Sorting lists — work and span revisited

15-150
Lecture 7: September 17, 2024

Stephanie Balzer
Carnegie Mellon University

Announcement: midterm |

Announcement: midterm |

When and where:

e Thursday, September 26, 11:00am—12:20pm.
* PH 100 (we may get a second room for more space, stay tuned).

Announcement: midterm |

Be on time; next

lecture starts at 12:30pm!
When and where:

e Thursday, September 26, 11:00am—12:20pm.
* PH 100 (we may get a second room for more space, stay tuned).

Announcement: midterm |

Be on time; next

lecture starts at 12:30pm!
When and where:

e Thursday, September 26, 11:00am—12:20pm.
* PH 100 (we may get a second room for more space, stay tuned).

SCope:

e | ectures: 1—8.

e | abs: 1—4 and midterm review section of Lab 5.
e Assignments: Basics, Induction, and Datatypes.

Announcement: midterm |

Be on time; next

lecture starts at 12:30pm!
When and where:

e Thursday, September 26, 11:00am—12:20pm.
* PH 100 (we may get a second room for more space, stay tuned).

SCope:

e | ectures: 1—8.

e | abs: 1—4 and midterm review section of Lab 5.
e Assignments: Basics, Induction, and Datatypes.

What you may have on your desk:

e \Writing utensils, we provide paper, something to drink/eat, tissues.
e 8.5”7 x 11”7 cheatsheet (back and front), handwritten or typeset.
e No cell phones, laptops, or any other smart devices.

| ast week

| ast week

In week 2 we discovered (and exploited) the correspondence

between programs and proofs.

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

“programs as proofs”!

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

“programs as recurrences’!

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

-} This week, we revisit work and span analysis for sorting!

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

-} This week, we revisit work and span analysis for sorting!

-} today: sorting lists

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

-} This week, we revisit work and span analysis for sorting!

-} today: sorting lists

-} Thursday: sorting binary trees

| ast week

In week 2 we discovered (and exploited) the correspondence
between programs and proofs.

-} recursive call corresponds to inductive hypothesis

In week 3 we discovered (and exploited) the correspondence
between programs and asymptotic analysis.

-} recursive calls give rise to recurrence

-} closed form solutions of recurrences for work and span

-} This week, we revisit work and span analysis for sorting!
-} today: sorting lists '

mergesort
-} Thursday: sorting binary trees

Sorting

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

EQ:
Int.compare : int *x int -> order
String.compare : string x string —> order

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

EQ:
Int.compare : int *x int -> order
String.compare : string x string —> order

More generally, what we would like, for some type t:
compare : t x t —-> order

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

EQ:
Int.compare : int *x int -> order
String.compare : string x string —> order

More generally, what we would like, for some type t:
compare : t x t —-> order

-} But let’s focus on comparing integers for now.

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

-} What does it mean to be sorted?

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

-} What does it mean to be sorted?

Eg, for lists of integers:

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

-} What does it mean to be sorted?

Eg, for lists of integers:

A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

-} What does it mean to be sorted?

Eg, for lists of integers:

A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

Sorting

Useful datatype:
datatype order = LESS | EQUAL | GREATER

-} What does it mean to be sorted?

Eg, for lists of integers:

A list of integers is sorted iff each integer in the list is no greater than
all integers that occur to its right.

LESS | EQUAL

"
[eee), X, nun, Yyunal

Warm-up: insertion sort for int lists

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list

REQUIRES: L 1s sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list

REQUIRES: L 1s sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list =

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list

REQUIRES: L 1s sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]

10

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list

REQUIRES: L 1s sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
| ins (x, y::L) =

11

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list
REQUIRES: L is sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
| ins (x, y::L) =

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

12

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list
REQUIRES: L 1s sorted
ENSURES: ins(x, L) evaluates to sorted permutation of x::L

*)
+ int list) : int list = [x]

fun ins (x : int, [1]
= (case of

| ins (x, y::L)

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

13

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list
REQUIRES: L 1s sorted
ENSURES: ins(x, L) evaluates to sorted permutation of x::L

*)
+ int list) : int list = [x]

fun ins (x : int, [1
= (case compare(x, y) of

| ins (x, y::L)

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

14

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list
REQUIRES: L is sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

