15-150
Fall 2024

Dilsun Kaynar

LECTURE 1

Introduction,Philosophy, Some Basics

About 15-150

Instructors: Stephanie Balzer, Dilsun Kaynar

19 TAs

http://www.cs.cmu.edu/~15150/

We are on Canvas!

loday

e (Organization of the course

e Philosophy of the course

e Basics of types, values, expressions in
SML

Course tasks

Assignments 40%
Labs 10%

Midterm 1 15% (Sep 26)
Midterm 2 15% (Nov 7)
Final 20%

Collaboration policy

e NMake sure to read and understand the
policy for this semester

Extra help

e (Office Hours by TAS
e |nstructors avallable by appointment

e Student Academic Success Center

e Drop-in Tutoring
¢ \Nednesdays POS 280

e 1-on-1 tutoring by appointment

Course philosophy

e Computation is functional.

e Programming is an explanatory
iInguistic process.

Functional
programming

ML

erything else is just
dysfuncthnal
pfogramming!

Computation is
functional

e values classified with respect to types
® expressions

e functions map values to values

Imperative vs. Functional

command expression
executed evaluated
has an effect NO effect
X = 5 3 + 5

(new state) (new value)

Programming as
explanation

e Problem statement

e |nvariants

High expectation to explain

¢ SpeCiﬁcatiOnS precisely and concisely

e Proofs of correctness

e Analyze, decompose and fit, prove

Parallelism

low many people have taken 15-1227

Let’s count it using parallelism.

Parallelism

= <O N~ O W >

sum: 1nt sequence - 1nt
type row = 1nt sequence

type room = row sequence

fun count (class: room): int = sum (map sum class)

Analysis

e How could you Improve the running time of
count?

Divide and conquer

Parallelism

—Xpression evaluation has no side-effects
e can evaluate independent code in parallel

e cvaluation order has no effect on value

Parallel evaluation may be faster than sequential

Learn to exploit parallelism!

Cost Analysis

Work

e Seqguential computation

e [otal sequential time; number of operations

Span

O

Parallel computation

How long would it take If one cou

d have as many

‘0OCESSOors as one wants; length o

nath

" longest critical

Introducing ML

o [ypest

® EXpressions e

e \/alues v (subset of expressions)

Examples

(3 + 4) x 2
=1=>] %k 2

1

==> 14

(3 +4) x (2 + 1)
:3:> 21

How many steps would the second take if we used parallelism?

"the " + "walrus"
==> ""the walrus"

"the walrus" + 1 ill-typed

SML never evaluates an ill-typed expression!

Types, Expressions,
Values

e A type is a “prediction” about the kind of value
that an expression will have If it winds up having
a value

e An expression is well-typed if it has at least
one type, and ill-typed otherwise.

o A well-typed expression has a type, may have a
value, and may have an effect (not for our
effect-free fragment)

—very well-formed ML expression e

e has typet, writtenase:t

e may have a value, written as e < v

(or e ==> V)
e may have an effect (not our effect-free
fragment)
Example:
(B +4)*2:int

Types in ML

e Basic types

e 1nt, real, bool, char, string

e (Constructed types

e Product types

Integers, Expressions

e [ype int

e \alues ..., ~1, 0, 1, ..,

e LXpressionses + 6o, €1 —-€2 €1 * ez
er; div ez €71 mod ey ...

e Example ~4 * 3

Integers, lyping

e [yping rules
® N:.1nt
e ¢/ +eo:1int If €7:1int and e2: int

e similar for other operations

(3 + 4) % 2 : int because
(3 + 4): int 2: int

(3 + 4): int because 3: int and 4: int

Integers, Evaluation

1 1

® &/ +t60 ==> @1 +esife; = e1

1 . 1 ’
® N1 +eo==>n1+6e> Ifer»==>e»

1
® N1+ No==>N

where n Is the sum of n7 and n»

Example

Well-typed expression with no value

5 div 0 : 1nt

Notation Recap

et e has type t
e ==>¢e’ e reduces to e’

e v e evaluates to v

Extensional
eqguivalence

-

An equivalence relation on expressions of the same type

Extensional Equivalence

—Xpressions of type int are extensionally
equivalent whenever one of the following is true

