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Abstract

We present a method for simultaneously performing bandwidth selection and variable

selection in nonparametric regression. The method starts with a local linear estimator

with large bandwidths, and incrementally decreases the bandwidth in directions where

the gradient of the estimator with respect to bandwidth is large. When the unknown

function satisfies a sparsity condition, the approach avoids the curse of dimensionality.

The method—called rodeo (regularization of derivative expectation operator)—conducts

a sequence of hypothesis tests, and is easy to implement. A modified version that

replaces testing with soft thresholding may be viewed as solving a sequence of lasso

problems. When applied in one dimension, the rodeo yields a method for choosing the

locally optimal bandwidth.

Keywords: Nonparametric regression, sparsity, local linear smoothing, adaptive estimation, band-

width estimation, variable selection.

I. Introduction

Estimating a high dimensional regression function is notoriously difficult due to the “curse of

dimensionality.” Minimax theory precisely characterizes the curse. Let

Yi = m(Xi) + εi, i = 1, . . . , n (1.1)

where Xi = (Xi(1), . . . , Xi(d)) ∈ R
d is a d-dimensional covariate, m : R

d → R is the unknown

function to estimate, and εi ∼ N(0, σ2). Then if m is in W2(c), the d-dimensional Sobolev ball of
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order two and radius c, it is well known that

lim inf
n→∞

n4/(4+d) inf
bmn

sup
m∈W2(c)

R(m̂n, m) > 0 , (1.2)

where R(m̂n, m) = Em

∫
(m̂n(x)−m(x))2 dx is the risk of the estimate m̂n constructed on a sample

of size n. Thus, the best rate of convergence is n−4/(4+d), which is impractically slow if d is large.

However, for some applications it is reasonable to expect that the true function only depends on a

small number of the total covariates. Suppose that m satisfies such a sparseness condition, so that

m(x) = m(xR) (1.3)

where xR = (xj : j ∈ R), R ⊂ {1, . . . , d} is a subset of the d covariates, of size r = |R| � d. We

call {xj}j∈R the relevant variables. Under this sparseness assumption we can hope to achieve the

better minimax convergence rate of n−4/(4+r) if the r relevant variables can be isolated. Thus, we

are faced with the problem of variable selection in nonparametric regression.

A large body of previous work has addressed this fundamental problem, which has led to a variety

of methods to combat the curse of dimensionality. Many of these are based on very clever, though

often heuristic techniques. For additive models of the form f(x) =
∑

j fj(xj), standard methods

like stepwise selection, Cp and AIC can be used (Hastie et al., 2001). For spline models, Zhang

et al. (2005) use likelihood basis pursuit, essentially the lasso adapted to the spline setting. CART

(Breiman et al., 1984) and MARS (Friedman, 1991) effectively perform variable selection as part of

their function fitting. Support vector regression can be seen as creating a sparse representation using

basis pursuit in a reproducing kernel Hilbert space (Girosi, 1997). There is also a large literature

on Bayesian methods, including methods for sparse Gaussian processes (Tipping, 2001; Smola and

Bartlett, 2001; Lawrence et al., 2003); see George and McCulloch (1997) for a brief survey. More

recently, Li et al. (2005) use independence testing for variable selection and Bühlmann and Yu (2005)

introduced a boosting approach. While these methods have met with varying degrees of empirical

success, they can be challenging to implement and demanding computationally. Moreover, these

methods are typically very difficult to analyze theoretically, and so come with no formal guarantees.

Indeed, the theoretical analysis of sparse parametric estimators such as the lasso (Tibshirani, 1996)

is difficult, and only recently has significant progress been made on this front (Donoho, 2004; Fu

and Knight, 2000).

In this paper we present a new approach for sparse nonparametric function estimation that is both

computationally simple and amenable to theoretical analysis. We call the general framework rodeo,

for “regularization of derivative expectation operator.” It is based on the idea that bandwidth

and variable selection can be simultaneously performed by computing the infinitesimal change in a

nonparametric estimator as a function of the smoothing parameters, and then thresholding these

derivatives to get a sparse estimate. As a simple version of this principle we use hard thresholding,

effectively carrying out a sequence of hypothesis tests. A modified version that replaces testing

with soft thresholding may be viewed as solving a sequence of lasso problems. The potential appeal

of this approach is that it can be based on relatively simple and theoretically well understood

nonparametric techniques such as local linear smoothing, leading to methods that are simple to

implement and can be used in high dimensional problems. Moreover, we show that they can achieve
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near optimal minimax rates of convergence, and therefore circumvent the curse of dimensionality

when the true function is indeed sparse. When applied in one dimension, our method yields a locally

optimal bandwidth and is similar to the estimators of Ruppert (1997) and Lepski et al. (1997). We

present a series of experiments on synthetic and real data that demonstrate the effectiveness of the

approach.

In the following section we outline the basic rodeo approach, which is actually a general strategy that

can be applied to a wide range of nonparametric estimators. We then specialize in Section 3 to the

case of local linear smoothing, since the asymptotic properties of this smoothing technique are fairly

well understood. In particular, we build upon the analysis of Ruppert and Wand (1994) for local

linear regression. In Section 4 we present some simple examples of the rodeo, before proceeding to

an analysis of its properties in Section 5. Our main theoretical result characterizes the asymptotic

running time, selected bandwidths, and risk of the algorithm. Finally, in Section 6 we present

further examples and discuss several extensions of the basic version of the rodeo considered in the

earlier sections.

II. Rodeo: The Main Idea

The key idea in our approach is as follows. Fix a point x and let m̂h(x) denote an estimator of

m(x) based on a vector of smoothing parameters h = (h1, . . . , hd). If c is a scalar, then we write

h = c to mean h = (c, . . . , c).

Let M(h) = E(m̂h(x)) denote the mean of m̂h(x). For now, assume that xi is one of the observed

data points and that m̂0(x) = Yi. In that case, m(x) = M(0) = E(Yi). If P = (h(t) : 0 ≤ t ≤ 1) is

a smooth path through the set of smoothing parameters with h(0) = 0 and h(1) = 1 (or any other

fixed, large bandwidth) then

m(x) = M(0) = M(1) + M(0)−M(1)

= M(1)−
∫ 1

0

dM(h(s))

ds
ds

= M(1)−
∫ 1

0

〈
D(s), ḣ(s)

〉
ds (2.1)

where

D(h) = ∇M(h) =

(
∂M

∂hj
, . . . ,

∂M

∂hj

)T

(2.2)

is the gradient of M(h) and ḣ(s) = dh(s)
ds is the derivative of h(s) along the path. A biased, low

variance estimator of M(1) is m̂1(x). An unbiased estimator of D(h) is

Z(h) =

(
∂m̂h(x)

∂h1
, . . . ,

∂m̂h(x)

∂hd

)T

. (2.3)

The naive estimator

m̂(x) = m̂1(x)−
∫ 1

0

〈
Z(s), ḣ(s)

〉
ds (2.4)
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Figure 1: Conceptual illustration: The bandwidths for the relevant variables (h1) are shrunk, while

the bandwidths for the irrelevant variables (h2) are kept relatively large.

is identically equal to m̂0(x) = Yi, which has poor risk since the variance of Z(h) is large for small

h. However, our sparsity assumption on m suggests that there should be paths for which D(h) is

also sparse. Along such a path, we replace Z(h) with an estimator D̂(h) that makes use of the

sparsity assumption. Our estimate of m(x) is then

m̃(x) = m̂1(x)−
∫ 1

0

〈
D̂(s), ḣ(s)

〉
ds . (2.5)

To implement this idea we need to do two things: (i) we need to find a sparse path and (ii) we

need to take advantage of this sparseness when estimating D along that path.