] = int list) : int list = [x]
(case compare(x, y) of
GREATER =>

fun ins (x : int, |
| ins (x, y::L) =

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

15

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list
REQUIRES: L is sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
x)

] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)
)

fun ins (x : int, |
| ins (x, y::L) =

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

16

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list
REQUIRES: L is sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
x)

] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)

|)

fun ins (x : int, |
| ins (x, y::L) =

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

17

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list
REQUIRES: L 1s sorted
ENSURES: ins(x, L) evaluates to sorted permutation of x::L

%)
] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)
| => x::y:i:L)

fun ins (x : int, |
| ins (x, y::L) =

Remember our definition of a sorted list:

LESS | EQUAL

N
[ene), X,uuny, Yyuual

18

Warm-up: insertion sort for int lists

(x ins : int x int list —> int list

REQUIRES: L 1s sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
| ins (x, y::L) = (case compare(x, y) of

GREATER => y::ins(x, L)
| _ => X::y::lL)

19

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list
REQUIRES: L is sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
| ins (x, y::L) = (case compare(x, y) of
GREATER => y::ins(x, L)
| => x::y:i:L)
(x isort : int list -> int list

REQUIRES: true

ENSURES: isort(L) evaluates to a sorted permutation of L
%)

20

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list

*)

REQUIRES: L 1s sorted
ENSURES: ins(x, L) evaluates to sorted permutation of x::L

fun ins (x : int, [] : int list) : int list = [x]

| ins (x, y::L) = (case compare(x, y) of
GREATER => y::ins(x, L)
| => Xx::y::l)

(x isort : int list —> int 1list

*)

REQUIRES: true
ENSURES: isort(L) evaluates to a sorted permutation of L

fun isort ([1 : int list) : int list =

21

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list

*)

REQUIRES: L 1s sorted
ENSURES: ins(x, L) evaluates to sorted permutation of x::L

fun ins (x : int, [] : int list) : int list = [x]

| ins (x, y::L) = (case compare(x, y) of
GREATER => y::ins(x, L)
| => Xx::y::l)

(x isort : int list —> int 1list

*)

REQUIRES: true
ENSURES: isort(L) evaluates to a sorted permutation of L

fun isort ([] : int list) : int list = []

22

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list

*)

REQUIRES: L 1s sorted
ENSURES: ins(x, L) evaluates to sorted permutation of x::L

fun ins (x : int, [] : int list) : int list = [x]

| ins (x, y::L) = (case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

(x isort : int list —> int 1list

*)

REQUIRES: true
ENSURES: isort(L) evaluates to a sorted permutation of L

fun isort ([] : int list) : int list = []

| isort (x::L) =

23

Warm-up: insertion sort for int lists

(% ins : int *x int list —> int 1list
REQUIRES: L is sorted

ENSURES: ins(x, L) evaluates to sorted permutation of x::L
*)

fun ins (x : int, [] : int list) : int list = [x]
| ins (x, y::L) = (case compare(x, y) of
GREATER => y::ins(x, L)
| => x::y:i:L)
(x isort : int list —> int 1list

REQUIRES: true

ENSURES: isort(L) evaluates to a sorted permutation of L
%)

fun isort ([] : int list) : int list = []
| isort (x::L) = ins (x, isort L)

24

Work tfor insertion sort

25

Work tfor insertion sort

] : int list) : int list =

(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X:i:y:i:ilL

fun ins (x : int, [
| ins (x, y::L) =

[X]

)

25

Work tfor insertion sort

] : int list) : int list =

(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X:i:y:i:ilL

fun ins (x : int, [
| ins (x, y::L) =

Work: Wins(n) with n the list length.

[X]

)

25

Work tfor insertion sort

fun ins (x : int,
| ins (x, y::L)

[

]
(

: int list)

: 1nt list =

case compare(x, y) of

GREATER
-

=> y::ins(x, L)
=> X::y::L

Work: Wins(n) with n the list length.

Equations:

[X]

)

25

Work tfor insertion sort

] : int list) : int list =

(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X:i:y:i:ilL

fun ins (x : int, [
| ins (x, y::L) =

Work: Wins(n) with n the list length.

