
Sorting lists — work and span revisited

15-150
Lecture 7: September 17, 2024

Stephanie Balzer
Carnegie Mellon University

1

Announcement: midterm I

2

Announcement: midterm I

When and where:
• Thursday, September 26, 11:00am—12:20pm.
• PH 100 (we may get a second room for more space, stay tuned).

2

Announcement: midterm I

When and where:
• Thursday, September 26, 11:00am—12:20pm.
• PH 100 (we may get a second room for more space, stay tuned).

2

Be on time; next
lecture starts at 12:30pm!

Announcement: midterm I

When and where:
• Thursday, September 26, 11:00am—12:20pm.
• PH 100 (we may get a second room for more space, stay tuned).

Scope:
• Lectures: 1—8.
• Labs: 1—4 and midterm review section of Lab 5.
• Assignments: Basics, Induction, and Datatypes.

2

Be on time; next
lecture starts at 12:30pm!

Announcement: midterm I

When and where:
• Thursday, September 26, 11:00am—12:20pm.
• PH 100 (we may get a second room for more space, stay tuned).

Scope:
• Lectures: 1—8.
• Labs: 1—4 and midterm review section of Lab 5.
• Assignments: Basics, Induction, and Datatypes.

What you may have on your desk:
• Writing utensils, we provide paper, something to drink/eat, tissues.
• 8.5’’ x 11’’ cheatsheet (back and front), handwritten or typeset.
• No cell phones, laptops, or any other smart devices.

2

Be on time; next
lecture starts at 12:30pm!

Last week

3

Last week

3

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

Last week

3

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

Last week

3

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

“programs as proofs”!

Last week

4

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

Last week

4

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

Last week

4

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

Last week

4

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

Last week

4

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

“programs as recurrences”!

Last week

5

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

Last week

5

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

Last week

5

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

today: sorting lists

Last week

5

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

today: sorting lists
Thursday: sorting binary trees

Last week

5

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

recursive calls give rise to recurrence

closed form solutions of recurrences for work and span

This week, we revisit work and span analysis for sorting!

today: sorting lists
Thursday: sorting binary trees

mergesort

Sorting

6

Sorting

6

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Sorting

6

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Eg:
Int.compare : int * int -> order
String.compare : string * string -> order

Sorting

6

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Eg:
Int.compare : int * int -> order
String.compare : string * string -> order

More generally, what we would like, for some type t:
compare : t * t -> order

Sorting

6

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Eg:
Int.compare : int * int -> order
String.compare : string * string -> order

More generally, what we would like, for some type t:
compare : t * t -> order

But let’s focus on comparing integers for now.

Sorting

7

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Sorting

7

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Sorting

7

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:

Sorting

7

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

Sorting

7

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

[..., x,..., y,...]

Sorting

7

Useful datatype:
datatype order = LESS | EQUAL | GREATER

What does it mean to be sorted?

Eg, for lists of integers:
A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

[..., x,..., y,...]

LESS | EQUAL

Warm-up: insertion sort for int lists

8

Warm-up: insertion sort for int lists

8

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

9

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

10

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

11

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

12

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

13

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

14

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

15

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

16

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

17

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

18

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

[..., x,..., y,...]

LESS | EQUAL

Remember our definition of a sorted list:

Warm-up: insertion sort for int lists

19

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Warm-up: insertion sort for int lists

20

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

21

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

22

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

23

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Warm-up: insertion sort for int lists

24

(* ins : int * int list -> int list
 REQUIRES: L is sorted
 ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

(* isort : int list -> int list
 REQUIRES: true
 ENSURES: isort(L) evaluates to a sorted permutation of L
*)

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work for insertion sort

25

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause
Consequently:

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause
Consequently: Wins(n) is O(n).

Work for insertion sort

25

fun ins (x : int, [] : int list) : int list = [x]
 | ins (x, y::L) = (case compare(x, y) of
 GREATER => y::ins(x, L)
 | _ => x::y::L)

Work: Wins(n) with n the list length.
Equations:
Wins(0) = c0
Wins(n) = c1 + Wins(n-1), for first case clause
Wins(n) = c2, for second case clause
Consequently: Wins(n) is O(n).

