
Function Definitions
15-110 – Friday 09/06

1

Announcements

2

∙ Hw1 is due Monday at noon
∙ Email both of us if you’re still on the waitlist!

∙ Next week: First Quizlet
• There are 8 (possibly 9) quizlets throughout the semester on Wednesdays

− Lowest two scores dropped
• Procedure:

− Bring a piece of paper

− You’ll have 5 minutes to answer the question displayed on the screen

− No computers, phones, notes, or collaboration

− When time is up, take a picture and upload to Gradescope

− Demo next time

Learning Objectives

• Use function definitions when reading and writing algorithms
to implement procedures that can be repeated on different
inputs

• Recognize the difference between local and global scope

• Trace function calls to understand how Python keeps track of
nested function calls

3

Function Definitions

A function is a code construct that represents an algorithm.

We define a function once, then call it many times.

Let's start by defining a function that has no explicit input or
output; instead, it has a side effect (printed lines).

Let's start by defining a function that has no explicit input or
output; instead, it has a side effect (printed lines).

def is how Python knows this is
a function definition

helloWorld is the name of the
function

indentation
(tab) : and indentation is start of

function body

Let's start by defining a function that has no explicit input or
output; instead, it has a side effect (printed lines).

indented lines are function body
which holds the algorithm

indentation

when the indentation stops, the
function is done

calling the
function we

defined

We can define a function with parameters by putting the
variable names of the parameters inside the parentheses.

name is a variable inside the function that we can use to do
operations inside the function body.

We specify a function’s returned value by writing a return
statement.

Is there is no return statement, the function returns None!

returnedValue is None!

Activity: Write a Function

You do: write a function convertToQuarters that takes a
number of dollars and converts it into quarters, returning the
number of quarters.

For example, if you call convertToQuarters on 2 ($2), the
function should return 8 (8 quarters).

x = convertToQuarters(2)

15

Control flow is the order that statements are executed as we
run a program.

def test(x):
 print("A:", x)
 return x + 5

y = 2
print("B:", y)
z = test(y + 1)

When you read code with a function definition, that definition will
not influence the program until it is called!

1

2

3

4

5

6

Example Code
For example, what will be printed when we run the following code?

def test(x):
 print("A:", x)
 return x + 5

y = 2
print("B:", y)
z = test(y + 1)

We do not enter the function until it is called. That means B is printed before A,
even though its line occurs further down in the code!

17

Interpreter:
B: 2
A: 3

Activity: Analyzing functions

You do: what are the arguments and returned value of this function
call, given the definition? What will it print?

def addTip(cost, percent):
 tip = cost * percent
 print("Tip:", tip)
 return cost + tip

total = addTip(25, 0.2)

18

Scope

x is a local variable:
it is only accessible within the function test

def test(x):
 print("A:", x)
 return x + 5

y = 2
print("B:", y)
z = test(y + 1)

x is a global variable:
it is accessible everywhere after it is defined (even inside
functions!)
x = 5

def addTwo():
 y = x + 2
 return y

print(addTwo() - x)

Python lets us do weird confusing stuff like this:

x = 5

def test():
 x = 2
 print("A", x)

test()
print("B", x)

What does this print?

We can visualize code execution with pythontutor.com!

x = 5

def test():
 x = 2
 print("A", x)

test()
print("B", x)

x = 5 global x

x = 2 local x

print("B", x) global x

This is an excellent learning tool that is completely free to use.

https://pythontutor.com/render.html#code=x%20%3D%205%0A%0Adef%20test%28%29%3A%0A%20%20%20%20x%20%3D%202%0A%20%20%20%20print%28%22A%22,%20x%29%0A%0Atest%28%29%0Aprint%28%22B%22,%20x%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

Activity: Local or Global?

 name = "Farnam"

def greet(day):
 punctuation = "!"
 print("Hello, " + name + punctuation)
 print("Today is " + day + punctuation)

def leave():
 punctuation = "."
 print("Goodbye, " + name + punctuation)

greet("Friday")
leave()

27

Which variables are global?
Which are local?

For the local variables,
which function can see
them?