Equations:
Wins(Q) —

[X]

)

25

Work tfor insertion sort

fun ins (x : int,
| ins (x, y::L)

[

]
(

: int list)

: 1nt list =

case compare(x, y) of

GREATER
-

=> y::ins(x, L)
=> X::y::L

Work: Wins(n) with n the list length.

Equations:
Wins (@) = co

[X]

)

25

Work tfor insertion sort

fun ins (x : int,
| ins (x, y::L)

[

]
(

» int list) :

int list =

case compare(x, y) of

GREATER
-

=> y::ins(x, L)
=> X::y::L

Work: Wins(n) with n the list length.

Equations:

Wins (@) = co
Wins(n) =

[X]

)

25

Work tfor insertion sort

] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

fun ins (x : int, [
| ins (x, y::L) =

Work: Wins(n) with n the list length.

Equations:

Wins(@) = Co
Wj_ns (n) = C1 + Wins (n—l) , for first case clause

25

Work tfor insertion sort

] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

fun ins (x : int, [
| ins (x, y::L) =

Work: Wins(n) with n the list length.

Equations:

Wins(@) = Co
Wj_ns (n) = C1 + Wins (n—l) , for first case clause

Wins(n) =

25

Work tfor insertion sort

] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

fun ins (x : int, [
| ins (x, y::L) =

Work: Wins(n) with n the list length.

Equations:

Wins(@) = Co
Wj_ns (n) = C1 + Wins (n—l) , for first case clause
Wins(Nn) = co, for second case clause

25

Work tfor insertion sort

: int list) : int list = [x]
case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

fun ins (x : int, [1]
=

| ins (x, y::L)

Work: Wins(n) with n the list length.

Equations:

Wins(@) = Co
Wj_ns (n) = C1 + Wins (n—l) , for first case clause
Wins(Nn) = co, for second case clause

Consequently:

25

Work tfor insertion sort

: int list) : int list = [x]
case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

fun ins (x : int, [1]
=

| ins (x, y::L)

Work: Wins(n) with n the list length.

Equations:

Wins(@) = Co
Wj_ns (n) = C1 + Wins (n—l) , for first case clause
Wins(Nn) = co, for second case clause

Consequently: Wins(n) is0(n).

25

Work tfor insertion sort

] : int list) : int list = [x]
(case compare(x, y) of
GREATER => y::ins(x, L)
| _ => X::y::lL)

fun ins (x : int, [
| ins (x, y::L) =

Work: Wins(n) with n the list length.

Equations:

Wins(@) = Co
Wins(n) = C1 + Wins(n—l), for first case clause
Wins(Nn) = co, for second case clause

Consequently: Wins(n) is0(n).

-} Note: no opportunity for parallelism.

Work tfor insertion sort

26

Work tfor insertion sort

fun isort ([] : int list) : int list = []
| isort (x::L) = ins (x, isort L)

26

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

[]

26

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

[]

26

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:
Wisort (@)

[]

27

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:
Wisort (@) = co

[]

28

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n)

[]

29

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

[]

30

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

[]

30

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

[]

b/c spec asserts
permutation

30

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

So:

[]

31

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

SO: Wisort(n) <c1+co-n+Wisort(n=-1)

[]

31

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.
Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

SO: Wisort(n) <c1+co-n+Wisort(n=-1)

Consequently:

[]

31

Work tfor insertion sort

fun isort ([] : int list) : int list
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.
Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

SO: Wisort(n) <c1+co-n+Wisort(n=-1)

Consequently: Wisort(n) is 0(n2).

[]

31

Work tfor insertion sort

fun isort ([] : int list) : int list = []
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

SO: Wisort(n) <ci+c2-n+Wisort(n-1)
Consequently: Wisort(n) is 0(n2).

-} Note: again, no opportunity for parallelism.

31

Work tfor insertion sort

fun isort ([] : int list) : int list = []
| isort (x::L) = ins (x, isort L)

Work: Wisort (n) with n the list length.

Equations:

Wisort (@) = co
Wisort(n) =c1 + Wisort(n=1) + Wins(n-1)

SO: Wisort(n) <c1+co-n+Wisort(n=-1)

Consequently: Wisort(n) is 0(n2).

