docu-
ments.
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Query generation

Aspect selection p(q|T,00)
U —  § _— q

p(Og|T,U)

T

p(Op|T,S)
S — > QD

p(d|7,0p)

Doc generation

Aspect selection

Fig. 3. Aspect generative model of querand documend.

5.3.1 A General Subtopic Retrieval Model

To model the subtopics, we consider the generative modsestifited in Figure 3.
We assume that there is a spacedo$ubtopics, each characterized by a unigram
language model. Formally, let= (74, ..., 74) be a vector of subtopics, whergis

a unigram language model ap¢w | 7;) gives the probability of wordy according

to the subtopiac;.

Now, let us assume that a user, with an interest in retriedmguments to cover
some of thesed subtopics, would first pick a probability distributiah, over
the subtopics, and then formulate a query according to ayqyesteration model
p(q|T,0q). Intuitively, 6, encodes preferences on subtopic coverage, and in gen-
eral, would have the probability mass concentrated on tholstpics that are most
interesting to the user.Furthermore, among these “iniagesubtopics,” the distri-
bution is generally non-uniform, reflecting the fact thatmsosubtopics are more
important than others. Similarly, we also assume that thi@oawr source of a doc-
umentd would first pick a subtopic coverage distributi@p, and then generaté
according to a document generation moglel | 7, 6p). A simple example of such
amodelp(d|T,0p) would be a mixture model, in whidfy, is the mixing weights
and T are the component unigram language models. That is, dvithd, d,...d,,,
we have

p(d|T,0p) = HZPJWD (di|75)

i=17=1

However, the derivation below is not restricted to such atunexmodel.

To derive a subtopic retrieval model, we start with the feilog general greedy
ranking formula:

-,

T(dk’dlu"-vdk17q7c7u7§)d:m/ g(dk‘d17"'7dk*1797F(u) ( )) (0|qac u S) d9
©
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This conditional risk gives us a way to evaluate the remaiiocuments and pick
the bestd,, given that we have already selectéd ..., d,_;. With the generative
models given abové), = (7,00,0p,, ...,0p, )-

We now consider the following loss function:

—

g(dk | dl, ceey dkfl, 9, F(Z/{), F(S)) :e(dk ‘ dl, ey dkfl,’T, GQ, GDI, ey GDk)
=D (0|l D)., )

Whereeg’;mD,H is a weighted average ¢f),. }*_, defined as follows:

k—1
p(al0p;.p, ) = 7= 2 p(alfp) + (1= p)p(albp,)
=1
whereu € (0, 1] is a parameter indicating how much redundancy we would ke t
model.

The idea behind this loss function is that we exgecto indicate which subtopics
are relevant—a high(a | 6) indicates that the subtopicis likely a relevant one.
The loss function encodes our preferences for a similarttgib coverage distri-
bution” given by all the documents, ..., d;.. Thus, iff, assigns high probabili-
ties to some subtopics, then we would expect to cover thessymably relevant)
subtopics more than other subtopics. The lagss thus the one that can work to-
gether withd,, ..., d,_; to achieve a coverage distribution that is most similar to
the desired subtopic coverage based on the querypiel,0g). The parameter

1 controls how much we rely on the previously chosen documénts., d;._; to
cover the subtopics. If we do not rely on them (i .= 0), we will be looking

for a d;, that best covers all the relevant subtopics by itself. Onother hand, if

1 > 0, part of the coverage would have been explained by the prsliachosen
documents, and the begt would be one that best covers those “under-covered”
relevant subtopics. Essentially, we are searching for/thinat best supplements
the coverage provided by the previously selected documeitissrespect to the
desired coveragé,.

Putting this loss function and the subtopic generative rhode the conditional
risk formula, we have

—

r(dk|d1,...,dk_1,q,C,U,5)
:/G)K(dk‘dla7dk—1707F(u>7F<§)>p(9’q7c7ck7u7§) do

=,

— /@ D(06/|0%: 1, )P0, 0p,, .. 0p, | 4,C, Ci, U, S)dBod0p, .6,

and
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p(QQ,GDl,...,HDk |q,C,Ck,L{,g):/Tp(HQ,QD“...,@Dk,T|q,C,Ck,Ll,§)dT

= (0
/T ol T.q,U)

k
p(bg | 7. ¢.U)[[pOp, | 7.di, S)p(7|q,C.U,S)

