
Recursion and Induction

15-150 
Lecture 3: September 3, 2024 

Stephanie Balzer 
Carnegie Mellon University

1



Recap of week 1

2



Recap of week 1

2

Functional programming



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications



Recap of week 1

2

Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

observation: once your program type checks, it works!



Recap of week 1

3

Extensional equivalence ( )≅



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

we’ll revisit 
exact definition



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier



Recap of week 1

3

Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with 
bindings existing at declaration time



Recap of week 1

4

Pattern matching



Recap of week 1

4

Pattern matching

patterns are used at binding sites of values



Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression



Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value



Recap of week 1

4

Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts, 
introducing appropriate bindings for parts



Recap of week 1

5

5-step methodology of function declaration



Recap of week 1

5

5-step methodology of function declaration

function name and type1



Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2



Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3



Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4



Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5



Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:



Recap of week 1

5

5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

correctness proof6



Today’s topic: functional correctness

6



Today’s topic: functional correctness

6

Let’s prove our programs correct, one function at a time!



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated



Today’s topic: functional correctness

6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML 
implements them correctly



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

7



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

8



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

8



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

8

pattern matching



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

9



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

9



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

9

recursive call



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

10



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3



An example: compute nk

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)



A more efficient version of power

(* even : int -> bool 
   REQUIRES: true 
   ENSURES: even(k) evaluates to true if k is even 
                    evaluates to false if k is odd. 
*) 

fun even (k:int) : bool = ((k mod 2) = 0) 

(* square : int -> int 
   REQUIRES: true 
   ENSURES: square(n) ==> n^2 
*) 

fun square (n:int) : int = n * n

11



A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
*) 

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

12



A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
*) 

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

12



A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
*) 

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

12

exponent k is even



A more efficient version of power

(* powere : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: powere(n,k) ==> n^k, with 0^0 = 1. 

   powere computes n^k using O(log(k)) multiplies. 
*) 

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

12

exponent k is even

Number of recursive calls: O(log(k))



Let’s verify our naive version of power

13



Let’s verify our naive version of power

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

13



Let’s verify our naive version of power

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

13

How shall we proceed?



Let’s verify our naive version of power

(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

13

How shall we proceed?

Let’s use mathematical induction!



Mathematical (simple, weak) induction

14



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

14



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

14

base case



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

15



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

15

inductive step



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16

Why does it work?



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16

Why does it work?

• P(0) is proved directly.



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).



Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).

• etc…



Let’s verify our naive version of power

17



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

17



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

17

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

17

Proof by mathematical induction on ???

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

18

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

18

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

k is the integer that 
gets smaller!



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

18

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

k is the integer that 
gets smaller!

need for 
applying IH!



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

19

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Let’s do the proof together!



Let’s verify our more efficient version of 
power, powere

20



Let’s verify our more efficient version of 
power, powere

20

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Let’s verify our more efficient version of 
power, powere

20

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Let’s verify our more efficient version of 
power, powere

20

Proof by ???

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Let’s verify our more efficient version of 
power, powere

21

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

22



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

22

base case



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

23



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

23

inductive step



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

24



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

24

Note: allowed to appeal to IH for any k’ < k!



Strong induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

24

Note: allowed to appeal to IH for any k’ < k!

For mathematical induction, IH can only be appealed to for the 
immediate predecessor!



Let’s verify our more efficient version of 
power, powere

25



Let’s verify our more efficient version of 
power, powere

25

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Let’s verify our more efficient version of 
power, powere

25

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)



Let’s verify our more efficient version of 
power, powere

25

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

not immediate 
predecessor!



Let’s verify our more efficient version of 
power, powere

25

Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Notice, the code tells us what induction principle to use!

fun powere (_:int, 0:int) : int = 1 
  | powere (n:int, k:int) : int = 
      if even(k) 
      then square(powere(n, k div 2)) 
      else n * powere(n, k-1)

Let’s do the proof together!

not immediate 
predecessor!



Taking stock

26



Taking stock

26

We proved two functions correct, using weak and strong 
induction on natural numbers.



Taking stock

26

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.



Taking stock

26

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)



Taking stock

26

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)

Sometimes, the function doesn’t facilitate a proof by induction on 
a natural number.



Taking stock

26

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)

Sometimes, the function doesn’t facilitate a proof by induction on 
a natural number.

Instead, induction over the structure of values defined by a 
datatype declaration is more suited.



Taking stock

26

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)

Sometimes, the function doesn’t facilitate a proof by induction on 
a natural number.

Instead, induction over the structure of values defined by a 
datatype declaration is more suited.

more on datatypes in 
later lectures!



Taking stock

27

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)

Sometimes, the function doesn’t facilitate a proof by induction on 
a natural number.

Instead, induction over the structure of values defined by a 
datatype declaration is more suited.