The key observation is that if xj is irrelevant, then we expect that changing the bandwidth hj for

that variable should cause only a small change in the estimator m̂h(x). Conversely, if xj is relevant,

then we expect that changing the bandwidth hj for that variable should cause a large change in the

estimator. Thus, Zj = ∂m̂h(x)/∂hj should discriminate between relevant and irrelevant covariates.

To simplify the procedure, we can replace the continuum of bandwidths with a discrete set where

each hj ∈ B = {h0, βh0, β
2h0, . . .} for some 0 < β < 1. Moreover, we can proceed in a greedy

fashion by estimating D(h) sequentially with hj ∈ B and setting D̂j(h) = 0 when hj < ĥj , where

ĥj is the first h such that |Zj(h)| < λj(h) for some threshold λj . This greedy version, coupled with

the hard threshold estimator, yields m̃(x) = m̂bh
(x). A conceptual illustration of the idea is shown

in Figure 1.

To further elucidate the idea, consider now the one-dimensional case x ∈ R, so that

m(x) = M(1)−
∫ 1

0

dM(h)

dh
dh = M(1)−

∫ 1

0
D(h) dh. (2.6)

Suppose that m̂h(x) =
∑n

i=1 Yi `i(x, h) is a linear estimator, where the weights `i(x, h) depend on

a bandwidth h.
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In this case

Z(h) =
n∑

i=1

Yi `
′
i(x, h) (2.7)

where the prime denotes differentiation with respect to h. Then we set

m̃(x) = m̂1(x)−
∫ 1

0
D̂(h) dh (2.8)

where D̂(h) is an estimator of D(h). Now,

Z(h) ≈ N(b(h), s2(h)) (2.9)

where, for typical smoothers, b(h) ≈ Ah and s2(h) ≈ C/nh3 for some constants A and C. Take the

hard threshold estimator

D̂(h) = Z(h)I
(
|Z(h)| > λ(h)

)
(2.10)

where λ(h) is chosen to be slightly larger than s(h). An alternative is the soft-threshold estimator

D̂(h) = sign(Z(h))(|Z(h)| − λ(h))+. (2.11)

The greedy algorithm, coupled with the hard threshold estimator, yields a bandwidth selection

procedure based on testing. This approach to bandwidth selection is very similar to that of Lepski

et al. (1997), who take

ĥ = max{h ∈ H : φ(h, η) = 0 for all η < h} (2.12)

where φ(h, η) is a test for whether m̂η improves on m̂h. This more refined test leads to estimators

that achieve good spatial adaptation over large function classes. Our approach is also similar to a

method of Ruppert (1997) that uses a sequence of decreasing bandwidths and then estimates the

optimal bandwidth by estimating the mean squared error as a function of bandwidth. Our greedy

approach only tests whether an infinitesimal change in the bandwidth from its current setting leads

to a significant change in the estimate, and is more easily extended to a practical method in higher

dimensions.

III. The Multivariate Rodeo Using Local Linear Regression

Now we present the multivariate rodeo in detail. We use local linear smoothing as the basic method

since it is known to have many good properties. Let x = (x(1), . . . , x(d)) be some target point at

which we want to estimate m. Let m̂H(x) denote the local linear estimator of m(x) using bandwidth

matrix H. Thus,

m̂H(x) = eT
1 (XT

x WxXx)−1XT
x WxY ≡ SxY (3.1)

where e1 = (1, 0, . . . , 0)T ,

Xx =




1 (X1 − x)T

...
...

1 (Xn − x)T


 , (3.2)
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Wx is diagonal with (i, i) element KH(Xi − x) and KH(u) = |H|−1/2K(H−1/2u). The estimator

m̂H can be written as

m̂H(x) =
n∑

i=1

G(Xi, x, h)Yi (3.3)

where

G(u, x, h) = eT
1 (XT

x WxXx)−1

(
1

(u− x)T

)
KH(u− x) (3.4)

is called the effective kernel. One can regard local linear regression as a refinement of kernel

regression where the effective kernel G adjusts for boundary bias and design bias; see Fan (1992),

Hastie and Loader (1993) and Ruppert and Wand (1994).

We assume that the covariates are random with density f(x) and that x is interior to the support

of f . We make the same assumptions as Ruppert and Wand (1994) in their analysis of the bias

and variance of local linear regression. In particular:

(i) The kernel K has compact support with zero odd moments and there exists ν2 = ν2(K) 6= 0

such that ∫
uu>K(u) du = ν2(K)I (3.5)

where I is the d× d identity matrix.

(ii) The sampling density f(x) is continuously differentiable and strictly positive.

In the version of the algorithm that follows, we take K to be a product kernel and H to be diagonal

with elements h = (h1, . . . , hd) and we write m̂h instead of m̂H .

Our method is based on the statistic

Zj =
∂m̂h(x)

∂hj
=

n∑

i=1

Gj(Xi, x, h)Yi (3.6)

where

Gj(u, x, h) =
∂G(u, x, h)

∂hj
. (3.7)

Let

µj ≡ µj(h) = E(Zj |X1, . . . , Xn) =
n∑

i=1

Gj(Xi, x, h)m(Xi) (3.8)

and

s2
j ≡ s2

j (h) = V(Zj |X1, . . . , Xn) = σ2
n∑

i=1

Gj(Xi, x, h)2. (3.9)

In Section 6.A we explain how to estimate σ; for now, assume that σ is known. The hard threshold-

ing version of the rodeo algorithm is described in Figure 2. We make use of a sequence cn satisfying

dcn = Ω(log n), where we write f(n) = Ω(g(n)) if lim infn

∣∣∣f(n)
g(n)

∣∣∣ > 0.
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Rodeo: Hard thresholding version

1. Select parameter 0 < β < 1 and initial bandwidth h0, where h0 is slowly decreasing to zero:

h0 = Ω
(
1/
√

log log n
)

(3.10)

Let cn be a sequence satisfying

dcn = Ω(log n). (3.11)

2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1, 2, . . . , d.

(b) A = {1, 2, . . . , d}

3. While A is nonempty, do for each j ∈ A:

(a) Compute the estimated derivative expectation: Zj (equation 3.6) and sj (equation 3.9).