=1

S\p(T|q,C,U,S)dr

s Wy

Q

wheretr = arg max, p(7 | q,C,L{,g), andCy, = {dy, ..., dx}.
Note that we have assumed thatan be estimated using all the documents in the

collection, sop (T | q7c,u,§) does not depend o#y, and can be ignored for the
purpose of ranking. That is,

r(dy | dy, ..y di—1,4,C,U, S)
k
= [ D60l 08, I(tal7 0.t TT o600, |7.4:.5)

=1
k
n "D
~ D(gll6p" b, ,)p (B | #,q,U ) [I 20, |%.d:.S)
=1

= D0l 09" p, )pOp, |,dk,S)

2 112D
~ D(0gl| HDT---DI@—I)

wherefd, = argmax,, p(o | 7,q,U U) andfp, = argmaxg,, p p(Op, | #,d;,S).
Thus, we have obtalned the following ranking procedure:

(1) Estimater, i.e.,# = argmax, p(7 |¢,C,U,S), before selecting any docu-
ment.

(2) Rank all the documents Ln a greedy fashion, using the tondi risk
r(dy|dy,...,dx_1,q,C,U,S) when selecting thé-th document.

(3) Compute-(dy |dy, ..., dk-1,q,C,U,S) by first computing, anddp, and then
evaluateD (fo|| 05" 5, ,)-

In order to make this general subtopic retrieval model dp@ral, we need to spec-
ify a query model (¢ | 7,6¢) andp (g | ,U)) and a document model(d | T, 0p)
andp (0p | T,S)).

In general, we can plug in any specific subtopic-based ganenaodels to the
general subtopic retrieval model, leading to potentiaiffecent retrieval formulas.
For example, the Latent Dirichlet Allocation (LDA) model @let al., 2003) has
been explored in (Zhai, 2002).
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6 Discussion

6.1 A Decision-Theoretic View of Retrieval

Treating retrieval from a decision-theoretic view is notnim the 1970s, researchers
were already studying how to choose and weight indexinggdrom a decision-
theoretic perspective (Bookstein and Swanson, 1975; Hdr®as; Cooper and
Maron, 1978). The probability ranking principle had als@gustified based on
optimizing the statistical decision about whether to esti a document (Robert-
son, 1977). However, the action/decision space considarad this early work
was limited to a binary decision regarding whether to re&ig@ document or assign
an index term to a document.

In the risk minimization framework, we have explicitly anarinally treated the
retrieval problem as a decision-making problem. The degigpiroblem is a more
general one where the action space, in principle, condistis the possible actions
that the system can take in response to a query. The scope @étision space is a
significant departure from existing decision-theoretatment of retrieval (Wong
et al., 1991; Dominich, 2001). Such a general decisionfttenview explicitly
suggests that retrieval is modeled asraaractiveprocess that involves cycles of a
user reformulating the query and the system presentingnr#ton. Indeed, a user
variable (/) and a document source variabt) have been explicitly and formally
introduced into the retrieval models in order to allow tlagdl of generality.

A difference between the risk minimization framework ané #arly decision-
theoretic treatment of indexing is that the early work, sastfCooper and Maron,
1978), uses utility in a frequency sense, i.e., the expeadikty over all possible fu-
ture useswhereas we take a Bayesian view and consider the utility redpect to
thecurrentuser and the available evidence. The decision-theoreie of retrieval
allows the risk minimization framework to be more generalrilother retrieval
frameworks such as the probabilistic inference framewodppsed in (Wong and
Yao, 1995) and the inference network framework (Turtle anoftCt991).

6.2 Risk Minimization and the Probability Ranking Prinapl

The Probability Ranking Principle (PRP) has often been talsetha foundation
for probabilistic retrieval models. As stated in (Robertsb®77), the principle is
based on the following two assumptions:

(&) Therelevanceof a document to a request is independent of the other docu-
ments in the collection;
(b) Theusefulnes®of a relevant document to a requester may depend on the
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numberof relevant documents the requester has already seen (tteeheo
has seen, the less useful a subsequent one may be).

Under these assumptions, the PRP provides a justificatiorafiiing documents
in descending order of probability of relevance, which carebaluated separately
for each document.

Using the risk minimization framework, we have derived aggahranking formula
for ranking documents based on an ascending order of the®xpeask of a doc-
ument, which can also be computed separately for each dotuiied we have
also made two assumptions:

(a) Independent lossT'he loss associated with a user’s viewing of one document
does not depend on any other documents that the user mayd®ve s

(b) Sequential browsingVhen presented with a ranked list of documents, a user
will browse through the list sequentially according to thaking.