¢ |f they evaluate to the same integer
e if they both loop forever

o |f they both raise the same exception

Equivalence is a form of semantic equality

Equivalence

e Functions of type Int -> Int are extensionally
equivalent if they map extensionally equivalent
arguments 1o extensionally equivalent results

Referential
transparency

for types and values

e [he type of an expression depends only
on the types of its sub-expressions

* [he value of an expression depends only
on the values of Its sulb-expressions

safe substitution,
compositional reasoning
e

Extensional Equivalence

—Xpressions of type int are extensionally
equivalent whenever one of the following is true

¢ |f they evaluate to the same integer

For now, we will mostly focus on the first
condition by making appropriate assumptions.

Equivalence

21 + 21

I

42 =7 % 6

[2,4,6] = [1+1, 2+2, 3+3]

(fn X == X + X) = (fn X => 2 *x X)

Types in ML

e Basic types

e 1nt, real, bool, char, string

e (Constructed types

e Product types

Products, Expressions

e [ypes t; * tofor any type t; and to

e \alues (v7 vo) forvalues v and vo

e Expressions (g1, e2), # e # e usugllly bed

SLYIC

° Example (~4 x 3, true)

(3,5,"another example")

Products, lyping

® (67 e2):t;1 *toif €7 t1and e2: o

e Example
(~4 % 3, true): int *x bool
(3,5,"another example"):
int *x 1nt x string

Products, Evaluation

1 1

e (1, €) =>(e1 ,eo)ifer==>er

1 1

o (V1 , €2 ==>(v1 €2) Ifes==>ey

|
® (V1 , Vo) ==> (v1, Vo)

Evaluation:
(3%4, 1.1+7.2, true)
==> (12, 1.1+7.2, true)
==> (12, 8.3, true)

We could also write:

(3%4, 1.1+7.2,true) & (12, 8.3, true)

Exercises

What are the type and values of the following expressions?

Type Value
(3%4, 1.1+7.2,true) int * real * bool (12,8.3, true)
(5 div @, 2+1) Int x 1nt No value
(5 + "8 miles", false) ill-typed No value

(2, (true,"a"), 3.1) int * (bool % string) * real (2, (true,"a"), 3.1)

Functions

In math, one talks about a function f being a mapping
between spaces X and Y.

f: X —> Y

In SML, we do the same with X and Y being types.

Declarations,
Environments, Scope

Declaration

val p1 : real = 3.14

] |

keyword identifier type value

Introduces binding of 3.14 to pi, sometimes written as [3.14/x]

Lexically statically scoped

val x :
val y :

Environment

1nt
1nt

3/x

Environment

val x : int = 8 - 5 3/x]
val v : int = x + 1 4/y.
val x : int = 10 10/x]
val z : int = x + 1 11/z;

Second binding of x shadows first binding. First binding has been shadowed.

| ocal declarations

let

valm : int = 3

val n : int = m *x m
1n

m + n
end

This is an expression with type int and value 12.

| ocal declarations
val kK : 1nt = 4

let

val kK : real = 3.0
1n

K % k
end

Type?
Value?

L ocal declarations

val kK : 1nt = 4

let

val kK : real = 3.0
1n Type?

kK % K Value?
ena 9.0 : real

Type? -
: } Value? 41 int

Concrete Type

Definitions
type float = real
type point = float % float

val p : point = (1.0, 2.6)

Functions

Function declaration

(* square : int —> int

REQUIRES: true

ENSURES: square(x) evaluates to x *x X
%)

fun square (x : int) : int = x % X

function name function body

Closures

Function declarations also create bindings:
fun square (x : int) : int = X * X

binds the identifier square to a closure:

B /square]

Lambda expression fn x:int => X *x X
Environment (all prior bindings when square was declared)

5-step methodology

¢ R

—NSU

-unction body

—QUI

Tests

Function name and type

RES,

RES

Step 6: Proof

How does ML evaluate
a function application e>

® Fvaluate e>to a function value f

® Reduce e7 1o a value v

® | ocally extend the environment that existed
at the time of the definition of f with a
binding of value v to the variable x

® Evaluate the body in the resulting
environment

1o Do Tonight

e Canvas
e Assignments

e Setuplab