-} Note: again, no opportunity for parallelism.

o d Can we do better?
31

Mergesort: divide and conqguer

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort

32

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort

[9, 7, 5, 3, 4]

32

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]

Divide the list into approximate halves:

32

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

32

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

33

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

33

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9

33

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9

[7

33

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9, 5

[7

34

Mergesort: divide and conqguer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9, 5

[7, 3

35

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9, 5, 4]

[7, 3

36

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9, 5, 4]

[7, 3]

37

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

— T~

[9, 5, 4]

/N

[7, 3]

38

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4]
/N

[9, 4] [5]

[7, 3]

39

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4]
/N

[9, 4] [5]

40

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N 7\

[9, 4] [5] [7]

41

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N 7\
[9, 4] [5] [7] [3]

/ \

42

Mergesort: divide and conquer

Suppose, | have the list, that | want to sort
[9, 7, 5, 3, 4]
Divide the list into approximate halves:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N 7\
[9, 4] [5] [7] [3]

/ \

[9] [4]

42

Mergesort: divide and conquer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N S\
[9, 4] [5] [7]

/ \

[9] [4]

43

Mergesort: divide and conquer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N S\
[9, 4] [5] [7]

/ \

[9] [4]

44

Mergesort: divide and conquer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N S\
[9, 4] [5] [7]

/ \

[9] [4]

44

Mergesort: divide and conquer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N N\
[9, 4] [5] [7] [3]

/\
(9] [4]

<7

44

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

A

[9] [4]

<7

44

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

45

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

45

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

45

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] <? [5] [7]

/ \

[9] [4]

45

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[4, 5 [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] <2 [5] [7] [3]

/ \

[9] [4]

45

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[4, 5 [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \

[9] [4]

46

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[4, 5 [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \

[9] [4]

46

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
[4, 5 [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] <2 [5] [7] [3]

/ \

[9] [4]

46

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] <2 [5] [7] [3]

/ \

[9] [4]

46

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \

[9] [4]

47

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \

[9] [4]

47

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \

[9] [4]

47

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \ <?

[9] [4]

47

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

<7

[3, 7]

[3]

47

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

48

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
4, 5, 9] [9, 5, 4] [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

48

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
4, 5, 9] [9, 5, 4] [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

48

Mergesort: divide and conqguer

Now, let’s merge:

(9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] <? [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

48

Mergesort: divide and conqguer

Now, let’s merge:

(3, 4 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] <? [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

48

Mergesort: divide and conqguer

Now, let’s merge:

(3, 4 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

49

Mergesort: divide and conqguer

Now, let’s merge:

(3, 4 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

49

Mergesort: divide and conqguer

Now, let’s merge:

(3, 4 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

49

Mergesort: divide and conqguer

Now, let’s merge:

(3, 4 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] <? [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

49

Mergesort: divide and conqguer

Now, let’s merge:

13, 4, 5, 7 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

50

Mergesort: divide and conqguer

Now, let’s merge:

13, 4, 5, 7 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

50

Mergesort: divide and conqguer

Now, let’s merge:

13, 4, 5, 7 9, 7, 5, 3, 4]
/ \
(4, 5, 9] [9, 5, 4] <? [7, 3]
/N N\
(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

50

Mergesort: divide and conqguer

Now, let’s merge:

13, 4, 5, 7, 9] (9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] <? [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

51

Mergesort: divide and conqguer

Now, let’s merge:

13, 4, 5, 7, 9] (9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] <? [7, 3]
/N N\

(4, 9] [9, 4] [5] [7]

/ \

[9] [4]

-} Note, we use a list here.

51

Mergesort: divide and conqguer

Now, let’s merge:

13, 4, 5, 7, 9] (9, 7, 5, 3, 4]

/ \
(4, 5, 9] [9, 5, 4] <? [7, 31 [3, 7]
/N N\
(4, 9] [9, 4] [5] [7] [3]

/ \

[9] [4]

-} Note, we use a list here.

-} But there is almost a tree emerging. ..

51

Let’s write the mergesort function!

Let’s write the mergesort function!

(x msort : int list —> int list

52

Let’s write the mergesort function!