Note: no opportunity for parallelism.

Work for insertion sort

26

Work for insertion sort

26

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work for insertion sort

26

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.

Work for insertion sort

26

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

27

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

28

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

29

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

30

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

30

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Work for insertion sort

30

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

b/c spec asserts
permutation

Work for insertion sort

31

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

So:

Work for insertion sort

31

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

31

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently:

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

31

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently: Wisort(n) is O(n2).

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

31

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently: Wisort(n) is O(n2).

Note: again, no opportunity for parallelism.

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Work for insertion sort

31

fun isort ([] : int list) : int list = []
 | isort (x::L) = ins (x, isort L)

Work: Wisort(n) with n the list length.
Equations:
Wisort(0) = c0
Wisort(n) = c1 + Wisort(n-1) + Wins(n-1)

Consequently: Wisort(n) is O(n2).

Note: again, no opportunity for parallelism.

So: Wisort(n) c1 + c2 n + Wisort(n-1)≤ ⋅

Can we do better?

Mergesort: divide and conquer

32

Mergesort: divide and conquer

32

Suppose, I have the list, that I want to sort

Mergesort: divide and conquer

32

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Mergesort: divide and conquer

32

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

Mergesort: divide and conquer

32

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

33

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

33

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

Mergesort: divide and conquer

33

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4]

Mergesort: divide and conquer

33

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

34

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

35

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

36

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

37

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

Mergesort: divide and conquer

38

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

Mergesort: divide and conquer

39

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

Mergesort: divide and conquer

40

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5] [7] [3]

Mergesort: divide and conquer

41

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5] [7] [3]

Mergesort: divide and conquer

42

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5] [7] [3]

Mergesort: divide and conquer

42

Suppose, I have the list, that I want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

43

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3]

 ?≤

Mergesort: divide and conquer

44

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

 ?≤

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

Mergesort: divide and conquer

45

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

[4, 5, 9]

Mergesort: divide and conquer

46

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9] ?≤

[4, 5, 9]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

 ?≤

Mergesort: divide and conquer

47

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9]

 ?≤

[3, 7]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

Mergesort: divide and conquer

48

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

49

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

50

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

50

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

50

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

51

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Mergesort: divide and conquer

51

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Note, we use a list here.

Mergesort: divide and conquer

51

Now, let’s merge:

[9, 7, 5, 3, 4]

[9, 5, 4] [7, 3]

[9, 4] [5]

[9] [4]

[7] [3][4, 9]

[4, 5, 9] ?≤ [3, 7]

[3, 4, 5, 7, 9]

Note, we use a list here.

But there is almost a tree emerging…

Let’s write the mergesort function!

52

Let’s write the mergesort function!

52

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

53

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

54

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

55

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

56

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

57

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

58

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

59

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

60

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

61

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Let’s write the mergesort function!

62

(* msort : int list -> int list
 REQUIRES: true
 ENSURES: msort(L) evaluates to a sorted
 permutation of L.
*)
fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Now, let’s write split!

63

Now, let’s write split!

63

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)
fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

64

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)
fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

65

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)
fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

66

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

67

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

68

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

69

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

70

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

71

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

72

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

73

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

73

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Now, let’s write split!

73

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Have we
established post-

condition?

Now, let’s write split!

73

(* split : int list -> int list * int list
 REQUIRES: true
 ENSURES: split(L) evaluates to a pair of lists (A, B)
 such that length(A) and length(B) differ by
 at most 1, and A@B is a permutation of L.
*)

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Have we
established post-

condition?

Prove in your head as you write code!

Work for split

74

Work for split

74

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work for split

75

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

76

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

77

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

78

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

79

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

80

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:

Work for split

81

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

82

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥

Work for split

83

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥
Consequently: Wsplit(n) is O(n).