It is interesting to note the relationship between these agsumptions and the
two assumptions made in (Robertson, 1977). The sequentakbrg assumption
is also made in (Robertson, 1977), though it is not explictigted, but our in-
dependent loss assumption is stronger than the indeperedeviince assumption,
since it is possible to define a dependent loss function baseddependent rele-
vance. Indeed, the second assumption in (Robertson, 19pligsihat the utility
(or equivalently, the loss) of retrieving one document aelseon the number of
relevant documents that are ranked above this documenighhib does not di-
rectly depend on the relevance status of any specific dodurike price for this
weaker assumption, however, is that the PRP is no longer igieseh to give a
ranking that is optimal globally, but only one that is optlraa a greedy algorithm.
The assumption that a greedy algorithm is used to constieaptimal ranking is
implicit in (Robertson, 1977), since the decision problerolwes retrieving a sin-
gle document rather than choosing a ranking of all documémtsontrast, under
our assumptions, ranking based on the expected risk candeendb be globally
optimal.

The PRP has several limitations as discussed in, e.g., (Cob@@4). First, it as-
sumes that document usefulness is a binary property, beairy it should really
be a matter of degree. The independent loss ranking funtttetrwe derived does
not have this limitation. Indeed, it is possible to derive #RP in the risk mini-
mization framework by assuming that the loss function ddpeamly on a binary
relevance variable. Second, a ranking of documents by priiitlyaof usefulness is
not always optimal. Cooper gave such an example, which eagshows that the
independent relevance assumption may not be true. Robelitsnrssed informally
two ways to extend the PRP to address the possible dependaoagalocuments
(Robertson, 1977). Both have been captured in the risk miaitiz framework.
The firstis to go from ranking based on probability of relesato ranking based on
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expected utility, which we achieve by using a loss functiothie risk minimization
framework. The second is essentially the greedy algorittrmainking based on the
conditional loss function. Thus, in the risk minimizatiaarfework we provide a
formal way to go beyond the PRP. As stated in (Robertson, 1977),

The estimation of probability of relevance for each docunmaay not be the
most appropriate form of prediction. The two main questiaies

e On the basis of what kinds of information can the system miaggtediction?
e How should the system utilize and combine these variousskafichformation?
These questions represent, indeed, the central probleetr@val theory.

The risk minimization framework provides a formal answeibth of the ques-
tions. The information available to the system includesuber {{), the document
source 5), the query ), and the document£’). A “prediction” consists of se-
lecting a subset of documents and presenting them in some Heayever, one
can easily imagine other possible “predictions.” Thesaoiacare combined in a
Bayesian decision theoretic framework to compute an optorediction.

6.3 The Notion of Relevance

The risk minimization framework was originally motivatey the need for a gen-
eral ranking procedure that allows one to view several giffe ranking criteria,
including the query-likelihood criterion used in the laage modeling approach,
within the same unified framework. As discussed in the engsliterature, the re-
trieval problem may be decomposed into three basic compsmepresentation of
a query, representation of a document, and matching thedpresentations. With
an emphasis on the implementation of the framework and piltac modeling,
we make three corresponding assumptions: (1) A query canelaestt as an ob-
servation from a probabilistic query model; (2) A documean de viewed as an
observation from a probabilistic document model; (3) Thétytof a document
with respect to a query (i.e., the ranking criterion) is action of the query model
and document model. Flexibility in choosing different querodels and document
models is necessary to allow different representationsuefigs and documents.
The flexibility of choosing the loss function is necessargiider to cover different
notions of relevance and different ranking strategies.

As a result of these assumptions, the representation pnoisl@ssentially equiv-
alent to that of model estimation, while the matching probie equivalent to the
estimation of the value of a utility function based on theesked query and doc-
ument. In Bayesian decision theory, utility is modeled by ssléunction; a loss
value can be regarded as a negative utility value. Thus, weay that the notion
of relevance taken in the risk minimization framework isezgglly the expected
utility value, which reflects both the user’s preferences e uncertainty of the
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guery and document models. Such a notion of relevance isl\clesre general

than the traditional notion of independent topical rele&rsince the utility can
depend on factors that might affect a user’s satisfactigh thie system’s action.
For example, such factors may include a user’s perceptioadaindancy or special
characteristics of documents or the collection. This casdsn formally from the
dependency of the loss function on variables sudi a8, andC.