(x msort : int list —> int 1list
REQUIRES: true

53

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.
*)

54

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.
*)

fun msort ([] : int list) : int list =

95

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.
*)

fun msort ([] : int list) : int list = []

56

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.
*)

fun msort ([] : int list) : int list = []
| msort [x:

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.
*)

fun msort ([] : int list) : int list = []
| msort [x] = [x]

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.
*)

fun msort ([] : int list) : int list = []
msort [x] = [x]
msort L =

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.

*)
fun msort ([] : int list) : int list = []
msort [x] = [x]
msort L =
let
val
1n

end

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.

*)
fun msort ([] : int list) : int list = []
msort [x] = [x]
msort L =
let
val (A, B) = split L
1n

end

61

Let’s write the mergesort function!

(k msort : int list —> int list
REQUIRES: true
ENSURES: msort(L) evaluates to a sorted
permutation of L.

*)
fun msort ([] : int list) : int list = []
msort [x] = [x]
msort L =
let
val (A, B) = split L
1n

merge(msort A, msort B)
end

62

Now, let’s write split!

63

Now, let’s write split!

(x split : int list —> int list *x int list

63

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true

64

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.

65

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list =

66

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)

67

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)
| split [x] =

68

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)
| split [x] = ([x], [])

69

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)

| split [x] = ([x], [])
| split (x::y::L) =

70

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)

| split [x] = ([x], [])

| split (x::y::L) =
let
val
in

end

71

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in

end

72

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list = ([1, [1)

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

73

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list =‘([], [])‘

| split [x] =|(Ix], [1)]

| split (x::y::L) =
let
val (A, B) = split L

in

(X::A, y::BA

end

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list =‘([], [])‘

| split [x] =|(Ix], [1)]

| split (x::y::L) =
let

. Have we
in vat (A, B) = split L established post-
(x::A, y::B)| condition?
enc

73

Now, let’s write split!

(x split : int list —> int list *x int list
REQUIRES: true
ENSURES: split(L) evaluates to a pair of lists (A, B)
such that length(A) and length(B) differ by
at most 1, and A@B 1s a permutation of L.
*)

fun split ([] : int list) : int list % int list =‘([], [])‘

| split [x] =|(Ix], [1)]

| split (x::y::L) =
let

. Have we
in vat (A, B) = split L established post-
(x::A, y::B)| condition?
enc

-} Prove in your head as you write code!

Work for spilit

Work for split

fun split ([] : int list) : int list % int list

| split [x] = ([x],

| split (x::y::L) =
let
val (A, B)
in
(x::A, y::B
end

)

[1)

split L

(L1,

[1)

74

Work for spilit

fun split ([] : int list) : int list % int list

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

Work: Wsptit(n) with n the list length.

(L1,

[1)

75

Work for spilit

fun split ([] : int list) : int list % int list

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

Work: Wsptit(n) with n the list length.

Equations:

(L1,

[1)

/6

Work for spilit

fun split ([] : int list) : int list % int list

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

Work: Wsptit(n) with n the list length.

Equations:
Wsplit (0) —

(L1,

[1)

77

Work for spilit

fun split ([] : int list) : int list x int list = ([],

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, yi:B)
end

Work: Wsptit(n) with n the list length.

Equations:
Wsp1it (@) = co

[1)

/8

Work for spilit

fun split ([] : int list) : int list x int list = ([],

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, yi:B)
end

Work: Wsptit(n) with n the list length.

Equations:

Wsp1it (@) = co
Wsplit (1) =

[1)

79

Work for spilit

fun split ([] : int list) : int list x int list = ([],

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, yi:B)
end

Work: Wsptit(n) with n the list length.

Equations:

Wsp1it (@) = co
Wsp1it (1) = cq

[1)

80

Work for spilit

fun split ([] : int list) : int list x int list = ([],
| split [x] = ([x], [1])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

Work: Wsptit(n) with n the list length.

Equations:
Wsp1it (@) = co
Wsp1it (1) = cH
Wsplit(n) =

[1)

81

Work for spilit

fun split ([] : int list) : int list x int list = ([],

| split [x] = ([x], [])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

Work: Wsptit(n) with n the list length.

Equations:

Wsp1it (@) = co

Wsp1it (1) = cH

Wsplit(n) = c2 + Wsprit(n=2), forn > 2

[1)

82

Work for spilit

fun split ([] : int list) : int list x int list = ([],
| split [x] = ([x], [1])

| split (x::y::L) =
let
val (A, B) = split L
in
(x::A, y::B)
end

Work: Wsptit(n) with n the list length.