(b) Compute the threshold λj = sj

√
2 log(dcn).

(c) If |Zj | > λj , then set hj ← βhj ; otherwise remove j from A.

4. Output bandwidths h? = (h1, . . . , hd) and estimator m̃(x) = m̂h?(x).

Figure 2: The hard thresholding version of the rodeo, which can be applied using the derivatives

Zj of any nonparametric smoother.

To derive an explicit expression for Zj , equivalently Gj , we use

∂A−1

∂h
= −A−1 ∂A

∂h
A−1 (3.12)

to get that

Zj =
∂m̂h(x)

∂hj
(3.13)

= e>1 (X>WX)−1X>∂W

∂hj
Y − e>1 (X>WX)−1X>∂W

∂hj
X(X>WX)−1X>WY (3.14)

= e>1 (X>WX)−1X>∂W

∂hj
(Y −Xα̂) (3.15)

where α̂ = (X>WX)−1X>WY is the coefficient vector for the local linear fit (and we have dropped

the dependence on the local point x in the notation).

Note that the factor |H|−1 =
∏d

i=1 1/hi in the kernel cancels in the expression for m̂, and therefore
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we can ignore it in our calculation of Zj . Assuming a product kernel we have

W = diag




d∏

j=1

K((X1j − xj)/hj), . . . ,
d∏

j=1

K((Xnj − xj)/hj)


 (3.16)

and ∂W/∂hj = WLj where

Lj = diag

(
∂ log K((X1j − xj)/hj)

∂hj
, . . . ,

∂ log K((Xnj − xj)/hj)

∂hj

)
(3.17)

and thus

Zj = e>1 (X>WX)−1X>WLj(Y −Xα̂) (3.18)

= e>1 BLj(I −XB)Y (3.19)

= Gj(x, h)>Y (3.20)

where B = (X>WX)−1X>W .

For example, with the Gaussian kernel K(u) = exp(−u2/2) we have

Lj =
1

h3
j

diag
(
(X1j − xj)

2, . . . , (Xnj − xj)
2
)

(3.21)

and for the Epanechnikov kernel K(u) = (5− x2) I(|x| ≤
√

5) we have

Lj =
1

h3
j

diag

(
2(X1j − xj)

2

5− (X1j − xj)2/h2
j

I(|X1j − xj | ≤
√

5hj), . . . , (3.22)

2(Xnj − xj)
2

5− (Xnj − xj)2/h2
j

I(|X1j − xj | ≤
√

5hj)

)
(3.23)

The calculations for other kernels are similar.

IV. Examples

In this section we illustrate the rodeo on some examples. We return to the examples later when we

discuss estimating σ, as well as a global (non-local) version of the rodeo.

A. Two Relevant Variables

In the first example, we take m(x) = 5x2
1x

2
2 with d = 10, σ = .5 with xi ∼ Uniform(0, 1). The

algorithm is applied to the local linear estimates around the test point x0 = (1
2 , . . . , 1

2), with β = 0.8.

Figure 3 shows the bandwidths averaged over 100 runs of the rodeo, on data sets of size n = 500.

The second example shows the algorithm applied to the function m(x) = 2(x1 + 1)3 + 2 sin(10x2),

in this case in d = 20 dimensions with σ = 1.
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Figure 3: Rodeo run on two synthetic data sets of size n = 500, showing average bandwidths

over 100 runs (left) and bandwidths on a single run of the algorithm (right). In the top plots

m(x) = 5x2
1x

2
2 with d = 10 and σ = .5; in the bottom plots m(x) = 2(x1 + 1)3 + 2 sin(10x2), d = 20

and σ = 1. The figures show that the bandwidths for the relevant variables x1 and x2 are shrunk,

while the bandwidths for the irrelevant variables remain large.
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Figure 4: A one-dimensional example. Here the underlying function is m(x) = (1/x) sin(15/x),

and n = 1500 data points are sampled, x ∼ Uniform(0, 1) + 1
2 . The left plot shows the local linear

fit at two test points; the right plot shows the final log bandwidth, log1/β h?, (equivalently, minus

the number of steps) of the rodeo over 50 randomly generated data sets.

The plots demonstrate how the bandwidths h1 and h2 of the relevant variables are shrunk, while

the bandwidths of the relevant variables tend to remain large.

B. A One-Dimensional Example

The next figure illustrates the algorithm in one dimension. The underlying function in this case

is m(x) = (1/x) sin(15/x), and n = 1500 data points are sampled as x ∼ Uniform(0, 1) + 1
2 .

The algorithm is run at two test points; the function is more rapidly varying near the test point

x = 0.67 than near the test point x = 1.3, and the rodeo appropriately selects a smaller bandwidth

at x = 0.67. The right plot of Figure 4 displays boxplots for logarithm of the final bandwidth, in

the base 1/β (equivalently, minus the number of steps in the algorithm), averaged over 50 randomly

generated data sets.

The figure illustrates how smaller bandwidths are selected where the function is more rapidly

varying. Indeed, as we show in the next section, in one dimension the algorithm selects the locally

optimal bandwidth with high probability.
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V. Properties of the Rodeo

Now we give some results on the properties of the resulting estimator. Formally, we use a triangular

array approach so that m(x), f(x), d and r can all change as n changes. We assume throughout

that m has continuous third order derivatives in a neighborhood of x. For convenience of notation

we assume that the covariates are numbered such that the relevant variables xj correspond to

1 ≤ j ≤ r and the irrelevant variables xj correspond to r + 1 ≤ j ≤ d.

We write Yn = ÕP (an) to mean that Yn = OP (bnan) where bn is logarithmic in n. As noted

earlier, we write an = Ω(bn) if lim infn

∣∣∣an
bn

∣∣∣ > 0; similarly an = Ω̃(bn) if an = Ω(bncn) where cn is

logarithmic in n.

To begin, we have the following technical lemmas on the mean and variance of Zj .

Lemma 5.1. Suppose that x is interior to the support of f . Suppose that K is a product kernel

with bandwidth matrix H = diag(h2
1, . . . , h

2
d). If f is uniform then

µj = 0 for all j ∈ Rc. (5.1)

More generally, assuming that r is bounded, we have the following when hj → 0: If j ∈ Rc the

derivative of the bias is

µj =
∂

∂hj
E[m̂H(x)−m(x)] = −tr (HRHR) ν2

2 (∇j log f(x))2 hj + oP (hj) (5.2)

where the Hessian of m(x) is H =

(
HR 0

0 0

)
and HR = diag(h2

1, . . . , h
2
r). For j ∈ R we have

µj =
∂

∂hj
E[m̂H(x)−m(x)] = hjν2mjj(x) + oP (hj). (5.3)

Remark 5.2. Special treatment is needed if x is a boundary point; see Theorem 2.2 of Ruppert

and Wand (1994).