Taking stock

27

We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)

Sometimes, the function doesn’t facilitate a proof by induction on 
a natural number.

Instead, induction over the structure of values defined by a 
datatype declaration is more suited.

today: example using structural induction on lists



Lists

28



Lists

28

Type: t list for any type t



Lists

28

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil



Lists

28

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es



Lists

28

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es

“cons”



Lists

29

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es



Lists

29

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es
eg, 1::[2, 3] yields [1, 2, 3]



Lists

29

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es
eg, 1::[2, 3] yields [1, 2, 3]

cons is right-associative



Lists

29

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es
eg, 1::[2, 3] yields [1, 2, 3]

cons is right-associative

ie, 1::2::3::nil  means  1::(2::(3::nil))



Lists

29

Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es
eg, 1::[2, 3] yields [1, 2, 3]

cons is right-associative

ie, 1::2::3::nil  means  1::(2::(3::nil))

cons evaluates left to right (for sequential evaluation)



Length function for an int list

30



Length function for an int list

30

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

31

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

32

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

33

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

33

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

patterns!



Length function for an int list

34

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

35

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

36

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length function for an int list

36

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!



Length function for an int list

36

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

Unlike in math, functions in SML are not total



Length function for an int list

36

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

Unlike in math, functions in SML are not total

eg, recursive functions can loop!



Totality

37



Totality

37

Definition:
A function f: X -> Y is total, if f reduces to a value and f(x) 
reduces to a value for all values x in X.



Totality

37

Definition:
A function f: X -> Y is total, if f reduces to a value and f(x) 
reduces to a value for all values x in X.

Partiality complicates extensional equivalence (next time!)



Length function for an int list

38



Length function for an int list

38

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!



Length function for an int list

38

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

We proceed by structural induction on argument list.



Structural induction for lists

39



Structural induction for lists

To prove a property P(L) for every value L of type int list: 
• show that P([ ]) holds 
• show that, if P(L’) for some value L’ of type int list, 

then it also holds for v :: L’ (for any value v of type int).

39



Length function for an int list

40

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

We proceed by structural induction on argument list.



Length function for an int list

40

(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

We proceed by structural induction on argument list.

Let’s do the proof together!



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.
Showing:



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.
Showing:

length []



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.
Showing:

0⟹
length []



Length is total: proof

41

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.
Showing:

(step, 1st clause of length)0⟹
length []



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.
IH: length(xs) evaluates to some value v:int.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
IH: length(xs) evaluates to some value v:int.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

IH: length(xs) evaluates to some value v:int.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

length(x::xs)

IH: length(xs) evaluates to some value v:int.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

1 + v⟹



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
v’⟹



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
(some v’, assume + total)v’⟹



Length is total: proof continued

42

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
(some v’, assume + total)v’⟹

SML addition 
must be total!



Correspondence

43



Correspondence

43

Data structure Code Proof



Correspondence

43

Data structure Code Proof
base case(s):

inductive/recursive case(s):



Correspondence

43

Data structure Code Proof
base case(s):

inductive/recursive case(s):

0 fun power(_, 0) = 1 power(_, 0)  1↪



Correspondence

43

Data structure Code Proof
base case(s):

inductive/recursive case(s):

0 fun power(_, 0) = 1 power(_, 0)  1↪

(k-1)+1 power(n,k) = n*power(n, k-1) IH: power(n,k)  nk 
NTS: power(n,k+1)  nk+1

↪
↪



Correspondence

43

Data structure Code Proof
base case(s):

inductive/recursive case(s):

0 fun power(_, 0) = 1 power(_, 0)  1↪

(k-1)+1 power(n,k) = n*power(n, k-1) IH: power(n,k)  nk 
NTS: power(n,k+1)  nk+1

↪
↪

[ ] 0 length []  0↪



Correspondence

43

Data structure Code Proof
base case(s):

inductive/recursive case(s):

0 fun power(_, 0) = 1 power(_, 0)  1↪

(k-1)+1 power(n,k) = n*power(n, k-1) IH: power(n,k)  nk 
NTS: power(n,k+1)  nk+1

↪
↪

[ ] 0 length []  0↪

x :: xs length(x::xs) = 1+length(xs) IH: length(xs)  v 
NTS: length(x::xs)  v’

↪
↪



Correspondence

43

Data structure Code Proof
base case(s):

inductive/recursive case(s):

0 fun power(_, 0) = 1 power(_, 0)  1↪

(k-1)+1 power(n,k) = n*power(n, k-1) IH: power(n,k)  nk 
NTS: power(n,k+1)  nk+1

↪
↪

[ ] 0 length []  0↪

x :: xs length(x::xs) = 1+length(xs) IH: length(xs)  v 
NTS: length(x::xs)  v’

↪
↪

possibly several bases and inductive cases!