Equations:

Wsp1it (@) = co
Wsp1it (1) = cH
Wsplit(n) = c2 + Wsprit(n=2), forn > 2

Consequently: Wsprit(n) is0(n).

[1)

83

Work for split

fun split ([] : int list) : int list x int list = ([],
| split [x] = ([x], [1])

| split (x::y::L) =
let
val (A, B) = split L

[1)

in No opportunity for

(x::A, y::B) parallelism
end

Work: Wsptit(n) with n the list length.

Equations:

Wsp1it (@) = co
Wsp1it (1) = cH
Wsplit(n) = c2 + Wsprit(n=2), forn > 2

Consequently: Wsprit(n) is0(n).

83

Now, let’s write merge!

84

Now, let’s write merge!

(x merge : int list % int list —> int list

85

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.

86

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

87

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list =

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) =

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) =

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A

| merge (x::A, y::B) = (case compare(x,y) of
LESS =>

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A

| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)

95

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL =>

96

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)

97

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER =>

98

Now, let’s write merge!

(x merge : int list % int list —> int list
REQUIRES: A and B are sorted lists.
ENSURES: merge(A,B) evaluates to a sorted

permutation of A@B.

%)

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

99

Work for merge

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

100

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge (A, B) with n, m the length of A, B, resp.

101

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))
Work: Wmerge (N, m) for merge (A, B) with n, m the length of A, B, resp.

Equations:

102

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))
Work: Wmerge (N, m) for merge (A, B) with n, m the length of A, B, resp.

Equations:
Wmerge(Q;m) =

103

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))
Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.
Equations:
Wmerge(@,m) = Co, forallm >0

104

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.
Equations:

Wmerge(@,m) = Co, forallm >0
Wmerge(n;@)

105

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))
Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.
Equations:

Wmerge(@,m) = Co, forallm >0
Wmerge(n,@) = (Cf1, for all n Z 0

106

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.

Equations:

Wmerge(@,m) = Co, forallm >0
Wmerge(n,@):C1,fOra”nZO
Wmerge(n;m)

107

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, [1) = A
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.

Equations:

Wmerge(@,m) = Co, fOra”mZO
Wmerge(n,@):C1,fOra”nZO
Wmerge(n, m) = k‘] + Wmerge(n—l, m), for n, m?> O and case LESS

108

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) =
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.

Equations:

Wmerge(@,m) = Co, forallm >0

Wmerge(n,@):C fOra”n>O

Wmerge(n,m) :k‘l+Wmerge(n 1 m) forn m > 0 and case LESS

Wmerge(n;m) =

109

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) =
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.

Equations:

Wmerge(@,m) Co, forallm >0

Wierge (N, @) =cq, foralln >0

Winerge(n, m) = ki + Wnerge (N=1, m), for n, m > 0 and case LESS
Winerge(n, m) = ko + Wnerge (N=1,m-1), for n, m > 0 and case EQUAL

110

Work for merge

fun merge ([] : int list, B : int list) : int list = B
| merge (A, []) =
| merge (x::A, y::B) = (case compare(x,y) of
LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wmerge (N, m) for merge(A, B) with n, m the length of A, B, resp.

Equations:
Wmerge(@,m) = Co, forallm>0
Wmerge(n,@)Z 1,foralln>O

Wmerge(n,m) = k‘] + Wmerge(n 1,m), for n, m?> O and case LESS
Wmerge(n, m) = k2 + Wmerge(n—l, m—l), for n, m?> 0 and case EQUAL
Wmerge(n;m)

111

Work for merge

fun merge ([]
| merge (A,
| merge (x:

: int list, B : int list) : int list = B
[]1) = A

1A, y::B) = (case compare(x,y) of

LESS => x :: merge(A, y::B)
| EQUAL => x::y::merge(A, B)
| GREATER => y :: merge(x::A, B))

Work: Wnerge (n, m) for merge(A, B) with n, m the length of A, B, resp.