Proof. We follow the setup of Ruppert and Wand (1994) except for one difference: the irrele-

vant variables have different leading terms in the expansions than relevant variables.

Let Dm be the gradient of m at x, and let

Q = ((X1 − x)TH(X1 − x), . . . , (Xn − x)TH(Xn − x))T . (5.4)

Note that Dm and Q are only functions of the relevant variables. Then

m(Xi) = m(x) + (Xi − x)T Dm +
1

2
Qi + ξi (5.5)
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where ξi is the third order remainder term and so, with M = (m(X1), . . . , m(Xn))T ,

M = Xx

(
m(x)

Dm

)
+

1

2
Q + ξ (5.6)

where ξ = (ξ1, . . . , ξn)T . Since SxXx(m(x), Dm)T = m(x), the bias b(x) = E(m̂H(x)) − m(x) is

given by

b(x) = SxM −M =
1

2
SxQ + Sxξ =

1

2
SxQ + oP (tr(HR)) (5.7)

=
1

2
(XT

x WxXx)−1XT
x WxQ + oP (tr(HR)). (5.8)

From the calculations in Ruppert and Wand we have

1

n
(XT

x WxXx) =

(
f(x) + oP (1) ν2D

>H> + oP (1>H)

ν2HD + oP (H1) ν2f(x)H + oP (H)

)
. (5.9)

where D is the gradient of f .

We can write this as (A + vv>) where

A =

(
f(x)− 1 0

0 ν2f(x)H

)
(5.10)

and

v> = (1 + oP (1), ν2D
>H> + oP (1>H>)) (5.11)

since then

vv> =

(
1 + oP (1) ν2D

>H> + oP (1>H>)

ν2HD + oP (H1) oP (H)

)
(5.12)

We now apply the matrix inversion lemma (Woodbury formula)

(A + vv>)−1 = A−1 −A−1v(1 + v>A−1v)−1v>A−1 (5.13)

Note that

A−1 =

(
1

f(x)−1 0

0 H−1

ν2f(x)

)
(5.14)

and

1 + v>A−1v =
f(x)

f(x)− 1
+

ν2D
>HD

f(x)
+ oP (tr(H)) (5.15)

Also,

A−1vv>A−1 =

(
1

(f(x)−1)2
+ oP (1) D>

f(x)(f(x)−1) + oP (1)
D

f(x)(f(x)−1) + oP (1) H−1

ν2f(x)oP (1)

)
(5.16)
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We thus get that

1

n
(XT

x WxXx)−1 = (5.17)

=

(
1

f(x)−1 0

0 H−1

ν2f(x)

)
−
(

f(x)− 1

f(x)
+ oP (1)

)( 1
(f(x)−1)2

+ oP (1) D>

f(x)(f(x)−1) + oP (1)
D

f(x)(f(x)−1) + oP (1) H−1

ν2f(x)oP (1)

)

=

(
1

f(x) + oP (1) − D>

f(x)2
+ oP (1)

− D
f(x)2

+ oP (1) H−1

ν2f(x)(1 + oP (1)).

)
(5.18)

Now

1

n
XT

x WxQ =




1
2ν2tr(HH) + oP (tr(H))

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)f(x + H1/2(u))du + oP (H3/21)


 ,

(5.19)

and

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)f(x + H1/2(u))du

= f(x)

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)du

+

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)(DT H1/2u)du + oP (H5/21) (5.20)

=

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)(DT H1/2u)du + oP (H5/21). (5.21)

So,

1

n
XT

x WxQ =




1
2ν2tr(HH) + oP (tr(H))

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)(DT H1/2u)du + oP (H3/2)


 .(5.22)

Hence,

b1 =
1

2

(
1

f(x)
+ oP (1),− DT

f2(x)
+ oP (1)

)
×

×




1
2ν2tr(HH) + oP (tr(H))

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(H1/2u)(DT H1/2u)du + oP (H3/2)


 (5.23)

=
ν2tr(HH)

4f(x)
− 1

2f2(x)

∫
K(u)

{
(H1/2u)TH(H1/2u)

}
(DT H1/2u)2du + oP (tr(H)).

(5.24)
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Now we use the fact that K is a product kernel, with bandwidth matrix H = diag(h2
1, . . . , h

2
d), and

define

vR =




u1h1
...

urhr


 . (5.25)

Then

∫
K(u)

{
(H1/2u)TH(H1/2u)

}(
DT H1/2u

)2

du =

∫
K(u)(vT

RRvR)

( d∑

i=1

Diuihi

)2

du (5.26)

and for j ∈ Rc,

∂b1

∂hj
= − 1

f(x)2

∫
K(u)(vT

RHRvR)

( d∑

i=1

Diuihi

)
Djuj du + oP (hj) (5.27)

= − 1

f(x)2

∫
K(u)(vT

RHRvR)
(
D2

j u
2
j

)
hj du + oP (hj) (5.28)

= −
D2

j hj

f(x)2

∫

uR

K(uR)(vT
RHRvR) duR

∫

uj

K(uj)u
2
j duj + oP (hj) (5.29)

= −tr (HRHR) ν2
2 (∇j log f(x))2 hj + oP (hj) (5.30)

where the second equality follows from the fact that we are using a product kernel and the terms

in the sum (
∑

i6=j Diuihi) result in integrands of odd order in ui when i 6= j. Similarly, the last

equality follows from assumption (i) since

∫
K(u)uiujHij du = δij ν2Hij . (5.31)

The last statement follows from the results in Ruppert and Wand. �

By similar calculations we get:

Lemma 5.3. Let

C =

(
σ2R(K)

4f(x)

)
(5.32)

where R(K) =
∫

K(u)2 du. Then, if hj = o(1),

s2
j = Var(Zj |X1, . . . , Xn) =

C

nh2
j

(
d∏

k=1

1

hk

)(
1 + oP (1)

)
. (5.33)

Our main theoretical result characterizes the asymptotic running time, selected bandwidths, and

risk of the algorithm. In order to get a practical algorithm, we need to make assumptions on the

functions m and f .
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(A1) For some constant k > 0, each j > r satisfies

∇j log f(x) = O

(
logk n

n1/4

)
(5.34)

(A2) For each j ≤ r,

mjj(x) 6= 0 . (5.35)

Explanation of the Assumptions. To give the intuition behind these assumptions, recall from Lemma

5.1 that

µj =

{
Ajhj + oP (hj) j ≤ r

Bjhj + oP (hj) j > r
(5.36)

where

Aj = ν2mjj(x), Bj = −tr(HH)ν2
2(∇j log f(x))2. (5.37)

Moreover, µj = 0 when the sampling density f is uniform or the data are on a regular grid.

Consider assumption (A1). If f is uniform then this assumption is automatically satisfied since

then µj(s) = 0 for j > r. More generally, µj is approximately proportional to (∇j log f(x))2 for

j > r which implies that |µj | ≈ 0 for irrelevant variables if f is sufficiently smooth in the variable

xj . Hence, assumption (A1) can be interpreted as requiring that f is sufficiently smooth in the

irrelevant dimensions.