Function Call Tracing

It gets a lot harder to trace functions when a function definition
calls another function.

def outer(x):

 y = x / 2

 print(“Outer y:", y)

 return inner(y) + 3

def inner(x):

 y = x + 1

 print("Inner y:", y)

 return y

print(outer(4))

Check this out in pythontutor.com.

https://pythontutor.com/render.html#code=def%20outer%28x%29%3A%0A%20%20%20%20y%20%3D%20x%20/%202%0A%20%20%20%20print%28%22Outer%20y%3A%22,%20y%29%0A%20%20%20%20return%20inner%28y%29%20%2B%203%0A%0Adef%20inner%28x%29%3A%0A%20%20%20%20y%20%3D%20x%20%2B%201%0A%20%20%20%20print%28%22Inner%20y%3A%22,%20y%29%0A%20%20%20%20return%20y%0A%0Aprint%28outer%284%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false

Interpreter:

Tracing the Code

When Python runs through this code, it
adds outer to its state, then it adds inner.

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

30

outer function
inner function

print(outer(4))

Tracing the Code

When it reaches the last line, it must call
outer to evaluate the expression.

The computer puts a 'bookmark' on the
line it was on so it won't lose its place.

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

31

Interpreter:

outer function
inner function

function call

Tracing the Code

Python traces through the outer function
normally, keeping track of the local state,
until it reaches the call to inner.

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

32

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
Interpreter:

return inner(2.0) + 3

Once again, Python leaves a 'bookmark'
at its current location, then moves to the
inner function to set up a new local
state.

Tracing the Code

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

33

print(outer(4))

Interpreter:
outer y: 2.0

x = 4
y = 4 / 2 = 2.0

outer function
inner function

function call

Tracing the Code

Python can fully execute inner without
calling another function.

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

34

Interpreter:
outer y: 2.0

print(outer(4))

return inner(2.0) + 3
x = 4
y = 4 / 2 = 2.0

Interpreter:
outer y: 2.0
inner y: 3.0

outer function
inner function

x = 2.0
y = 2.0 + 1 = 3.0

return 3.0

When Python reaches the return
statement of inner, it returns 3.0 to the
function that previously called it, outer,
by checking the bookmark.

Tracing the Code

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

35

print(outer(4))

return inner(2.0) + 3
x = 4
y = 4 / 2 = 2.0

outer function
inner function

x = 2.0
y = 2.0 + 1 = 3.0

return value

Interpreter:
outer y: 2.0
inner y: 3.0

return inner(2.0) + 3return 3.0 + 3

When the value 3.0 is returned, it takes
the place of the function call expression.

Now Python can finish running the outer
function.

Tracing the Code

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

36

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0

return 3.0 + 3return 6.0

When outer finishes, it returns 6.0 to the
next bookmarked function, the original
call.

Tracing the Code

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

37

print(outer(4))

x = 4
y = 4 / 2 = 2.0

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0

return value

6.0 takes the place of outer(4), the value
is printed, and the code is done!

print(outer(4))print(6.0)

Interpreter:
outer y: 2.0
inner y: 3.0Tracing the Code

def outer(x):
 y = x / 2
 print("outer y:", y)
 return inner(y) + 3

def inner(x):
 y = x + 1
 print("inner y:", y)
 return y

print(outer(4))

38

outer function
inner function

Interpreter:
outer y: 2.0
inner y: 3.0
6.0

Function Calls in Error Messages

Function call 'bookmarks' will show
up naturally in your code whenever
you encounter an error message.

The lines of the error message
show you exactly which function
calls led to the location where the
error occurred.

If we insert an error into the middle
of the code, you can see how each
'bookmark' is listed out.

def outer(x):
 y = x / 2
 return inner(y) + 3

def inner(a):
 b = a + 1
 print(oops) # will cause an error
 return b

print(outer(4))

40

Traceback (most recent call last):
 File "C:\Users\river\Downloads\example.py", line 10, in <module>
 print(outer(4))
 File "C:\Users\river\Downloads\example.py", line 3, in outer
 return inner(y) + 3
 File "C:\Users\river\Downloads\example.py", line 7, in inner
 print(oops) # will cause an error
NameError: name 'oops' is not defined

[if time] Activity: Trace the Function Calls

You do: given the code to the right,
trace through the execution of the
code and the function calls.

It can be helpful to jot down the
current variable values as well, so you
don't have to hold them all in your
head.

What will be printed at the end?

def calculateTip(cost):

 tipRate = 0.2

 return cost * tipRate

def payForMeal(cash, cost):

 cost = cost + calculateTip(cost)

 cash = cash - cost

 print("Thanks!")

 return cash

wallet = 20.00

wallet = payForMeal(wallet, 8.00)

print("Money remaining:", wallet)

41

Learning Objectives

• Use function definitions when reading and writing algorithms
to implement procedures that can be repeated on different
inputs

• Recognize the difference between local and global scope

• Trace function calls to understand how Python keeps track of
nested function calls

42