Equations:
Wmerge(Q; m

Co, forallm >0

)
Wmerge(n,@) = (Cf1, for all n > O

Wmerge(n;m)
Wmerge(n;m) =
Wmerge(n;m)

<1 + Wmerge(n—l, m), for n, m?> O and case LESS
Ko + Wmerge(n—l, m—l), for n, m?> 0 and case EQUAL

K3 + Wmerge(n, m—l), for n, m?> 0 and case GREATER

112

Work for merge

Work: Wmerge (N, m) for merge (A, B) with n, m the length of A, B, resp.

Equations:

Wmerge(@,m) = Co, for allm > O
Wmerge(n,@) = (Cf1, for all n > O

Wmerge(n;m) =
Wmerge(n;m) =
Wmerge(n;m)

<1 + Wnerge(n—=1,m), for n, m > 0 and case LESS
Ko + Wmerge(n—l, m—l), for n, m?> 0 and case EQUAL

3 + Wnerge(n,m=1), for n, m > 0 and case GREATER

113

Work for merge

Work: Wmerge (N, m) for merge (A, B) with n, m the length of A, B, resp.

Equations:

Wmerge(@,m) = Co, for allm > O
Wmerge(n,@) = (Cf1, for all n > O

Wmerge(n;m) =
Wmerge(n;m) =
Wmerge(n;m)

Consequently:

<1 + Wnerge(n—=1,m), for n, m > 0 and case LESS
Ko + Wmerge(n—l, m—l), for n, m?> 0 and case EQUAL

3 + Wnerge(n,m=1), for n, m > 0 and case GREATER

Winerge(n, m) is 0(n+m).

113

Work for merge

Work: Wmerge (N, m) for merge (A, B) with n, m the length of A, B, resp.

Equations:

Wierge (@, m) = co, for allm > 0

Winerge(n, @) =c4, foralln >0

Winerge(n, m) = ki + Wnerge(N=1, m), for n, m > 0 and case LESS
Winerge(n,m) = ko + Wnerge (N=1,m-1), for n, m > 0 and case EQUAL
Winerge(n,m) = ks + Wnerge(n, m=1), for n, m > 0 and case GREATER

Consequently: Wnerge(n,m) is 0(n+m).

-} Note: again, no opportunity for parallelism.

113

Finally, work for mergesort!

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in

merge(msort A, msort B)
end

115

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end

Work: Wnsort (n) with n the list length.

Equations:

116

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end
Work: Wnsort (n) with n the list length.
Equations:

Wmsort (0) —

117

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end
Work: Wnsort (n) with n the list length.
Equations:

Wisort (@) = co

118

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end
Work: Wnsort (n) with n the list length.
Equations:

Wisort (@) = co
Wmsort (1) —

119

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end
Work: Wnsort (n) with n the list length.
Equations:

Wisort (@) = co
Whsort (1) = C1

120

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end

Work: Wnsort (n) with n the list length.

Equations:

Wisort (@) = co
Wmsort(l) = C1
Winsort(N) =

121

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end

Work: Wnsort (n) with n the list length.

Equations:

Wisort (@) = co
Wmsort(l) = C1
Winsort(n) =c2 +Wsplit(n) +

122

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = Co

Wmsort(l) = C1

Wnsort(N) = cCo +Wsplit(n) + Wnsort (Na) + Wnsort (Np)
n>?2

123

Finally, work for mergesort!

fun msort ([] : int list) : int list = []

| msort [x] = [x]
| msort L =
let
val (A, B) = split L
in
merge(msort A, msort B)
end

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

124

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:
Wisort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

125

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:
Wisort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

125

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:
Wisort (@) = co — LI’l/ZJ
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

125

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:
Wisort (@) = co — LI’l/ZJ
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

125

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co — Ln/ZJ — [72/2“
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)

+ Wmerge(na,nb), for n = Na + Np and n > 2

125

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:
Wisort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

126

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:
Wisort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
+ Wmerge(na,nb), for n = Na + Np and n > 2

127

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
—+ Wmerge(na,nb), for n = Na + Np and n > 2

Ccn

128

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
—+ Wmerge(na,nb), for n = Na + Np and n > 2

Ccn

129

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
—+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c n

130

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
—+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c’'n=(c+c)n

131

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)
—+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c' n=(c+c)n=can

132

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co — Ln/ZJ — [n/2‘\
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)

+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c' n=(c+c)n=can

133

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co — Ln/ZJ — [n/2‘\
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)

+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c' n=(c+c)n=can

Winsort(n) <c2+ca3n + 2 Wasort(Nn/2)

134

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co — LI’l/ZJ — [n/2‘\
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)

+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c' n=(c+c)n=can

Winsort(n) <c2+ca3n + 2 Wasort(Nn/2)
Winsort(n) < can + 2 Wasort(Nn/2)

135

Finally, work for mergesort!