Now consider assumption (A2). Equation (5.36) ensures that µj is proportional to hj |mjj(x)| for

small hj . Since we take the initial bandwidth h0 to be decreasingly slowly with n, (A2) implies

that |µj(h)| ≥ chj |mjj(x)| for some constant c > 0, for sufficiently large n.

Theorem 5.4. Suppose that d = O(1) and that assumptions (A1) and (A2) hold. In addition,

suppose that Amin = minj≤r |mjj(x)| = Ω̃(1) and Amax = maxj≤r |mjj(x)| = Õ(1). Then the

number of iterations Tn until the rodeo stops satisfies

P

(
1

4 + r
log1/β(nan) ≤ Tn ≤

1

4 + r
log1/β(nbn)

)
−→ 1 (5.38)

where an = Ω̃(1) and bn = Õ(1). Moreover, the algorithm outputs bandwidths h? that satisfy

P

(
h?

j ≥
1

logk n
for all j > r

)
−→ 1 (5.39)

and

P

(
h0(nbn)−1/(4+r) ≤ h?

j ≤ h0(nan)−1/(4+r) for all j ≤ r
)
−→ 1 . (5.40)

Corollary 5.5. Under the conditions of Theorem 5.4, the risk R(h?) of the rodeo estimator

satisfies

R(h?) = ÕP

(
n−4/(4+r)

)
. (5.41)
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Proof of Corollary 5.5. We have that the squared (conditional) bias is given by

Bias2(m̂h?)) =



∑

j≤r

Ajh
2
j




2

+ oP (tr(H>H)) (5.42)

=
∑

i,j≤r

AiAjh
2
i h

2
j + oP (tr(H>H)) (5.43)

= ÕP (n−4/(4+r)) (5.44)

by Theorem 5.4. Similarly, from Ruppert and Wand (1994) and Theorem 5.4 the (conditional)

variance is

Var(m̂h?) =
1

n

∏

i

1

hi

R(K)

f(x)
σ(1 + oP (1)) (5.45)

= ÕP (n−1+r/(r+4)) (5.46)

= ÕP (n−4/(4+r)) (5.47)

where R(K) =
∫

K(u)2 du. The result follows from the bias-variance decomposition. �

To prove the theorem we will make use of a version of Mill’s inequality, modified for non-zero mean

random variables as in Donoho and Johnstone (1994).

Lemma 5.6. Let Z ∼ N(θ, 1). Then

Pθ(|Z| > t) ≤ 1

t
e−t2/2 +

θ2

4
. (5.48)

Proof. Let

g(θ, t) = Pθ(|Z| > t) = Φ(−t− θ) + 1− Φ(t− θ). (5.49)

Hence, g′(0) = 0 and ∣∣∣∣∣
∂2g(θ, t)

∂θ2

∣∣∣∣∣ =
∣∣∣∣∣(t− θ)φ(t− θ)− (t + θ)φ(t + θ)

∣∣∣∣∣ (5.50)

so that

sup
t,θ
|g′′| ≤ 2 sup

u
|uφ(u)| ≤ 1

2
. (5.51)

Also,

g(0) = P0(|Z| > t) ≤ 2φ(t)

t
=

√
2

π

1

t
e−t2/2 ≤ 1

t
e−t2/2. (5.52)

Finally,

g(θ, t) ≤ g(0) +
θ2 sup |g′′|

2
≤ 1

t
e−t2/2 +

θ2

4
. (5.53)

which gives the statement of the lemma. �
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Proof of Theorem 5.4. In what follows, the calculations are understood as being conditional

on X1, . . . , Xn. When hj = o(1), we ignore the oP (1) terms in the asymptotic expressions for sj

and µj , it being understood that these hold, except on a set of probability tending to 0.

First consider j > r. Suppose that t is chosen so that

h0β
t ≤ log−k n (5.54)

where k is the constant appearing in assumption (A1). Let Vt = {j > r : hj = h0β
t} be the set of

irrelevant dimensions that are active at stage t. Then

P(|Zj | > λj , for some j ∈ Vt) ≤
∑

j∈Vt

P(|Zj | > λj) (5.55)

=
∑

j∈Vt

P

( |Zj |
sj

>
λj

sj

)
(5.56)

≤
∑

j∈Vt

(
sj

λj
e−λ2

j/(2s2
j ) +

1

4

µ2
j

s2
j

)
(5.57)

≤ 1

cn

√
2 log(dcn)

+
1

4

∑

j∈Vt

µ2
j

s2
j

. (5.58)

From Lemma 5.3, we have that

s2
j ≥ C

n

1

h2
0β

2t

1

hd
0

(5.59)

≥ C

n

log2k n

hd
0

. (5.60)

Now, from Lemma 5.1 we have that

µj = −tr(HH)ν2
2(∇j log f(x))2hj + oP (hj) (5.61)

= −
(

r∑

k=1

mkk(x)h2
k

)
ν2
2(∇j log f(x))2hj + oP (1) (5.62)

≤ c(∇j log f(x))2hj + oP (1) (5.63)

for some generic constant c. Thus, we have using assumption (A1) that

∑

j∈Vt

µ2
j

s2
j

≤
∑

j∈Vt

c2 (∇j log f)4 h2
j

s2
j

(5.64)

≤
∑

j∈Vt

c2 (∇j log f)4 nhd
0

C log4k n
(5.65)

= O
(
dhd

0

)
−→ 0 . (5.66)
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From condition (3.11), we have also that

1

cn

√
2 log(dcn)

= O

(
1√

log log n

)
. (5.67)

Therefore, with probability tending to 1, hj ≥ log−k n for each j > r.

Now consider j ≤ r. By (5.35), |µj | ≥ chj |mjj(x)|. Without loss of generality, assume that

chjmjj(x) > 0. We claim that in iteration t of the algorithm, if

t ≤ 1

4 + r
log1/β

(
c2nA2

minh
r+4
0

4C logk(d−r) n log(cnd)

)
(5.68)

then

P(hj = h0β
t, for all j ≤ r) −→ 1. (5.69)

To show this, first note that (5.68) can be written as

(
1

β

)t(4+r)

≤ c2nA2
minh

r+4
0

4C logk(d−r) n log(cnd)
. (5.70)

Except on an event of vanishing probability, we have shown above that

∏

j>r

1

hj
≤ logk(d−r) n . (5.71)

So on the complement of this event, if each relevant dimension is active at step s ≤ t, we have

λ2
j

h2
j

=
2s2

j log(cnd)

h2
j

(5.72)

=
2C log(cnd)

nh4
j

∏

i

1

hi
(5.73)

≤ 2C log(cnd) logk(d−r) n

nhr+4
0

(
1

β

)(4+r)t

(5.74)

≤ c2A2
min

2
(5.75)