The traditional notion of independent relevance can beiodtbas a special case
of this general utility notion by making an independenceuagsion on the loss
function. Under this assumption, the optimal ranking isadokr documents based
on their respective expected loss/risk. This expectedesskentially “measures” the
relevance status of a document with respect to a query.itesdsting to note that
such a measure explicitly captures two different types afeutainty. First, it is
assumed that the “content” or “topic” (represented by a Madelerlying a docu-
ment or query is uncertain; given a document or a query, weongnestimate the
model. This uncertainty reflects the system’s inabilityaonpletely understand the
underlying content/topic of a query or document, so it cacddeed “topic uncer-
tainty.” Second, even if we know the true model for the quergl the document,
the relevance value of the document model with respect tquleey model is still
uncertain and vague. This uncertainty reflects our incoragteowledge of the
user’s true relevance criterion, and can be called “relesamcertainty.” The topic
uncertainty is handled through computing an expectati@n ail possible models,
while the relevance uncertainty is resolved through theifipation of a concrete
loss function.

As we make different assumptions to simplify the computatd the risk mini-
mization formula, we end up resolving this uncertainty iffedent ways. In the
similarity-based model, for example, we resolve the topicantainty by choosing
the most likely model and relying on a similarity/distancadtion to measure the
relevance uncertainty. The probabilistic relevance md@abeluding the language
modeling approach), however, assumes a binary relevatat@rship between a
query and a document, and addresses the relevance unigeataiithe topic uncer-
tainty within a single probabilistic model. With a binaryieeance relationship, a
document is either relevant or non-relevant to a query. Jlihesdegree of relevance
is not modeled.

7 Conclusions

This paper presents a general probabilistic frameworkdgt tetrieval based on
the framework of Bayesian decision theory. In this framewaypkeries and doc-
uments are modeled using statistical language models pustarences are mod-
eled through loss functions, and retrieval is cast as a risknmezation problem.
This risk minimization framework not only unifies severalstig retrieval mod-
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els within a single probabilistic framework, but also féeiles the development of
new approaches to text retrieval through the use of stzidinguage models. We
have discussed how special cases of the framework covemgxistrieval models

and lead to new models for subtopic retrieval that go beynddpendent relevance.

A fundamental difference between the risk minimizatiomfeavork and previous
retrieval frameworks is that the approach presented heaiéstretrieval as a decision
problem, and incorporates statistical language modelsagermomponents in the
framework. While previous work has treated indexing in a sieci-theoretic view,
no previous work has given a complete decision-theoretin&é model. The deci-
sion space may in principle consist of all the possible astithat the system can
take in response to a query. Such a general decision-tieviey allows retrieval
to be modeled as an interactive process that involves cgtlasiser’s reformulat-
ing the query and the system’s presenting information. édgene can condition
the current retrieval decision on information about theigeal context, the user,
and the interaction history, in order to perform contexisseéve retrieval.

The risk minimization framework makes it possible to sysa@oally and formally
study general optimal retrieval strategies. For exampl@ugh making different
assumptions about the loss function for ranking we haveveiéran optimal rank-
ing principle, which addresses several limitations of thebpbility ranking prin-
ciple. Specifically, when assuming an independent losstiimand a sequential
browsing model, we can show that the optimal ranking is atiogrto the expected
risk of each document, which can be computed independeamtlgech document.
An interesting implication is that such a ranking is optimdiether the user has a
high-precision or high-recall retrieval preference.

The risk minimization framework incorporates statistieelguage models system-
atically in a retrieval framework. As a result, the retrieparameters are usually
introduced as part of a statistical language model. Thisamékpossible to exploit
statistical estimation methods to improve retrieval peniance and set retrieval pa-
rameters automatically as demonstrated in (Zhai and Ltgff2001, 2002). Due to
its generality in formalizing retrieval tasks, the risk finmzation retrieval frame-
work further allows for incorporating user factors beyohe traditional notion
of topical relevance. We presented language models andhdeptloss functions
that lead to non-traditional ranking models for the sulttapirieval task. Prelim-
inary exploration of these non-traditional retrieval misdeas shown promising
results, demonstrating that the risk minimization framewacilitates modeling
non-traditional retrieval problems (Zhai, 2002; Zhai ef 2003).

The special cases discussed in this paper represent onhalasgep toward ex-
ploring the full potential of the risk minimization framewg and interesting future
research directions remain. For example, it is possiblartbér exploit the frame-
work to study automatic parameter setting, document stracnalysis, and non-
traditional retrieval tasks such as subtopic retrievah heal retrieval situation, the
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goal of satisfying a user’s information need is often acclishpd through a series
of interactions between the user and the retrieval systeithh A& risk minimiza-
tion framework, one can formally incorporate these vagaldnd derive person-
alized and context-sensitive interactive retrieval med@in interesting direction
would be to extend the risk minimization framework to foriralan interactive
retrieval process, optimizing the utility over a sequenioetrieval interactions.
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