Work: Wnsort (n) with n the list length.

Equations:

Winsort (@) = co — LI’Z/ZJ — [71/2“
Wmsort(l) = C1
Wnsort(N) =co + Wsplit(n) + Wnsort (Na) + Wnsort (Np)

+ Wmerge(na,nb), for n = Na + Np and n > 2

ch+c' n=(c+c)n=can

Winsort(n) <c2+ca3n + 2 Wasort(Nn/2)
Winsort(n) < can + 2 Wasort(Nn/2)

-} Let's look at the tree method to find a closed form.

135

Finally, work for mergesort!

Wnsort (N) <can + 2 Wnsort(n/2)

136

Finally, work for mergesort!

Wnsort (N) <can + 2 Wnsort(n/2)

Ca N

136

Finally, work for mergesort!

Wnsort (N) <can + 2 Wnsort(n/2)

Ca N

/ \

Csq N/2 Cs4 N/2

136

Finally, work for mergesort!

Wnsort (N) <can + 2 Wnsort(n/2)

Ca N

/ \

Csq N/2 Cs4 N/2
/ N\ / N\
canN/4 c4n/4 canN/4 c4n/4

136

Finally, work for mergesort!

Wnsort (N) <can + 2 Wnsort(n/2)

Ca N

C4 N/2 C4 N/2
VRN VRN
C4 n‘4 can/4 can/4 C4 n/4
C4 n/2| .. C4 n/2|

136

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \
C4 N/2 C4 N/2
/7 '\ /7 '\
C4 n/4 can/4 Can/4 can/4
C4 n/2| .. C4 n/2|

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ .
Cs N/2 Cs N/2
/7 '\ /7 '\
C4 n/4 c4n/4 Cs4 N/4 C4 n/4
C4 n/2| .. C4 n/2|

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ .
Cs N/2 Cs N/2 Ca N
/7 '\ /7 '\
C4 n/4 c4n/4 Cs4 N/4 C4 n/4
C4 n/2| .. C4 n/2|

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ .
Cs N/2 Cs N/2 Ca N
/7 '\ /7 '\
C4 n/4 c4n/4 Cs4 N/4 C4 n/4 C4 N
C4 n/2| .. C4 n/2|

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ .
Cs N/2 Cs N/2 Ca N
/7 '\ /7 '\
C4 n/4 c4n/4 Cs4 N/4 C4 n/4 C4 N
C4 n/2| .. C4 n/2| Cs N

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ n
Cs N/2 Cs N/2 Ca N
/7 '\ /7 '\
can/4 can/4 can/4 can/4 can [10Q2N
C4 n/2| .. C4n/2| C4n_

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ n
Csq N/2 Cs4 N/2 Ca N
/ N\ / N\
can/4 can/4 can/4 can/4 can [10Q2N
C4 n/2| .. C4n/2| C4n_
Conseqguently:

137

Finally, work for mergesort!

Wmsort (n) < Cs4N+ 2 Wmsort (n/2) WOrk per level:
/ . \ n
Cs N/2 Cs N/2 Ca N
/7 '\ /7 '\
can/4 can/4 can/4 can/4 can [10Q2N
C4 n/2| .. C4n/2| C4n_

Consequently: Wmsort(n) is 0(nlogn).

137

Finally, work for mergesort!

Wnsort (N) <can + 2 Wnsort(n/2)

Ca N
/ \
C4 N/2 Cs4 N/2
/ N\ / N\

work per level:

C4 N4 c4n/4 can/d cCq4 n/4

Consequently: Wmsort(n) is 0(nlogn).

-} s there an opportunity for parallelism?

Cq N

C4a N

Ca N

Ca N

l0g2 N

137