≤ c2mjj(x)2

2
(5.76)

which implies that

cmjj(x)hj ≥ 2λj (5.77)

and hence
cmjj(x)hj − λj

sj
≥ λj

sj
= 2
√

log(cnd) (5.78)
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for each j ≤ r. Now,

P(rodeo halts) = P(|Zj | < λj for all j ≤ r) (5.79)

≤ P(|Zj | < λj for some j ≤ r) (5.80)

≤
∑

j≤r

P(|Zj | < λj) (5.81)

≤
∑

j≤r

P(Zj < λj) (5.82)

≤
∑

j≤r

P

(
Zj − µj

sj
>

µj − λj

sj

)
(5.83)

≤
∑

j≤r

P

(
Zj − µj

sj
>

cmjj(x)hj − λj

sj

)
(5.84)

≤ r

2cnd
√

log(cnd)
. (5.85)

Finally, summing over all iterations s ≤ t gives

P



⋃

s≤t

⋃

j≤r

{
|Z(s)

j | < λ
(s)
j

}

 ≤ tr

2cnd
√

log(cnd)
(5.86)

≤

r

r + 4
log1/β

(
c2nA2

minh
r+4
0

4C logk(d−r) n log(cnd)

)

2cnd
√

log(cnd)
(5.87)

= O

(
1√

log log n

)
(5.88)

by (3.11). Thus, the bandwidths hj for j ≤ r satisfy, with high probability,

hj = h0β
t ≤ h0

(
4C logk(d−r) n log(cnd)

c2A2
minnhr+4

0

)1/(4+r)

(5.89)

= n−1/(4+r)

(
4C logk(d−r) n log(cnd)

c2A2
min

)1/(4+r)

. (5.90)

In particular, with probability approaching one, the algorithm runs for a number of iterations Tn

bounded from below by

Tn ≥
1

4 + r
log1/β(nan) (5.91)

where

an =
c2A2

minh
r+4
0

4C logk(d−r) n log(cnd)
= Ω̃(1) . (5.92)

We next show that the algorithm is unlikely to reach iteration s, if

s ≥ 1

4 + r
log1/β (nbn) (5.93)
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where bn = Õ(1) will be defined below. From the argument above, we know that except on an

event of vanishing probability, each relevant dimension i ≤ r has bandwith no larger than

hi ≤ h0β
1

4+r
log1/β(nan) (5.94)

=
h0

(nan)1/(4+r)
. (5.95)

Thus, if relevant dimension j has bandwidth hj ≤ h0β
s, then from Lemma 5.3 we have that

s2
j

A2
jh

2
j

≥ C

A2
jnh4

0β
4s

nr/(4+r)a
r/(4+r)
n

hr
0

1

hd−r
0

(5.96)

=
C

A2
jn

4/(4+r)

a
r/(4+r)
n

h4+d
0

1

β4s
(5.97)

≥ C

A2
maxn

4/(4+r)

a
r/(4+r)
n

h4+d
0

1

β4s
. (5.98)

Therefore,
s2
j

A2
jh

2
j

≥ log log n (5.99)

in case

(
1

β

)s

≥ n1/(4+r)

(
A2

maxh
4+d
0 log log n

Ca
r/(4+r)
n

)1/4

(5.100)

= (nbn)1/(4+r) (5.101)

which defines bn = Õ(1). It follows that in iteration s ≥ 1
4+r log1/β (nbn), the probability of a

relevant variable having estimated derivative Zj above threshold is bounded by

P(|Zj | > λj , for some j ≤ r) ≤
∑

j≤r

P

( |Zj |
sj

>
λj

sj

)
(5.102)

≤
∑

j≤r

(
sj

λj
e−λ2

j/(2s2
j ) +

1

4

µ2
j

s2
j

)
(5.103)

≤ 1

cn

√
2 log(dcn)

+
1

4

∑

j≤r

µ2
j

s2
j

(5.104)

≤ 1

cn

√
2 log(dcn)

+
r

4 log log n
(5.105)

= O

(
1

log log n

)
(5.106)

which gives the statement of the theorem. �
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VI. Some Modifications, Examples, and Remarks

In this section we discuss several extensions of the basic hard thresholding version of the rodeo,

including a soft thresholding version, a global rather than local bandwidth selection procedure, the

use of testing and generalized cross validation, and connections to least angle regression. Further

numerical examples are also given to illustrate these ideas.

A. Estimating σ

The algorithm requires that we insert an estimate σ̂ of σ in (3.9). An estimator for σ can be

obtained by generalizing a method of Rice (1984). For i < `, let

di` = ‖Xi −X`‖ . (6.1)

Fix an integer J and let E denote the set of pairs (i, `) corresponding the J smallest values of di`.

Now define

σ̂2 =
1

2J

∑

i,`∈E

(Yi − Y`)
2. (6.2)

Then,

E(σ̂2) = σ2 + bias (6.3)

where

bias ≤ D sup
x

r∑

j=1

∣∣∣∣
∂mj(x)

∂xj

∣∣∣∣ (6.4)

with D given by

D = max
i,`∈E
‖Xi −X`‖. (6.5)

There is a bias-variance tradeoff: large J makes σ̂2 positively biased, and small J makes σ̂2 highly

variable. Note, however, that the bias is mitigated by sparsity (small r).

A more robust estimate may result from taking

σ̂2 =

√
π

2
median {|Yi − Y`|}i,`∈E (6.6)

where the constant comes from observing that if Xi is close to X`, then |Yi − Y`| ∼ |N(0, 2σ2)| =√
2σ|Z|, where Z is a standard normal with E|Z| =

√
2/π.

Now we redo the earlier examples, taking σ as unknown. Figure 5 shows the result of running the

algorithm on the examples of Section 4.A, however now estimating the noise using estimate (6.6).

For the higher dimensional example, with d = 20, the noise variance is over-estimated, with the

primary result that the irrelevant variables are more aggressively thresholded out; compare Figure 5

to Figure 3.

Although we do not pursue it in this paper, there is also the possibility of allowing σ(x) to be a

function of x and estimating it locally.
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Figure 5: Rodeo run on the examples of Section 4.A, but now estimating the noise using the

estimate σ̂ discussed in Section 6.A. Top: σ = .5, d = 10; bottom: σ = 1, d = 20. In higher

dimensions the noise is over-estimated (right plots), which results in the irrelevant variables being

more aggressively eliminated; compare Figure 3.
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B. Subtracting off a Linear Lasso

Local linear regression is a nonparametric method that contains linear regression as a special case

when h→∞. If the true function is linear but only a subset of the variables are relevant, then the

rodeo will fail to separate the relevant and irrelevant variables since relevance is defined in terms

of departures from the limiting parametric model. Indeed, the results depend on the Hessian of m

which is zero in the linear case. The rodeo may return a full linear fit with all variables. A simple

modification fixes this problem. First, do linear variable selection using, say, the lasso (Tibshirani,

1996). Then run the rodeo on the residuals from that fit.

