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Functional programming

evaluation of expressions (no mutation!)

facilitates specification and reasoning about program

correctness proof (today’s topic!)

facilitates parallelism

Types, expressions, values

types as specifications

observation: once your program type checks, it works!
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Extensional equivalence ( )≅
“Two things are equal if the behave the same”

facilitates compositional (aka modular) reasoning

replace equals by equals in any sub-expression

Declarations, binding and scope

shadowing of bindings

function declarations bind a closure to the function identifier

closure comprises lambda expression and environment with 
bindings existing at declaration time
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Pattern matching

patterns are used at binding sites of values

eg, val bindings, function arguments, case expression

allow us to match against an expected value

allow us to decompose a value in its constituent parts, 
introducing appropriate bindings for parts
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5-step methodology of function declaration

function name and type1

REQUIRES: precondition2

ENSURES: postcondition3

function body4

tests5

Today, we add a 6th step:

correctness proof6
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6

we will use three kinds of induction:

Let’s prove our programs correct, one function at a time!

mathematical induction

strong induction

structural induction

we consider how expressions are evaluated

we may appeal to mathematical properties and assume that SML 
implements them correctly
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(* power : (int * int) -> int  
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(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

10

this function is not very efficient:

eg, 37 = 3 * 3 * 3 * 3 * 3 * 3 * 3

Number of recursive calls: O(k)



A more efficient version of power

(* even : int -> bool 
   REQUIRES: true 
   ENSURES: even(k) evaluates to true if k is even 
                    evaluates to false if k is odd. 
*) 

fun even (k:int) : bool = ((k mod 2) = 0) 

(* square : int -> int 
   REQUIRES: true 
   ENSURES: square(n) ==> n^2 
*) 

fun square (n:int) : int = n * n
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12

exponent k is even

Number of recursive calls: O(log(k))
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(* power : (int * int) -> int  
   REQUIRES: k >= 0 
   ENSURES: power(n,k) ==> n^k, with 0^0 = 1. 
*) 

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

13

How shall we proceed?

Let’s use mathematical induction!
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Mathematical (simple, weak) induction

To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k  0, 

P(k+1) follows logically from P(k).
≥

16

Why does it work?

• P(0) is proved directly.

• P(1) follows from P(0).

• P(2) follows from P(1).

• etc…
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fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

18

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

k is the integer that 
gets smaller!

need for 
applying IH!



Let’s verify our naive version of power

fun power (_:int, 0:int) : int = 1 
  | power (n:int, k:int) : int = n * power(n, k-1)

19

Proof by mathematical induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.

≥

Let’s do the proof together!
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Proof by ???

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.
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Proof by strong induction on k.

Theorem: power(n, k) evaluates to nk, for all integer values k  
0 and all integer values n.
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To prove a property P(n) for every natural number n: 
• show that P(0) holds 
• then, show that for all k > 0, 

P(k) follows logically from {P(0), …, P(k-1)}.

24

Note: allowed to appeal to IH for any k’ < k!

For mathematical induction, IH can only be appealed to for the 
immediate predecessor!
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more on datatypes in 
later lectures!
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We proved two functions correct, using weak and strong 
induction on natural numbers.

Sometimes we need to rephrase the theorem to facilitate proof.

aka generalize IH (see lecture notes for an example)

Sometimes, the function doesn’t facilitate a proof by induction on 
a natural number.

Instead, induction over the structure of values defined by a 
datatype declaration is more suited.

today: example using structural induction on lists
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Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es

“cons”
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Type: t list for any type t

Values: [v1,…,vn] where, vi is a value of type t, n  0≥
empty list[] or nil

Expressions: v all the values
where e: t and es: t liste::es
eg, 1::[2, 3] yields [1, 2, 3]

cons is right-associative

ie, 1::2::3::nil  means  1::(2::(3::nil))

cons evaluates left to right (for sequential evaluation)
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(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)
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(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

patterns!
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(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

Unlike in math, functions in SML are not total

eg, recursive functions can loop!
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Definition:
A function f: X -> Y is total, if f reduces to a value and f(x) 
reduces to a value for all values x in X.

Partiality complicates extensional equivalence (next time!)
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(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

We proceed by structural induction on argument list.
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Structural induction for lists

To prove a property P(L) for every value L of type int list: 
• show that P([ ]) holds 
• show that, if P(L’) for some value L’ of type int list, 

then it also holds for v :: L’ (for any value v of type int).

39
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(* length : int list -> int 
   REQUIRES: true 
   ENSURES: length(L) returns the number of 
            integers in L. 
*) 

fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Let’s verify that length is total (“always yields a value”)!

We proceed by structural induction on argument list.

Let’s do the proof together!
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.
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  | length (x::xs) = 1 + length(xs)
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Proof: By structural induction on L.
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Showing:

length []
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.
Showing:

0⟹
length []
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Theorem: For al values L:int list, length(L) evaluates to an 
integer value v.

Proof: By structural induction on L.
Base case: L = [].
Need to show: length([]) evaluates to some value v:int.
Showing:

(step, 1st clause of length)0⟹
length []
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.
IH: length(xs) evaluates to some value v:int.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
IH: length(xs) evaluates to some value v:int.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

IH: length(xs) evaluates to some value v:int.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

length(x::xs)

IH: length(xs) evaluates to some value v:int.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

1 + v⟹
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
v’⟹
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
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fun length ([] : int list) : int = 0 
  | length (x::xs) = 1 + length(xs)

Inductive case: L = x::xs, for some values x:int and xs:int 
list.

Need to show: length(x::xs) evaluates to some value v’:int.
Showing:

(step, 2nd clause of length)1 + length(xs)⟹
length(x::xs)

IH: length(xs) evaluates to some value v:int.

(IH)1 + v⟹
(some v’, assume + total)v’⟹

SML addition 
must be total!
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NTS: length(x::xs)  v’

↪
↪
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Data structure Code Proof
base case(s):

inductive/recursive case(s):

0 fun power(_, 0) = 1 power(_, 0)  1↪

(k-1)+1 power(n,k) = n*power(n, k-1) IH: power(n,k)  nk 
NTS: power(n,k+1)  nk+1

↪
↪

[ ] 0 length []  0↪

x :: xs length(x::xs) = 1+length(xs) IH: length(xs)  v 
NTS: length(x::xs)  v’

↪
↪

possibly several bases and inductive cases!