Work for split

83

fun split ([] : int list) : int list * int list = ([], [])
 | split [x] = ([x], [])
 | split (x::y::L) =
 let
 val (A, B) = split L
 in
 (x::A, y::B)
 end

Work: Wsplit(n) with n the list length.
Equations:
Wsplit(0) = c0
Wsplit(1) = c1
Wsplit(n) = c2 + Wsplit(n-2), for n 2≥
Consequently: Wsplit(n) is O(n).

no opportunity for
parallelism

Now, let’s write merge!

84

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

85

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

86

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

87

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

88

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

89

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

90

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

91

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

92

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

93

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

94

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

95

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

96

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

97

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

98

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Now, let’s write merge!

99

(* merge : int list * int list -> int list
 REQUIRES: A and B are sorted lists.
 ENSURES: merge(A,B) evaluates to a sorted
 permutation of A@B.
*)

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work for merge

100

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

100

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

101

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

102

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

103

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

104

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

105

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

106

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

107

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

108

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

109

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

110

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

111

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

112

fun merge ([] : int list, B : int list) : int list = B
 | merge (A, []) = A
 | merge (x::A, y::B) = (case compare(x,y) of
 LESS => x :: merge(A, y::B)
 | EQUAL => x::y::merge(A, B)
 | GREATER => y :: merge(x::A, B))

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

113

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Work for merge

113

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Consequently: Wmerge(n,m) is O(n+m).

Work for merge

113

Work: Wmerge(n,m) for merge(A,B) with n, m the length of A, B, resp.
Equations:
Wmerge(0,m) = c0, for all m 0

Wmerge(n,0) = c1, for all n 0
Wmerge(n,m) = k1 + Wmerge(n-1,m), for n, m > 0 and case LESS

Wmerge(n,m) = k2 + Wmerge(n-1,m-1), for n, m > 0 and case EQUAL

Wmerge(n,m) = k3 + Wmerge(n,m-1), for n, m > 0 and case GREATER

≥
≥

Consequently: Wmerge(n,m) is O(n+m).

Note: again, no opportunity for parallelism.

Finally, work for mergesort!

114

Finally, work for mergesort!

115

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

116

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

117

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

118

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

119

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

120

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

121

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

122

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

123

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

124

fun msort ([] : int list) : int list = []
 | msort [x] = [x]
 | msort L =
 let
 val (A, B) = split L
 in
 merge(msort A, msort B)
 end

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

125

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

125

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

125

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌊n/2⌋

Finally, work for mergesort!

125

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌊n/2⌋

Finally, work for mergesort!

125

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Finally, work for mergesort!

126

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

127

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

Finally, work for mergesort!

128

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

129

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

130

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

131

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

132

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

133

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

134

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

135

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Finally, work for mergesort!

135

Work: Wmsort(n) with n the list length.
Equations:
Wmsort(0) = c0
Wmsort(1) = c1
Wmsort(n) = c2 + Wsplit(n) + Wmsort(na) + Wmsort(nb)
 + Wmerge(na,nb), for n = na + nb and n 2≥

= ⌈n/2⌉= ⌊n/2⌋

Wmsort(n) c2 + c3 n + 2 Wmsort(n/2)
Wmsort(n) c4 n + 2 Wmsort(n/2)

≤
≤

c n + c’ n = (c + c’) n = c3 n

Let’s look at the tree method to find a closed form.

Finally, work for mergesort!

136

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

Finally, work for mergesort!

136

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

Finally, work for mergesort!

136

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

Finally, work for mergesort!

136

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4 c4 n/4 c4 n/4

Finally, work for mergesort!

136

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Consequently:

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Consequently: Wmsort(n) is O(n log n).

Finally, work for mergesort!

137

Wmsort(n) c4 n + 2 Wmsort(n/2)≤

c4 n

c4 n/2 c4 n/2

c4 n/4 c4 n/4

c4 n/2i c4 n/2i

c4 n/4 c4 n/4

work per level:

c4 n

c4 n

c4 n

c4 n

log2 n

Consequently: Wmsort(n) is O(n log n).

Is there an opportunity for parallelism?