C. Other Estimators and Other Paths

We have taken the estimate

D̂j(h) = Zj(h)I(|Zj(h)| > λj) (6.7)

with the result that

m̃(x) = m̂h0
(x)−

∫ 1

0
〈D̂(s), ḣ(s)〉ds = m̂h?(x). (6.8)

There are many possible generalizations. First, we can replace D̂ with the soft-thresholded estimate

D̂j(t) = sign(Zj(h)) (|Zj(h)| − λj)+ (6.9)

where the index t denotes the tth step of the algorithm. Since hj is updated multiplicatively as

hj ← βhj , the differential dhj(t) is given by dhj(t) = (1 − β)hj . Using the resulting estimate of

D(t) and finite difference approximation for ḣ(t) leads to the algorithm detailed in Figure 6.

Figure 7 shows a comparison of the hard and soft thresholding versions of the rodeo on the example

function m(x) = 2(x1 + 1)3 + 2 sin(10x2) in d = 10 dimensions with σ = 1; β was set to 0.9. For

each of 100 randomly generated datasets, a random test point x ∼ Uniform(0, 1)d was generated,

and the difference in losses was computed:

(m̃hard(x)−m(x))2 − (m̃soft(x)−m(x))2 . (6.10)

Thus, positive values indicate an advantage for soft thresholding, which is seen to be slightly more

robust on this example.

Another natural extension would be to consider more general paths than paths that are restricted

to be parallel to the axes. We leave this direction to future work.

D. Global Version

We have focused on estimation of m locally at a point x. The idea can be extended to carry out

global bandwidth and variable selection by averaging over multiple evaluation points x1, . . . , xk.

These could be points interest for estimation, could be randomly chosen, or could be taken to be

identical to the observed Xis.

23



Rodeo: Soft thresholding version

1. Select parameter 0 < β < 1 and initial bandwidth h0, satisfying 1 ≤ h0 ≤ log`/d n, for a fixed

constant `. Let cn be a sequence satisfying dcn = Ω(log n).

2. Initialize the bandwidths, and activate all covariates:

(a) hj = h0, j = 1, 2, . . . , d.

(b) A = {1, 2, . . . , d}
(c) Initialize step, t = 1.

3. While A is nonempty

(a) Set dhj(t) = 0, j = 1, . . . , d.

(b) Do for each j ∈ A:

(1) Compute the estimated derivative expectation Zj and sj .

(2) Compute the threshold λj = sj

√
2 log(dcn).

(3) If |Zj | > λj , then set dhj(t) = (1−β)hj and hj ← βhj ; otherwise remove j from A.

(4) Set D̂j(t) = sign(Zj(h)) (|Zj(h)| − λj)+.

(c) Increment step, t← t + 1.

4. Output bandwidths h? = (h1, . . . , hd) and estimator

m̃(x) = m̂h0
(x)−

t∑

s=1

〈
D̂(s), dh(s)

〉
. (6.11)

Figure 6: The soft thresholding version of the rodeo.

Averaging the Zjs directly leads to a statistic whose mean for relevant variables is asymptotically

k−1hj
∑k

i=1 mjj(xi). Because of sign changes in mjj(x), cancellations can occur resulting in a small

value for the statistic. To eliminate the sign cancellation, we square the statistic.

Let x1, . . . , xk denote the evaluation points. Let

Zj(xi) =
n∑

s=1

YsGj(Xs, xi). (6.12)

Then define the statistic

Tj ≡
1

k

k∑

i=1

Z2
j (xi) =

1

k
Y T PjY (6.13)

where Pj = GjGT
j , with Gj(s, i) = Gj(Xs, xi).
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Figure 7: Comparison of hard and soft thresholding. The true function is m(x) = 2(x1 + 1)3 +

2 sin(10x2), d = 10 and σ = 1. The hard and soft thresholding versions of the rodeo were compared

on 100 randomly generated datasets, with a single random test point x chosen for each; β = 0.9.

The plots show two views of the difference of losses, (m̃hard(x)−m(x))2 − (m̃soft(x)−m(x))2;

positive values indicate an advantage for soft thresholding.

If j ∈ Rc then we have E(Zj(xi)) = o(1), so it follows that, conditionally,

E(Tj) =
σ2

k
tr(Pj) + oP (1) (6.14)

V(Tj) =
2σ4

k2
tr(PjPj) + oP (1). (6.15)

We take the threshold to be

λj =
σ̂2

k
tr(Pj) + 2

√
2σ̂4

k2
tr(PjPj) log(cnd). (6.16)

We give an example of this algorithm in the following section.

E. Greedy Rodeo and LARS

The rodeo is related to least angle regression (LARS) (Efron et al., 2004). In forward stagewise

linear regression, one performs variable selection incrementally. LARS gives a refinement where at

each step in the algorithm, one adds the covariate most correlated with the residuals of the current
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fit, in small, incremental steps. LARS takes steps of a particular size: the smallest step that makes

the largest correlation equal to the next-largest correlation. Efron et al. (2004) show that the lasso

can be obtained by a simple modification of LARS.

The rodeo can be seen as a nonparametric version of forward stagewise regression. Note first that

Zj is essentially the correlation between the Yis and the Gj(Xi, x, h)s (the change in the effective

kernel). Reducing the bandwidth is like adding in more of that variable. Suppose now that we

make the following modifications to the rodeo: (i) change the bandwidths one at a time, based on

the largest Z∗
j = Zj/λj , (ii) reduce the bandwidth continuously, rather than in discrete steps, until

the largest Zj is equal to the next largest. This version can then be thought of as a nonparametric

formulation of LARS.

In fact, we can go further and embed the rodeo within LARS to get a fast nonparametric method.

We do this by replacing the derivatives of the fit in the rodeo with differences. Then we iterate

variable selection with bandwidth selection.

• Set h = (h0, . . . , h0). Define d-dimensional pseudo-covariates X̃i, i = 1, . . . , n, by

X̃i(j) = Gj(Xi, x, h), j = 1, . . . , d. (6.17)

Now run the LARS algorithm, regressing the Yi’s on the pseudo-covariates, up to some pre-

defined stopping point. This step essentially chooses relevant variables at the resolution of

the starting bandwidth h = (h0, . . . , h0).

• Define new pseudo-covariates X̃i, i = 1, . . . , n, by

X̃i(j) = Gj(Xi, x, h′)−Gj(Xi, x, h), j = 1, . . . , d (6.18)

where h′ has hj replaced by βhj . Note that adding the jth covariate corresponds to reducing

the bandwidth from hj to βhj . Now run the LARS algorithm up to some pre-defined stopping

point.

• Repeat the last step until a stopping criterion is satisfied.

One advantage of this method is that it can be implemented using existing LARS software. We

leave the development of the theory for this approach to future work. Some examples of the greedy

version of this algorithm follow.

