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Announcement: midterm I

When and where: 
• Thursday, September 26, 11:00am—12:20pm. 
• PH 100 (we may get a second room for more space, stay tuned).

Scope: 
• Lectures: 1—8. 
• Labs: 1—4 and midterm review section of Lab 5. 
• Assignments: Basics, Induction, and Datatypes.

What you may have on your desk: 
• Writing utensils, we provide paper, something to drink/eat, tissues. 
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset. 
• No cell phones, laptops, or any other smart devices.

2

Be on time; next 
lecture starts at 12:30pm!



Last week

3



Last week

3

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.



Last week

3

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis



Last week

3

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

“programs as proofs”!



Last week

4

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis



Last week

4

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.



Last week

4

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence



Last week

4

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span



Last week

4

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

“programs as recurrences”!



Last week

5

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span



Last week

5

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!



Last week

5

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

today: sorting lists



Last week

5

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

today: sorting lists
Thursday: sorting binary trees



Last week

5

In week 2 we discovered (and exploited) the correspondence 
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence 
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

today: sorting lists
Thursday: sorting binary trees

mergesort
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Useful datatype:
datatype order = LESS | EQUAL | GREATER

Eg:
Int.compare : int * int -> order
String.compare : string * string -> order

More generally, what we would like, for some type t:
compare : t * t -> order

But let’s focus on comparing integers for now.
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Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than 
all integers that occur to its right.

[..., x,..., y,...]

LESS | EQUAL
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b/c spec asserts 
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fun isort ([ ] : int list) : int list = [ ] 
  | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0 
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Consequently: Wisort(n) is O(n2).

Note: again, no opportunity for parallelism.

So: Wisort(n)  c1 + c2  n + Wisort(n-1)≤ ⋅

Can we do better?
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Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]  ?≤ [3, 7]

[3, 4, 5, 7, 9]

Note, we use a list here.

But there is almost a tree emerging…
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(* msort : int list -> int list 
   REQUIRES: true 
   ENSURES:  msort(L) evaluates to a sorted 
             permutation of L. 
*) 
fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let  
         val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end
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(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 
fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

64

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 
fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

65

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 
fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

66

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

67

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

68

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

69

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

70

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

71

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

72

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

73

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

73

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Now, let’s write split!

73

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Have we 
established post-

condition?



Now, let’s write split!

73

(* split : int list -> int list * int list 
   REQUIRES: true 
   ENSURES: split(L) evaluates to a pair of lists (A, B) 
            such that length(A) and length(B) differ by 
            at most 1, and A@B is a permutation of L. 
*) 

fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Have we 
established post-

condition?

Prove in your head as you write code!
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end



Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.



Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:



Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥

Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:



Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥

Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:



Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥

Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:



Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥

Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:



Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥



Work for split
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥
Consequently: Wsplit(n) is O(n).
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fun split ([] : int list) : int list * int list = ([], []) 
  | split [x] = ([x], []) 
  | split (x::y::L) =  
       let  
          val (A, B) = split L  
       in  
          (x::A, y::B)  
       end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0 
Wsplit(1) = c1 
Wsplit(n) = c2 + Wsplit(n-2), for n  2≥
Consequently: Wsplit(n) is O(n).

no opportunity for 
parallelism



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))



Now, let’s write merge!
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(* merge : int list * int list -> int list 
   REQUIRES: A and B are sorted lists. 
   ENSURES:  merge(A,B) evaluates to a sorted 
             permutation of A@B. 
*) 

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))
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Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥



Work for merge

100

fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥



Work for merge
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥



Work for merge
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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fun merge ([] : int list, B : int list) : int list = B 
  | merge (A, []) = A 
  | merge (x::A, y::B) = (case compare(x,y) of 
                              LESS => x :: merge(A, y::B) 
                            | EQUAL => x::y::merge(A, B) 
                            | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m  0 

Wmerge(n,0) = c1, for all n  0 
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥
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≥
≥

Consequently: Wmerge(n,m) is O(n+m).

Note: again, no opportunity for parallelism.
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fun msort ([] : int list) : int list = [] 
  | msort [x] = [x] 
  | msort L =  
      let  
         val (A, B) = split L 
      in  
         merge(msort A, msort B) 
      end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0 
Wmsort(1) = c1 
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb) 
            + Wmerge(na,nb), for n = na + nb and n  2≥
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Let’s look at the tree method to find a closed form.
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Consequently: Wmsort(n) is O(n log n).

Is there an opportunity for parallelism?