E.1 Diabetes example

Figure 8 shows the result of running the greedy version of the rodeo on the diabetes dataset used

by Efron et al. (2004) to illustrate LARS . The algorithm averages Z∗
j over a randomly chosen set

of k = 100 data points, and reduces the bandwidth for the variable with the largest value; note

that no estimate of σ is required. The resulting variable ordering is seen to be very similar to, but

different from, the ordering obtained from the parametric LARS fit. The variables were selected in

the order 3 (body mass index), 9 (serum), 7 (serum), 4 (blood pressure), 1 (age), 2 (sex), 8 (serum),
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Figure 8: Greedy rodeo on the diabetes data, used to illustrate LARS (Efron et al., 2004). A set

of k = 100 of the total n = 442 points were sampled (d = 10), and the bandwidth for the variable

with largest average |Zj |/λj was reduced in each step.

5 (serum), 10 (serum), 6 (serum). The LARS algorithm adds variables in the order 3, 9, 4, 7, 2,

10, 5, 8, 6, 1. One notable difference is in the position of the age variable.

E.2 Turlach’s example

In the discussion to the LARS paper, Berwin Turlach (Turlach, 2004) gives an interesting example

of where LARS and the lasso fails. The function is

Y =

(
X1 −

1

2

)2

+ X2 + X3 + X4 + X5 + ε (6.19)

with ten variables Xi ∼ Uniform (0, 1) and σ = 0.05. Although X1 is a relevant variable, it is

uncorrelated with Y , and LARS and the lasso miss it.

Figure 9 shows the greedy algorithm on this example, where bandwidth corresponding to the largest

average Z∗
j is reduced in each step. We use kernel regression rather than local linear regression as

the underlying estimator. The variables x2, x3, x4, x5 are selected first in every run. Variable x1

is selected fifth in 72 of the 100 runs; a typical run of the algorithm is shown in the left plot. In

contrast, as discussed in Turlach (2004), LARS selects x1 in position 5 about 25% of the time.

Figure 10 shows bandwidth traces for this example using the global algorithm described in Sec-

tion 6.D with k = 20 evaluation points randomly subselected from the data, and σ taken to be

known. Before starting the rodeo, we subtract off a linear least squares fit. The first plot shows

h1, . . . , h5. The lowest line is h1 which shrinks the most since m is a nonlinear function of x1. The

other curves are the linear effects. The right plot shows the traces for h6, . . . , h10, the bandwidths

for the irrelevant variables.
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Figure 9: Left: A typical run of the greedy algorithm on Turlach’s example. The bandwidths are

first reduced for variables x2, x3, x4, x5, and then the relevant, but uncorrelated with Y variable x1

is added to the model; the irrelevant variables follow. Right: Histogram of the position variable x1

is selected, over 100 runs of the algorithm

F. The Cross-Validation Rodeo

One can incorporate other tests into the rodeo as well. Here we describe a test based on generalized

cross validation (GCV).

Recall that m̂h(x) = SxY where Sx = eT
1 (XT

x WxXx)−1XT
x Wx. An estimate of the risk of the

estimator is the GCV score (Wahba, 1990) defined by

R̂gcv(h1, . . . , hd) = (1− ν/n)−2 1

n

n∑

i=1

(Yi − m̂h(Xi))
2 (6.20)

where ν =
∑n

i=1 SXi(i) is the effective degrees of freedom. Define the test statistic Tj by

Tj = R̂gcv(h1, . . . , hj , . . . , hd)− R̂gcv(h1, . . . , βhj , . . . , hd). (6.21)

To assess the significance of Tj a permutation approach can be used. Randomly permute the values

of the jth covariate and recompute the statistic. Repeat this k times to yield values T
(1)
j , . . . , T

(k)
j .

Using the estimated p-value

pj =
1

k

k∑

i=1

I(Tj > T
(i)
j ), (6.22)

the algorithm replaces hj with βhj if

pj < λ ≡ α

dcn
(6.23)
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Figure 10: The global rodeo averaged over 10 runs on Turlach’s example. The left plot shows the

bandwidths for the five relevant variables. Since the linear effects (variables two through five) have

been subtracted off, bandwidths h2, h3, h4, h5 are not shrunk. The right plot shows the bandwidths

for the other, irrelevant, variables.

where α is set by the user. An advantage of this method is that it does not require estimating σ.

Figure 11 shows one run of the cross-validation rodeo, with α = 0.05, for Example 1 where m(x) =

5x2
1x

2
2 with d = 10. The lower two traces correspond to h1 and h2. The traces for the irrelevant

variables x3, . . . , x10 are the same and correspond to the top dashed line.

G. Non-normal errors

We have assumed that the residuals are normally distributed. In fact, by the central limit theorem,

Zj is approximately normal even if the residuals are not. However, it is possible to eliminate the

normality assumption altogether by replacing the Gaussian tail inequalities in the analysis with

Markov’s inequality. Of course, this leads to somewhat weaker results.

H. Local Likelihood and Generalized Linear Models

The lasso extends naturally to generalized linear models by regularizing the coefficients with an L1

penalty. Ng (2004) has given a covering number analysis of the lasso applied to logistic regression,
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Figure 11: One run of the cross-validation rodeo on the first example with m(x) = 5x2
1x

2
2. The

lower two traces correspond to h1 and h2. The top dashed line is the trace for h3, . . . , h10.

for cases where the underlying decision function is sparse. A nonparametric version of the lasso,

as a form of basis pursuit for spline models, is described by Zhang et al. (2005). The rodeo can

be naturally extended to nonparametric classification using local likelihood and generalized linear

models by suitably redefining the statistic Zj . We expect that similar analytic results will obtain.

I. Very Large Dimensions

If d is extremely large, say d � n, then the current method is not feasible. Here we suggest an

approach to such cases. We will report in greater detail in a future paper.

First, we replace local linear regression with kernel regression since the latter is still well defined even

when d > n. For large enough bandwidth h0, m̂h0
(x) ≈ Y and we take this as a starting bandwidth.

We compute Zj as before but it may no longer be reasonable to assume that µj = E(Zj) ≈ 0.

Instead, we try to separate Zj into small effects and large effects. That is, we model the Zjs as a

mixture:

Zj ∼ (1− a)F0 + aF1 (6.24)

where a denotes the fraction of large effects, F0 is the distribution of Z for small effects and F1

is the distribution of Z for large effects. Using recent techniques in multiple testing (Efron, 2005;

Genovese and Wasserman, 2004) we can estimate the mean ∆ and variance s2 of F0. The estimates

are biased but under the sparsity condition that a is small, the bias is small. Then we use the

thresholds

λj = ∆̂ + s
√

2 log(dcn). (6.25)

In the case where the variables do not separate nicely into large and small effects, we will end

up stopping early and choosing large bandwidths. In a very high dimensional problem where the
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variables do not separate well, this is, arguably, not an unreasonable solution.
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